Vol. (1) No. (1)

On Semi Feebly Separation Axioms

Jassim Saadoun Shuwaie Education College for Pure Sciences, Wasit University, Iraq

heudtfodg@gmail.com

Ali Khalaf Hussain Education College for Pure Sciences, Wasit University, Iraq alhachamia@uowasit.edu.iq

Abstract

The goal of this work is to present some new separation axioms based on the concept of defining new types of open sets namely semi-feebly open set. we investigate their fundamental features.

Keywords: semi-feebly- T_0 , semi-feebly- T_1

1 Introduction

separation qualities are a standout amongst the most vital and fascinating concepts in topology. In 1963, N.levin[10] proposed concept of a semi-open set. S.N Maheshwari and R. Prasad[9], used semi-open sets to characterize and investigare new partition aphorisms known as semi-detachment aphorisms. In 1975, Maheshwari and et.al.[8] created semi- R_0 . P. Bahattacharya B. K. Lahiri [7] summarized up of shut sets to semi-summed up shut sets using semi-receptiveness in 1987. Cueva M. C characterized the idea of new type of topological space called semi- $T_{1/2}$ in 2000 [6] (i.e. the space where the semi-closed sets and semi-summed up sets classes meet). Although none these applications reversible, it is proved that each semi- T_1 space is semi- $T_{1/2}$ and each semi- $T_{1/2}$ is semi- T_0 . Maheshwari and et. al.[5] initiated the study of feebly open in 1978. Aaad Aziz Hussan Abdulla in [1] presented the idea of semi-feebly open (sf-open) set. "the goal of this study is to provide some characterizations of semi-feebly separation axioms".

Vol. (1) No. (1)

2 Preliminaries

Definition 2.1.[1]

Let (X, τ) be a topological space. A subset *A* of *X* is said to be

(1) semi-feebly open set if $\overline{A}^{f} \subseteq U$ whenever $A \subseteq U$ and U is semi-open set.

i.e. $\forall U$ is semi-open in $X (A \subseteq U \longrightarrow \overline{A}^{f} \subseteq U)$.

(2) the complement semi-feebly open set is said semi-feebly closed set.

Remark 2.2.[1]

If A is f-closed set, then A is sf-open set.

Proof.

let A be f-closed set in a topological space X. $A \subseteq U$, U s-open,

Since *A* is (f-closed) set then $A = \overline{A}^{f}$ and $A = \overline{A}^{f} \subseteq U$

Hence A is (sf-open) set.

Remark 2.3[1]

If A is closed set, then A is sf-open set.

Proposition 2.4.[1]

If A_{λ} is a family of sf-open set, then $\cup A_{\lambda}$ is sf-open set.

Proposition 2.5.[1]

Let *X* is a topological space and *A*, $B \subseteq X$, then

1. *A* is an sf-closed set if and only if $A = \overline{A}^{sf}$.

2.
$$\overline{A}^{sf} \subseteq \overline{A}$$
.
3. $\overline{A}^{sf} = \overline{(\overline{A}^{sf})}^{sf}$.
4. If $A \subseteq B$ then $\overline{A}^{sf} \subseteq \overline{B}^{sf}$.

Lemma 2.6.

Vol. (1) No. (1)

Let *X* is a topological space and $A \subseteq X$, then

 $\overline{A}^{s} \subseteq \overline{A}^{sf}$

Proof.

Let $x \in \overline{A}^s$ and A is a s-closed set, then $A = \overline{A}^s \Rightarrow x \in A \subseteq \overline{A}^{sf}$.

Then $x \in \overline{A}^{sf}$.

Therefor $\overline{A}^s \subseteq \overline{A}^{sf}$.

3 Lower separation axioms

Definition 3.1.

A topological space (X, τ) is sf- R_0 if for each sf-open set $U, x \in U$ implies

that $\overline{\{x\}}^{sf} \subset U$.

Lemma 3.2.

If a space *X* is sf- R_0 , then for every sf-open set *U* and each $x \in U$,

 $\overline{\{x\}}^{\circ} \subset U.$

Proof.

Let *X* be sf-*R*₀. Then for every sf-open set *U* and each $x \in U, \overline{\{x\}}^{sf} \subset U$. But by

[Lemma (2.6)] $\overline{\{x\}}^s \subset \overline{\{x\}}^{sf}$ and $\overline{\{x\}}^s = \{x\} \cup \overline{\{x\}}^s$ by [[11] Proposition(1.1.19)],

this implies that $\overline{\{x\}}^{\circ} \subset U$.

Definition 3.3.

A topological space (X, τ) is sf- R_1 if for each $x, y \in X$ with $\overline{\{x\}}^{sf} \neq \overline{\{y\}}^{sf}$, there exist disjoint sf-open set U and V such that $\overline{\{x\}}^{sf} \subset U$ and $\overline{\{y\}}^{sf} \subset V$.

Theorem 3.4.

Vol. (1) No. (1)

If a topological space (X, τ) is sf- R_1 , then (X, τ) is sf- R_0 .

Proof.

Let *U* be a sf-open set such that $x \in U$. If $y \notin U$, then $x \notin \overline{\{y\}}^{sf}$, therefore $\overline{\{x\}}^{sf} \neq \overline{\{y\}}^{sf}$. So, there exists a sf-open set *V* such that $\overline{\{y\}}^{sf} \subset V$ and $x \in V$, which implies $y \notin \overline{\{x\}}^{sf}$. Hence $\overline{\{x\}}^{sf} \subset U$. Therefore (X, τ) is sf- R_0 .

Theorem 3.5.

A topological space (X, τ) is sf- R_0 if and only if for every sf-closed set F

and $x \notin F$, there exist a sf-open set G such that $F \subset G, x \notin G$.

Proof.

Let (X, τ) is sf- R_0 and F is sf-closed set in X and $x \notin F$. Then $X \setminus F$ is sf-open set containing x, since (X, τ) is sf- R_0 implies that $\overline{\{x\}}^{sf} \subset X \setminus F$ and then $F \subset X \setminus \overline{\{x\}}^{sf}$. Now let $G = X \setminus \overline{\{x\}}^{sf}$, then G is sf-open set not contains x and $F \subset G$.

Conversely: Let $x \in G$ where G is sf-open set in X. Then $X \setminus G$ is sf-closed set

and $x \notin X \setminus G$ implies that by hypothesis there exists and sf-open set U such

that $x \notin U$ and $X \setminus G \subset U$. Now $X \setminus U \subset G$ and $x \in X \setminus U$, but $X \setminus U$ sf-closed set then $\overline{\{x\}}^{\text{sf}} \subset X \setminus U \subset G$ this implies that (X, τ) is sf- R_0 .

Theorem 3.6.

For a space *X*, the following are equivalent:

1. X is sf- R_0 .

2. For any two points x and y in X, $x \in \overline{\{y\}}^{sf}$ if and only if $y \in \overline{\{x\}}^{sf}$.

Proof.

(1) \Rightarrow (2). Let *X* is sf-*R*₀ and $x \in \overline{\{y\}}^{\text{sf}}$. To show $y \in \overline{\{x\}}^{\text{sf}}$, let *V* be any sf-open set containing *y*. Since *X* is sf-*R*₀ so $\overline{\{y\}}^{\text{sf}} \subset V$ implies that $x \in V$, hence every sf-open set which containing *y* contains *x* this implies that $y \in \overline{\{x\}}^{\text{sf}}$. By the same way we can prove that if $y \in \overline{\{x\}}^{\text{sf}}$, then $x \in \overline{\{y\}}^{\text{sf}}$.

Vol. (1) No. (1)

(2) \Rightarrow (1). Let the hypothesis be satisfied and U U be any sf-open set and $x \in U$. To show $\overline{\{x\}}^{sf} \subset U$, let $y \in \overline{\{x\}}^{sf}$ implies that by hypothesis $x \in \overline{\{y\}}^{sf}$, and then $U \cap \{y\} \neq \emptyset$ this implies that $y \in U$. Thus $\overline{\{x\}}^{sf} \subset U$, therefore X is sf- R_0 .

Theorem 3.7.

A space X is sf- R_0 if and only if for any x and y in X if $\overline{\{x\}}^{sf} \neq \overline{\{y\}}^{sf}$,

then
$$\overline{\{x\}}^{sf} \cap \overline{\{y\}}^{sf} = \emptyset$$
.

Proof.

Let X be sf-R₀ and x, $y \in X$ such that $\overline{\{x\}}^{sf} \neq \overline{\{y\}}^{sf}$. Then there exists $z \in \overline{\{x\}}^{sf}$ such that $z \notin \overline{\{y\}}^{sf}$ implies that there exists an sf-open set U containing z but not y, hence $x \in \overline{\{x\}}^{sf}$. Therefore we have $x \notin \overline{\{y\}}^{sf}$ implies that $x \in X \setminus \overline{\{y\}}^{sf}$ which is an sf-open set, but X is sf-R₀ so $\overline{\{x\}}^{sf} \subset X \setminus \overline{\{y\}}^{sf}$ this implies that $\overline{\{x\}}^{sf} \cap \overline{\{y\}}^{sf} = \emptyset$.

Conversely. Let the hypothesis be satisfied and let U be any sf-open set in X and $x \in U$. If U = X, then clearly $\overline{\{x\}}^{sf} \subset U$, but if $U \neq X$, then there exists $y \in X$ such that $y \notin U$. Now $x \neq y$ and $x \notin \overline{\{y\}}^{sf}$ implies that $\overline{\{x\}}^{sf} \neq \overline{\{y\}}^{sf}$, then by hypothesis $\overline{\{x\}}^{sf} \cap \overline{\{y\}}^{sf} = \emptyset$ implies that $y \notin \overline{\{x\}}^{sf}$. Thus if $y \notin U$, then $y \notin \overline{\{x\}}^{sf}$ this implies that $\overline{\{x\}}^{sf} \subset U$. Hence X is sf- R_0 .

Definition 3.8.

Let (X, τ) is a topological space. If for each $a, b \in X$ where $a \neq b$ there exists a semi-feebly-open set W of X containing a but not b, we say that X is semi-feebly- T_0 space.

Theorem 3.9.

Let (X, τ) is a topological space. We say that X is sf- T_0 -space if and only if

for every $x, y \in X, x \neq y$. Implies $\overline{\{x\}}^{sf} \neq \overline{\{y\}}^{sf}$

Proof.

Let $x, y \in X$ with $x \neq y$ and X is sf- T_0 -space. We shall show that $\overline{\{x\}}^{sf} \neq \overline{\{y\}}^{sf}$. Since X is sf- T_0 -space, there exists a sf-open set U such that $x \in U$ but $y \notin U$. Also $x \notin X \setminus U$ and $y \notin X \setminus U$ where $X \setminus U$ is sf-closed set in X. Now by definition $\overline{\{Y\}}^s$ is the intersection of all sf-closed set which contain y. Hence, $y \in \overline{\{y\}}^{sf}$ but $x \notin \overline{\{y\}}^{sf}$ as

Vol. (1) No. (1)

 $x \notin X \setminus U$. Therefore, $\overline{\{x\}}^{sf} \neq \overline{\{y\}}^{sf}$.

Conversely, for any $x, y \in X, x \neq y$. And $\overline{\{x\}}^{sf} \neq \overline{\{x\}}^{sf}$. Then there exists at least one point such that $z \in X$ such that $z \in \overline{\{x\}}^{sf}$ but $z \notin \overline{\{y\}}^{sf}$.

We claim that $x \notin \overline{\{y\}}^{sf}$. If $x \in \overline{\{y\}}^{sf}$ then $\{x\} \subseteq \overline{\{y\}}^{sf}$ implies $\overline{\{x\}}^{sf} \subseteq \overline{\{y\}}^{sf}$. So, $z \in \overline{\{y\}}^{sf}$, which is a contradiction. Hence, $x \notin \overline{\{y\}}^{sf}$. Now, $x \notin \overline{\{y\}}^{sf}$

implies $x \in X \setminus \overline{\{y\}}^{sf}$ and $X \setminus \overline{\{y\}}^{sf}$ is sf-open in X but $y \notin X \setminus \overline{\{y\}}^{sf}$ Observe X that is sf- T_0 -space.

Proposition 3.10.

Whenever X is sf- T_0 -space, then each subspace of X is sf- T_0 -space.

Proof.

Consider X as a sf- T_0 -space and $Y \subset X$. Take α and β as unequal points

of *Y*. As $Y \subset X$, α and β are also unequal points of *X*. As per given, *X* is

sf- T_0 -space, we have a sf-open set *K* so that $\alpha \in K$, $\beta \notin K$. Then we have

 $Y \cap K$ is sf-open in Y having α but not β . Thus Y is sf- T_0 -space.

Definition 3.11.

A subset A of a topological space (X, τ) is called to be semi-feebly

generalized closed set (written in short as sfg-closed) if, $\overline{A}^{sf} \subset O$ hold

whenever $A \subset O$ and O is sf-open.

Proposition 3.12.

Every sf-closed set is sfg-closed set.

Definition 3.13.

A topological space (X, τ) is called sf- $T_{1/2}$ if every sfg-closed set in (X, τ) is

sf-closed set in (X, τ) .

Definition 3.14.

That for any subset *E* of (X, τ) , $\overline{E}^{sf*} = \cap \{A : E \subset A \ (\in sfD(X, \tau))\}$, where

Vol. (1) No. (1)

$$sfD(X, \tau) = \{ A : A \subset X \text{ and } A \text{ is sfg-closed in } (X, \tau) \}$$
 and

 $\mathrm{sf}O(X,\,\tau)^*=\{B:\overline{B^c}^{\mathrm{sf}*}=B^c\}.$

Theorem 3.15.

A topological space (X, τ) is a sf- $T_{1/2}$ space if and only if

 $sfO(X, \tau) = sfO(X, \tau)^*$

Proof.

Necessity : Since the sf-open sets and the sfg-closed sets coincide by the assumption, $\overline{E}^{sf} = \overline{E}^{sf*}$ holds for every subset *E* of (X, τ) . Therefore, we have $sfO(X, \tau) = sfO(X, \tau)^*$ Sufficiency : Let *A* be a sfg-closed set of (X, τ) . Then, we have $A = \overline{A}^{sf*}$

and A^c is sf-open set in (X, τ) . Thus A is sf-closed set. Therefore (X, τ) is

sf- $T_{1/2}$.

Theorem 3.16.

A topological space is sf- $T_{1/2}$ space if and only if each $x \in X$, $\{x\}$ is sf-open or $\{x\}$ is sf-closed.

Proof.

Necessity: Suppose that for some $x \in X$, $\{x\}$ is not sf-closed. Since X is the only sf-open set containing $\{x^c\}$, the set $\{x^c\}$ is sfg-closed and so it is sf-closed in the sf- $T_{1/2}$ space (X, τ) . Therefore $\{x\}$ is sf-open. Sufficiency: Since $sfO(X, \tau) \subset sfO(X, \tau)^*$ holds, we show $sfO(X, \tau)^* \subset sfO(X, \tau)$. Let $E \in sfO(X, \tau)^*$ Suppose that $E \notin sfO(X, \tau)$. Then, $\overline{E^c}^{sf*} = E^c$ and $\overline{E^c}^{sf} \neq E^c$ hold. There exists a point x of X such that $x \in \overline{E^c}^{sf}$ and $x \notin E^c = \overline{E^c}^{sf*}$. Since $x \notin \overline{E^c}^{sf*}$ there exists a sfg-closed set A such that $x \notin A$ and $A \supset E^c$. By the hypothesis,

Vol. (1) No. (1)

the singleton $\{x\}$ is sf-open or sf-closed.

Case (1). $\{x\}$ is sf-open. Since $\{x^c\}$ is a sf-closed set with $E^c \subset \{x^c\}$,

we have $\overline{E^c}^{sf} \subset \{x^c\}$, i.e., $x \notin \overline{E^c}^{sf}$. This contradicts the fact that $x \in \overline{E^c}^{sf}$.

Therefore $E \in sfO(X, \tau)$.

Case (2). {*x*} is sf-closed. Since {*x^c*} is a sf-open set containing the sfg-closed set $A \supset E^c$, we have {*x^c*} $\supset \overline{A}^{sf} \supset \overline{E^c}^{sf}$. Therefore $x \notin \overline{E^c}^{sf}$. This is a contradiction. Therefore $E \in sfO(X, \tau)$.

Hence in both cases, we have $E \in sfO(X, \tau)$, i.e., $sfO(X, \tau)^* \subset sfO(X, \tau)$.

Corollary 3.17.

X is sf- $T_{1/2}$ if and only if every subset of X is the intersection of all sf-open sets and all sf-closed sets containing it.

Proof.

Necessity: let X is sf- $T_{1/2}$ with $B \subset X$ arbitrary. Then $B = \{\{x\}^c, x \notin B\}$, an intersection of sf-open and sf-closed[**Theorem(3.16)**]. The result follows. Sufficiency: for $x \in X$, $\{x\}^c$ is the intersection of all sf-open sets and all sf-closed sets containing it. Thus $\{x\}^c$ is either sf-open or sf-closed and X is sf- $T_{1/2}$.

Definition 3.18.

A space (X, τ) is called a sf- $T_{1/4}$ space if for every finite subset $F \subset X$ and every point $y \notin F$ there exists a subset $A \subset X$ such that $F \subset A, y \notin A$ and A is sf-open or sf-closed.

Proposition 3.19.

Let (X, τ) be a sf- $T_{1/4}$ space. Then every subspace of X is a sf- $T_{1/4}$ space. Recall that a subset F of a space (X, τ) sf-locally finite if every point

Vol. (1) No. (1)

has an sf-open neighborhood U_x such that $F \cap U_x$ is at most finite. $x \in X$

Theorem 3.20.

For a space (X, τ) the following are equivalent:

(1) (X, τ) is a sf- $T_{1/4}$ space,

(2) For every sf-locally finite subset $F \subset X$ and every point $y \notin F$ there

exists a subset $A \subset X$ such that $F \subset A$, $y \notin A$ and A is sf-open or sf-closed.

Definition 3.21.

Let (X, τ) is a topological space. Then X is sf-T₁-space if for each $a, b \in X$ such that

 $a \neq b$ there exists a sf-open set W of X containing a but not b and a sf-open set U of X

containing b but not a.

Remark 3.22.

Every sf-T₁space is sf-T₀ space

Proof.

From the definition of $sf-T_1$ space it is follows that it is $sf-T_0$, since there

exists a sf-open set *G* such that $x \in G$ but $y \notin G$

the converse is not true.

Corollary 3.23.

Every sf- T_0 space is not sf- T_1 space.

The following example supports this.

Example 3.24.

Let $X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{1\}\}$ be a topology defined on *X*. Here

sf-open sets are $\{X, \emptyset, \{2\}, \{3\}, \{2, 3\}\}$. It is clear X is sf-T₀ space but is

not sf-T₁ since $1 \neq 2$ and there exist sf-open set contain 2 but there is not

exist sf-open set such that containing 1 but not 2

Proposition 3.25.

X is sf-T₁ if and only if for all $x \in X$ implies $\{x\}$ is sf-closed sets.

Proof.

Let $\{z\}$ sf-closed set for every $z \in X$. Let $x, y \in X$ such that $x \neq y$. Then $x \in \{y\}^c$ and $\{y\}$ is sf-closed set. Therefore $\{y\}^c$ sf-open set containing x but not y and, and $\{x\}^c$ sf-open set containing y but not x. Then X is sf-T₁

Conversely, let X be a sf-T₁-space and $y \in X$. To prove $\{y\}$ is sf-closed set. Let $x \in \{y\}^c$ then $x \neq y$. Since X sf-T₁, then there exists sf-open set in X, U such that $x \in U$ and $x \notin U$. Then $x \in U \subset \{y\}^c = \cup \{U_x : x \in \{y\}^c\}$ which is sf-open set. Hence $\{x\}$ is sf-closed set.

Theorem 3.26.

A space X is $sf-T_1$ if and only if it is $sf-T_0$ and $sf-R_0$.

Proof.

Let X be sf- T_1 space. Then from [**Remark** (3.22)] X is sf- T_0

and by [**Proposition** (3.25] every singleton set in X is sf-closed. Now X is

sf- R_o space since for any $x \in U$, where U is sf-open set, $\overline{\{x\}}^{sf} = \{x\} \subset U$. Thus the space X is sf- R_o .

Conversely, let $x, y \in X$ be any two distinct points. Since X is sf- T_0 so there exists an sf-open set U such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$. Now let $x \in U$ and $y \notin U$ and since X is sf- R_0 space so $\overline{\{x\}}^{sf} \subset U$ and we have $y \notin U$ implies that $y \notin \overline{\{x\}}^{sf}$, then $y \in X \setminus \overline{\{x\}}^{sf}$ which is sfopen set so take $V = X \setminus \overline{\{x\}}^{sf}$. Thus U and V are sf-open sets in Xsuch that $x \in U$, $y \in V$ and $x \notin V$ and $y \notin U$, implies that X is sf- T_1 space.

Definition 3.27[2]

A subset A of a topological space (X, τ) is called sg-closed set if,

 $\overline{A}^{s} \subset O$ hold whenever $A \subset O$ and O is s-open of (X, τ) , the complement

of a sg-closed set is called a sg-open set.

Definition 3.28[3]

A subset A of a topological space (X, τ) is called Ψ -closed set if,

 $\overline{A}^{s} \subset 0$ hold whenever $A \subset 0$ and 0 is sg-open of (X, τ) .

Theorem 3.29[4]

Let *A* be a subset of topological space (X, τ) , then

1) *A* is Ψ -closed if and only if $\overline{A}^s - A$ does not contain any non-empty sg-closed set.

2) If A is Ψ -closed and $A \subset B \subset \overline{A}^s$, then B is Ψ -closed

Definition 3.30.

A space (X, τ) is said to be a sf- $T_{1/3}$ space if every Ψ -closed set in

 (X, τ) is sf-closed.

Theorem 3.31.

For a topological space (X, τ) , the following conditions are equivalent:

(i) (X, τ) is a sf- $T_{1/3}$ space.

(ii) Every singleton of *X* is either sg-closed or sf-open set.

(iii) Every singleton of X is either sg-closed or open set.

Proof.

(i) \Rightarrow (ii) let $x \in X$ and suppose that $\{x\}$ is not sg-closed of (X, τ) . Then

X-{x} is not sg-open set. so, X is the only sg-open set containing X-{x}.

Hence X-{x} is Ψ -closed set. Since (X, τ) is sf- $T_{1/3}$ space, then X-{x} is

Vol. (1) No. (1)

a sf-closed set or equivalently $\{x\}$ is sf-open set. (ii) \Rightarrow (i) let *A* be a Ψ -closed set. clearly $A \subset \overline{A}^s$. let $x \in X$. By Assumption, $\{x\}$ is either sg-closed or sf-open. Case(1) suppose $\{x\}$ is sg-closed.[**Theorem(3.29**)] $\overline{A}^s - A$ does not contain any non-empty sg-closed set. Since $x \in \overline{A}^s$, then $x \in A$. Case(2) suppose $\{x\}$ is a sf-open set. Since $x \in \overline{A}^{sf}$, then $\{x\} \cap A \neq \emptyset$. So $x \in A$. Thus in any case $\overline{A}^{sf} \subset A$. Therefore $A = \overline{A}^{sf}$ or equivalently *A* is sf-closed set of (X, τ) . Hence (X, τ) is an sf- $T_{1/3}$ space. (iii) \Leftrightarrow (ii) Follows from the fact that a singleton is sf-open if and only if it is open.

4 Some new separation axioms

Definition 4.1.

Let (X, τ) be a topological space. Let $A \subset X$ we say that A is semi-feebly -Difference (sf-D) set if there exists U, V are sf-open set such that $U \neq X$ and $A = U \setminus V$.

Remark 4.2.

Every sf-open set $U \neq X$ is sf-*D*-set if A = U and $V = \emptyset$

Corollary 4.3.

Every sf-*D*-set is not sf-open set.

The following example shows.

Example 4.4.

Let $X = \{1, 2, 3, 4\}, \tau = \{\emptyset, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}, X\}$. So,

Vol. (1) No. (1)

 $\{3\}, \{1, 2\}\}$, then $U = \{1, 2, 4\} \neq X$ and $V = \{1, 3, 4\}$ are sf-open sets in

X and $A = U \setminus V = \{1, 2, 4\} \setminus \{1, 3, 4\} = \{2\}$, then we have $A = \{2\}$ is a

sf-D-set but it is not sf-open set.

Definition 4.5.

A topological space (X, τ) is said to be:

1. sf- D_0 if for any pair of distinct points x and y of X there exists a sf-D-set of X containing x but not y or a sf-D-set of X containing y but not x.

2. sf- D_1 if for any pair of distinct points x and y of X there exists a sf-D-set of X containing x but not y and a sf-D-set of X containing y but not x.

3. sf- D_2 if for any pair of distinct points x and y of X there exist disjoint sf-D-set G and E of X containing x and y, respectively.

Remark 4.6.

For a topological space (X, τ) , the following properties hold:

1. If (X, τ) is sf- T_k , then it is sf- D_k , for k = 0, 1, 2.

2. If (X, τ) is sf- D_k , then it is sf- D_{k-1} , for k = 1, 2.

Proof.

It follows from [Remark (4.2)] and [Definition (4.5)].

Proposition 4.7.

A space X is $sf-D_0$ if and only if it is $sf-T_0$.

Proof.

Suppose that X is sf- D_0 . Then for each distinct pair $x, y \in X$, at least one

of x, y, say x, belongs to sf-D-set G but $y \notin G$. Let $G = U_1 \setminus U_2$ where

 $U_1 \neq X$ and U_1, U_2 are sf-open set. Then $x \in U_1$, and for $y \notin G$ we have

two cases: (a) $y \notin U_1$, (b) $y \in U_1$ and $y \in U_2$.

In case (a), $x \in U_1$ but $y \notin U_1$.

In case (b), $y \in U_2$ but $x \notin U_2$.

Vol. (1) No. (1)

Thus in both the cases, we obtain that X is $sf-T_0$.

Conversely, if X is sf- T_0 , by [**Remark** (4.6) (1)], X is g sf- D_0 .

Proposition 4.8.

A space *X* is $sf-D_1$ if and only if it is $sf-D_2$.

Proof.

Necessity. Let $x, y \in X$, $x \neq y$. Then there exist sf-*D*-sets G_1 , G_2 in *X* such that $x \in G_1$, $y \notin G_1$ and $y \in G_2$, $x \notin G_2$. Let $G_1 = U_1 \setminus U_2$ and $G_2 = U_3 \setminus U_4$, where U_1, U_2, U_3 and U_4 are sf-open sets in *X*. From $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately.

(i) $x \notin U_3$. By $y \notin G_1$ we have two sub-cases:

(a) $y \notin U_1$. Since $x \in U_1 \setminus U_2$, it follows that $x \in U_1 \setminus (U_2 \cup U_3)$, and

since $y \in U_3 \setminus U_4$, we have $x \in U_3 \setminus (U_1 \cup U_4)$.

Therefore $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \emptyset$.

(b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2$, and $y \in U_2$. Therefore

 $(U_1 \setminus U_2) \cap U_2 = \emptyset.$

(ii) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$ and $x \in U_4$. Hence

 $(U_3 \setminus U_4) \cap U_4 = \emptyset$. Therefore X is sf- D_2 .

sufficiency. Follows from [Remark (4.6)(2)].

Corollary 4.9.

If (X, τ) is sf- D_1 , then it is sf- T_0 .

Proof.

Follows from [Remark (4.6) (2)] and [Proposition (4.7)].

Remark 4.10.

Here is an example which shows that the converse of [Corollary (4.9)] is

not true in general.

Example 4.11.

Let $X = \{1, 2\}, \tau = \{\emptyset, \{1\}, X\}$ be a topology on *X*.

Then (X, τ) is sf- T_0 , but not sf- D_1 , since there is no sf-D-set containing 2 but not 1.

5 Conclusion

In topological space, separation axioms are very important. Through this paper, it was concluded that there is a relationship between semifeebly- T_1 , semi-feebly- T_0 and the axioms of separation of type semifeebly- R_0 , semi-feebly- R_1 there is also a relationship between semi-feebly- D_0 , semi-feebly- D_1 , semi-feebly- D_2 .

6 References

[1] A. Raad Aziz Hussan AlAbdulla and B. Othman Rhaif Madlooi Al-Chrani " On Semi Feebly open set and its properties," AlQadisiyah Journal of pure scince vol (25) issue (3) (2002) pp. math. 35-45.

[2] Bhattacharyya, P., Semi-generalized closed sets in topology. Indian J. Math.,
 1987. 29(3): p. 375-382.

[3] Veera Kumar, M., Between semi-closed sets and semi-pre-closed set.2000.

[4] Hamlett, T., A correction to the paper: "Semi-open sets and semi continuity in topological spaces" (Amer. Math. Monthly 70 (1963), 36–41) by Norman Levine. Proceedings of the American mathematical society, 1975. 49(2): p. 458-460.

[5] Jankovic D. S., Reidly I. L., "On Semi-Separation Properties", Indian J. Pure Appl. Math., 16(9), (1985), pp.(957-964).

[6]] Cueva M. C. " A research on characterization of semi- $T_{1/2}$ space" Divulgaciones Math. Vol. 8. No. 1 (2000) 43-50.

[7] P. Bhattacharyya and B. K. lahiri, "Semi-generalized closed set in topology" Ind. Jr. Math., 29 (1987), 375-382.

[8]] S. N. Msheshwari, and R. Prasad, "On (R_0) s- space" Portugaliae Math. 34, 213-17 (1975).

[9] S. N. Msheshwari, and R. Prasad, "Some new separation axioms" Ann. Soc., Sci. Bruxelles 89, (1975), 395-402.

Vol. (1) **No.** (1)

[10] N. Levine, Semi "open sets and semi continuity in Topological spaces". Amer. Math. Monthly, 70, (1963), 36-41.

[11] H. A. Othman, "New Types Of α-Continuous Mappings," M .Sc. thesis, University of Al- Mustansirya, 2003.