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Abstract 

Deep learning-based side-channel analysis is an efficient and suitable technique 

for profiling side-channel attacks. In order to obtain the better performance, it 

is highly necessary to analyze an in-depth training stage in which the 

optimization of relevant hyperparameters should be a vital process. During the 

training phase, hyperparameters that are connected to the architecture of the 

neural network are often selected; however, hyperparameters that impact the 

training process are to be effectively analyzed. This was represented by an 

optimized hyperparammeter that consists of considerable impact on attacking 

behaviour, which is the primary focus of our research. Our research has shown 

that even while the popular optimizers Adam and RMSprop are capable of 

delivering satisfactory outcomes, they are also tend to being overfit. Hence, it 

is necessary to use condensed training periods, simple profiling models, and 

explicit regularization in order to avoid this problem. On the other hand, the 

performance of optimizers of the SGD type is only satisfactory when 

momentum is used which results in slower convergence and less overfit. In 

conclusion, the research results provide a better use of Adagrad in the cases of 

longer training datasets or big profiling models.

  

1. Introduction 

As it is possible for attackers to obtain access to physical equipment, the equipment itself must be equipped with 

cryptographic algorithms [1, 2] in order to provide security not just against physical attacks but also against 

mathematical cryptanalysis. A security system [3, 4] can be physically compromised by an attack known as a side- 

channel attack. This kind of attack uses data from cryptographic equipment known as side channels, like time of 

operation, electromagnetic radiation, temperature, sound, or power use. The use of side-channel attack (SCA) on 

genuine gadgets, like public transportation and mobile card, has resulted in a greater number of successful hacking 

attempts [5].  Side-channel attacks [6] can be of profile or non- profiled, depending on the environment in which 

the attacker is operating. Profiled attack is an example of side- channel attack that is carried out by utilizing a 
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profiling gadget which is similar to attack targeted gadgets with unchanged concealed keys, just like in Attack of 

Template and Stochastic Attack [7]. Another instance of side-channel attack is brute-force attack that are carried 

out using gadgets that is same to attack targeted devices. Attackers use profiling tools to provide a description of 

the leakage that is occurring on the target device, and then they investigate the device using the information that 

they have obtained. On the other hand, a non-profiled attack is one of the components that make up a side-channel 

attack in a scenario where there are no profiling devices present. In order to determine secret keys, attackers just 

need to collect side-channel data from the device they are targeting and then use statistical techniques to the 

measurements they have got from the target. These kinds of attacks don't make use of any pre-calculated templates; 

rather, they rely only on exploiting the side-channel data that is obtained from the devices that are being targeted 

in order to retrieve the secret key. Examples of attacks that are not profiled are Differential Power Analysis (DPA) 

[8] and Correlation Power Analysis (CPA) [9, 10]. 

Recent study has focused on deep learning and side- channel attacks, both of which have shown exceptional 

performance in a variety of diverse fields [11]. The vast majority of studies have placed an emphasis on scenario 

profiling for attacks. In a manner similar to that of classic profiling attacks, an attacker trains a network of neural 

by feeding it data collected through side channels from a profiling gadget. After then, clandestine key is extracted 

through making use of a neural network that has been trained to classify the side-channel data that has been 

collected from the target device. According to recent research, side-channel attacks that are powered by deep 

learning can be utilized to get beyond protections meant for disguising and concealing information [12]. When it 

comes to profiling deep learning-based side-channel attacks, one of the limitations is that the neural network must 

be built using training data for which the correct label must be known in order for the attack to be successful. As 

a direct consequence of this, this tactic has never been used in any research on profiling attacks until both training 

data and labels have been made accessible. 

Timon proposed a differential deep learning analysis, which is side-channel analysis that uses deep learning with 

context other than profiling, concentrating over our study in profiling atmosphere [13]. The method proposed by 

Timon makes use of the metrics that are generated by deep learning as a differentiator in place of metrics of 

convention like correlations amongst side-channel data and inter- mediate variables like projected powers 

consumption or radiation of electromagnetic nature. As a differentiator, adversaries will leverage deep learning 

metrics similar to gradiant, accuracy and loss. Strategy makes merits of fact, like measures created containing 

proper intermediate keys which are simpler in training compared to value produced containing erroneous 

intermediate key, and that different training threshold are capable in discerning difference between the two values. 

According to our knowledge, the research conducted by Timon was primarily a person to represent where deep 

learning could get utilized within non-profile attacks. 

Traditional unprofiled side-channel attacks [14], like DPA and CPA such as CPA or DPA, are able to provide 

fixed results after just one run. Differential deep learning analysis, on the other hand, can produce these findings 

after only one run. Because the training of deep learning networks is influenced by arbitrary features like weight 

at initial and hyperparameters, findings of analysis need to be accumulated over course of numerous iterations 

before they can be studied. As an instance, coefficient of correlation amongst evaluation with artificial intermediate 

measures stayed same up to point in time when data changed. However, outputs of training differs from behavior 

to performance despite the fact that training data and their labels are same. This is because random components 

like hyperparameters along with weighted beginning measures contribute to variation. With non- profiling 

circumstances, in which an adversary could not acquire access to appropriate labellings, this was further difficult 

to construct hyperparameters. It is very necessary to reduce the amount of time spent on attacks in order to acquire 

outcomes for additional hyper-parameters or in reducing probability factor via recurrent attackings. hence, with 

comparison to more convention attack, ones that are more rapid provide better results. 

1.1. Aim 

The purpose is to improve the strength of cryptographic systems, and this will be done by making use of the 

versatility and learning power of deep learning models in order to effectively reduce or eliminate the threats posed 

by side-channel attacks.  
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• Designing dynamic optimization methods for deep learning models that enable them to keep pace with 

evolving attack strategies and security loopholes. 

• The integration of adaptive deep learning solutions into cryptographic systems and hardware architectures 

is to be developed for smooth functioning and compatibility. 

1.2. Problem Statement 

The deep learning approaches we use today may not be well-suited for the constantly changing domain of side-

channel attacks, where attackers always innovate their methods to take advantage of weaknesses. Thus, the 

research problem is how to design adaptive optimization algorithms for deep learning models that can effectively 

counteract the adverse effects of side-channel attacks. This involves: 

• The design of neural network architectures that adjust their parameters and structure in a responsive fashion 

to new attack patterns. The generation of algorithms that would work continuously to monitor and analyze the 

side-channel data to find out the emerging strategies of attacks. 

• The work on the optimization algorithms that are integrated to tune model parameters in real time is aimed 

at suppressing known vulnerabilities. Also, efforts have been made in research to improve deep learning model 

generalization capabilities against different types of side-channel attacks on various hardware platforms. 

1.3. Outline 

In this article, the research work is organized as follows,  

Section 1 explains the introduction, aim and problem statement in brief. Section 2 details the literature survey 

related to our research work. Section 3 provides design of our proposed method of CNN architecture with adaptive 

optimization model. Section 4 presents the results of our research work. Finally, Section 5 summarizes the research 

work with a detailed conclusion. 

2. LITERATURE REVIEW 

We can categorize corpus of works used to describe machine learning methods according to degree of complication 

of applied methods and treatment of hyper- parameter phase. In fact, primary studies examined more basic machine 

learning methods as Multilayer Perceptron, Naive Bayes, Support Vector Machines and Naive Forest [14]. The 

effectiveness of attacks and how those tactics stack up against the template attack and its variations were the key 

points of attention. The SCA community began to focus heavily on deep learning methods starting in 2016 [15]. 

Convolutional neural networks and multilayer perceptron 2 are the two most investigated methods. Both of those 

methods attained maximum performance, making it even conceivable to defeat implementations that are fortified 

with defenses [16]. In recent times, fraternity of research has begun in broadening deep learning approach to profile 

SCA. For example, have a look at the autoencoders used in [17] to pre-process the trace data. 

From the standpoint of the hyperparameter tuning phase, the machine learning proficiency of the SCA community 

can also be evaluated. In fact, early studies [18] does not specify if they perform tuning of hyper-parameter or 

what finalized hyperparameters are selected. Then, several works take into account different machine learning 

approaches to carry out tuning of hyperparameter by randomized or grid searching. The authors of [19] undertake 

an experimental assessment of various hyper- parameters concerning CNNs using ASCAD repository. To create 

deep learning model ensembles, Perin et al. used a random search inside pre-specified ranges [20]. A number of 

studies seek to systematically assess the impact of different hyperparameters. For the number of layers, neurons, 

and activation functions, L. Weissbart [21] took into consideration multilayer perceptrons and hyperparameter 

tuning. For Multilayer Perceptron (MLP) and CNN architectures, Li et al. looked at the weight initialization role 

[22]. Picek and Perin [23] investigated impact of optimizers selection pertaining to side-channel analysis 

dependent on deep learning. Such papers explain effects of certain hyperparameters in particular contexts, but they 

do not include instructions on how to construct whole neural network structures. These publications also address 

the relative importance of various hyperparameters, which can aid in future hyperparameter tuning improvements. 
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Finally, a number of studies attempt to provide a mechanism for creating neural networks. A strategy for choosing 

hyperparameters linked to sizes (number of learnable features, such as biases and weights) of CNNs layers was 

put out by the authors in [24]. The quantity of filters, kernel sizes, strides, and neurons in fully linked layers are 

all included in this. To the best of our knowledge, this is the first study to attempt a systematic response to the 

topic of how to create neural network topologies that function well. Unfortunately, a true technique is still a long 

way off. Although writers provide CNN designs achieving highest behavior, they presume extensive dataset 

knowledge too and solely take into account CNNs. Wouters et al. [25] enhanced work out of Zaid et al. [26], in 

which they explain many misunderstanding in primary tasks, and representing the way in reaching identical attack 

behavior having important tiny architecture of neural network. Furthermore, it is a bit complicated in extending 

these techniques over to newest repository. 

With the improvements in hardware and learning methods, deep learning has gained traction in a number of 

applications outside computer vision and natural language processing and voice recognition. Using deep learning, 

researchers have been able to classify side-channel data [27, 28]. There has been much study into the possibility 

of using deep learning to categorize measurements in the context of profiling, when an attacker uses a profiling 

equipment. While the attacker explains the profiling device leaking, the target device's measurements are analyzed. 

Maghrebi found that profiling attacks based on deep learning could be assessed apart from the masking reaction 

[18]. Without the need to preprocess the input, Cagli et al. [29] found that an attacker utilizing convolutional neural 

networks could potentially recover the secret key using side-channel attacks based on deep learning key. The 

results of deep learning investigations can be compared with one another with the use of open datasets [30]. In 

order to break public-key cryptosystems [31], researchers have employed deep learning in tandem with block 

ciphers. 

The first deep learning-based side-channel analysis [32, 33] is differential deep learning analysis (DDLA). When 

an attacker doesn't have access to a profiled device, this method can be utilized instead. Deep learning attacks- 

based profiling of side-channel attacks is challenging to accomplish because side-channel readings cannot be 

classified without a template device. These issues are solved by DDLA's label guessing. One common kind of 

covert study, known as a correlation power analysis, demonstrates that intermediate values generated with the right 

key are strongly correlated with observations. An accurately labeled neural network will outperform an 

inaccurately labeled one in every deep learning investigation. DDLA classifies various deep learning metrics 

differently. The validity of the key can be ascertained by the attacker with its unique identifier. 

3. CNN Architecture with Adaptive Optimization Model 

For the purpose of the side-channel profiling study, we take into consideration a typical scenario. An intelligent 

attacker has access to a device (clone device) that has the information necessary to implement the secret key. An 

assortment of 𝑁 profiling traces 𝑿𝟏, . . . , 𝑿𝑵, each corresponding to the processing of plaintext or ciphertext 𝑻𝒑, 

can be retrieved by the attacker. These traces can be used to profile the processing of the plaintext or ciphertext. 

Using this data, develops a leaky model that calls 𝒀(𝑻𝒑, 𝒌∗). The data are subsequently used by the attacker in the 

construction of a profiling model f, thus the term "profiling phase" for this step of the process. It is possible to 

initiate the attack on a separate device by using the mapping function. During the attack phase, sometimes known 

simply as the attack phase, the attacker will gather further 𝑄 traces 𝑿𝟏, . . . , 𝑿𝑸 from the target device in order to 

discover the unknowable secret key 𝒌𝒂
∗ . 

In order to calculate effectiveness of attacks, we require computing measures. Success rate (SR) and guessing 

entropy (GE) are the two-evaluation metrics that are used in SCA the majority of the time. Following the 

completion of a side-channel analysis, GE reveals the usual number of key candidates that an adversary is need to 

examine in order to deduce the location of the secret key. Let 𝑄 stand for the total number of measurements that 

were made during the attack phase, and let 𝒈 =  [𝒈𝟏, 𝒈𝟐, . . . , 𝒈|𝑲|] stand for the key guessing vector that the 

attack created. |𝑲| indicates key-space size. Entropy of guessing was calculated by taking average value of where 

𝒌𝒂
∗  and 𝑔 are located on several trials. Estimation was done by us for entropy based on the average of 100 separate 

experiments. Since we only evaluate entropy of guessing for a one key byte, term that more accurately describes 

what we do is called partial guessing entropy. Despite this, we talk about each of these ideas interchangeably. 
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Figure (1): Optimizer Based CNN Model. 

 

Figure (2): Flowchart for adaptively optimizing the CNN model's hyperparameters 

Since supervised machine learning follows the same technique as the supervised learning paradigm, which can be 

illustrated, it is possible for us in using regulated machine learning concerning SCA. To be additional exact, phase 

corresponding to testing is called the attack phase, whereas the one that corresponds to training is called the 

profiling phase. The following three components are crucial to the algorithms used in machine learning: A machine 

learning method is comprised of three distinct parts: a model, a loss function (the majority of the objective 

functions used in machine learning are, as a matter of convention, expected to be lowered), and a loss function 

optimization procedure. In order to develop a successful profiling model, that is to say one that generalizes well 

to data that has not been seen before, we provided training to parameters 𝜃 set a way that losses are minimized. In 
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the last step, a variety of hyperparameters λ are included into the development of the learning model. During our 

examinations, we take into consideration both convolutional neural networks and multiple layer perceptron. 

Before optimization can begin with the intention of lowering a loss function or cost function, that function must 

first be specified. This function is also referred to as an objective function. It can rely on the optimization approach 

that we choose as to whether we achieve high accuracy in a matter of hours or days. Figure 1 shows the optimizer- 

based CNN model. After making some adjustments, the modified CNN is fine-tuned using the adaptive 

optimization for its parameters and hyperparameters, such as (i) hidden neuron in dense layers, (ii) separable-

convolutional dropouts, (iii) dense layer dropouts, (iv) optimizer functions (v) non-linear activations [33]. Figure 

2 shows a flowchart for adaptively optimizing the CNN model's hyperparameters. Models that have been 

pretrained are instantiated using the weights that were extracted from ImageNet. 

3.1. Machine learning classifiers 

We take into account the multilayer perceptron as well as the convolutional neural networks, which are both 

varieties of neural networks that are typical procedures in the process of profiling SCA. 

3.2. Multilayer perceptron 

A multiple layer perceptron, often called MLP, is a kind of forward-feed neural network that is responsible for 

translating different sets of inputs into other sets of usable outputs. The fact that each layer in the directed graph 

of an MLP is fully connected to the one behind it is what gives the layers their names-fully-connected layers and 

dense layers, respectively. Because input and output are considered to be two separate levels, an MLP consists of 

at least three and no more than five substrates of non-linearly nodes of activating. 

3.2.1. Convolutional neural networks 

Feed-forward network of neural, also known as convolutional neural networks (CNNs), generally containing 3 

distinct kinds of substrate. These layers are convolution, assembling, and fully concatenated, respectively. 

Substrate of convolution calculates neurons output of neurons tied to certain areas over input by performing a 

calculation known as dot product amongst weight of each neuron and very tiny area that is directly related to the 

volume of the input. Pooling brings about a reduction in the number of recovered features as a result of 

downsampling along the spatial dimensions. Either the class scores or the hidden activations can be computed by 

the entirely-joined substrate (much as in a multiple layer perceptron). 

3.3. Neural networks hyperparameter ranges 

Hyper-parameter variation that was studied by us, concerning architecture of MLP are shown in Table I, and range 

that we investigate for CNN architectures are presented in Table II. 

Table (1): The Search Space for The Hyperparameters of The Multilayer Perceptron. 

Hyperparameter Min  Max Step 

Learning rate 0.0001  0.01 0.0001 

Mini-batch 400  1000 100 

Dense (fully-connected) 

layers 

1  10 1 

Neurons (for dense layers) 100  1000 10 

Activation function (all 

layers) 

ReLU, Tanh, ELU, or SELU 

 

Table (2): The search space for the hyperparameters of the convolutional neural network 

(l stands for the convolution index of substrate). 
Hyperparameter Min Max Step 

Learning rate 0.0001 0.01 0.0001 

Mini-batch 400 1000 100 
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Hyperparameter Min Max Step 

Learning rate 0.0001 0.01 0.0001 

Convolution layers 1 4 1 

Convolution filters 4 ∗ 𝑙 8 ∗ 𝑙 1 

Convolution kernel size 1 40 1 

Convolution stride 1 4 1 

Dense (fully-connected) layers 1 10 1 

Neurons (for dense layers) 100 1000 10 

Activation function (all layers) ReLU, Tanh, ELU, or SELU 

z-score normalization has been used in our research for the purposes of standardizing test side channel traces, 

training and validations: 

𝒕𝒊 =
𝒕𝒊−𝝁𝑻𝒕𝒓𝒂𝒊𝒏

𝝈𝑻𝒕𝒓𝒂𝒊𝒏

                                                                                                                                             (1) 

In which 𝑇𝑡𝑟𝑎𝑖𝑛 is a collection of training trace with 𝑡𝑖 are lone traces taken out of validation, training or testing set. 

Bear in mind that every trace has been normalized by using the data from the training set. In none of the possible 

configurations of neural networks is there a batch normalization layer to be found. 

3.4. Adaptive Optimizers 

3.4.1. RMSprop 

The adaptive learning rate approach RMSprop is going to be used in an effort to rectify the situation with Adagrad's 

rapidly declining learning rates, which are similar to Adadelta's. RMSprop takes the learning rate and divides it by 

the average squared gradient, which then decreases at an exponential rate. 

3.4.2. Adam 

The Adam (Adaptive Moment Estimation) method is still another approach that is used to ascertain the adaptive 

learning frequency pertaining to every parameter. Such methodology mixes merits that are offered by the Adagrad 

and RMSprop methodologies into a single solution. It does this in a manner that is analogous to the momentum 

technique by storing an exponentially decaying average of past squared gradients in addition to an earlier 

exponentially decaying average of gradients. 

4. RESULTS 

We need to be certain that a particular neural network architecture can behave differently for a number of 

optimizers, or that selecting one optimizer can influence the value of another hyperparameter. For this purpose, 

we define very big MLPs and very huge CNNs. Entire models of neural network, whether CNN or MLP, were 

trained using a batches size around 400, a learning frequency of 0.001, the starting biases and weight that are 

provided by default by the Keras library. The definitions that follow are applicable to the large-scale MLP and 

CNN models: 

A huge MLP with ten concealed layers, every containing one thousand neurons. A substantial CNN consisting of 

4 substrate of convolution and four entirely joined layers, each having a total of 1000 neurons (10, 20, 40, and 80 

filters, stride 2 and kernel size 4 in all four layers of convolution).  

Layers at output concerning CNN and MLP each consist of 9 neurons, which are modeled after the Hamming 

Weight leakage algorithm and activated using the Softmax function. Unless it is specifically specified differently, 

the ReLU activation function is present in each layer of all neural networks. In addition, conclusions are presented 

for the ELU activation function applicable to profiling and adaptive optimizers models. Such network of neural 

are trained together of ASCAD (ANSSI SCA Database) repository, having both random and fixed keys included 

in data of training. Following the execution of study ten turns, having identical framework each time, for each data 

set and neural network, we then take the average of generalization outcomes out of such ten runs. 
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4.1. Adaptive Gradient Descent Methods 

We examined the empirical generalizability of adaptive methods. Their research suggests that adaptive optimizers 

could cause overfitting in models that have too many parameters. Adaptive optimizers like Adam and RMSprop 

make more progress at the outset of training but often lose effectiveness as they amass a larger number of training 

epochs. The precision of the data exceeds that of the model. Regularizing overfitting requires precision. 

        We look at Adam and RMSprop, two adaptive optimizers for profiled SCA, and demonstrate that they overfit, 

whereas Adagrad and Adadelta do not. For more complex models and longer training times, Adagrad and Adadelta 

function better. ASCAD receives results for both small and big models in terms of fixed key averaged guessing 

entropy, as shown in Figs. 3a and 3b. Figures 4a and 4b depict the development of GE for small and large models 

during ASCAD random key training, respectively. 

        Both datasets show a broad pattern of guessing entropy rise during adaptive optimizer training that is 

comparable to one another, showing that this is a natural optimizer behavior that is independent of the dataset 

under attack. Adam and RMSprop are rapidly becoming more similar to one another. Once the model can 

generalize, the entropy of correctly guessing the most promising choices drops below 20. 

        By continuing to process epochs after the guessing entropy has reached its lowest (when it has achieved its 

maximum generalization), we can reduce the model's generalization. Since the Adam optimizer quickly overfits, 

interrupting it before it completes its task could be useful. Adam's optimizer can profile SCA without much 

training. For more complex models and data sets, Adam is superior than RMSprop. 

 

(a) Small Models (b) Large Models 

Figure (3):Adaptive optimizer and models’ size for the ASCAD data set with fixed keys. 

Adagrad can reduce the guessing entropy if the model can be extended. Adagrad, unlike Adam and RMSprop, 

benefits from a longer training period when used for optimization since the guessing entropy does not decrease 

with more epochs. Adagrad can need more training epochs than usual since generalization cannot occur until much 

later in the process. In deep neural network architectures, Adadelta generalizes less than other methods. Just with 

Adagrad, generalization retains its accuracy throughout the course of several epochs. Generalization can occur 

even if training begins late. When dealing with bigger models (which suggests that the dataset is challenging and 

asks for a considerable amount of profiled model capacity) and when it is unclear how to tune other 

hyperparameters, our findings demonstrate that Adagrad is the most efficient optimizer to utilize. We found that 

for Adam and RMSprop on the ASCAD random keys dataset, MLPs converge more quickly (with lower guessing 

entropy) than CNNs. This was yet another discovery of ours. Results for Adagrad and Adadelta using MLPs and 

CNNs were quite similar. 
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(a) Small Models (b) Large Models 

Figure (4):Adaptive optimizer and models’ size for the ASCAD data set with random keys. 

4.2. Adaptive Optimizers on Large MLP and CNN 

In this example, we show that different kinds of activation functions and adaptive optimizers react in a variety of 

different ways. Adam and RMSprop often have worse performance when compared to tiny models of MLP, and 

this is particularly true if ELU is employed as function f activation, as shown in Figure 5b. Even though these two 

optimizers are especially prone to overfitting due to the fact that GE grows if the quantity of training epochs is too 

big, they tend to perform relatively better for activation function of ReLU is shown in Figure 5a, that are often 

utilized with state-of-the-art neural design of network. This is despite the fact that Figure 5a shows that this 

activation function is frequently employed. We observed that for Adedelta and Adagrad, a big MLP works pretty 

good when activation function of ELU was utilized for concealed substrate. This is depicted in Figure 5b, with 

such particular scenario, network needs additional train epochs (about 400 in as shown in Figure 5b) in order to 

congregate to an entropy of guessing that is low. Even for very high numbers of epochs (such as 500 epochs), large 

MLP models, and ELU, Adagrad and Adadelta have advantage of low guessing entropy. This is true even for ELU. 

The results of the investigations into 4 different adaptive optimizers concerning huge MLP are shown, respectively, 

in Figures 5a and 5b. 

 

                                       a) ReLU (b) ELU 

Figure (5):Adaptive optimizers applied to huge MLP prototypes for use in ASCAD with random keys. 

The similar pattern of performance are seen for ASCAD unchanged keys information set as well. Figures 5a and 

5b, respectively, demonstrate outcomes that were obtained using a large models of MLP that used ELU and ReLU 

function of activation. According to findings of research presented in this part, the performance of large MLP 
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models is improved by using Adagrad and Adadelta as optimizers in conjunction with an ELU activation function. 

Even after giving great consideration to the activation function to use, it was not possible to guarantee a consistent 

convergence of guessing entropy throughout the training process for the Adam and RMSprop cases. Once again, 

we show that Adam and RMSprop have the potential to give higher performance by including additional artifacts 

of regularization, like early pausing. If set of training contains few evaluations, as is case with ASCAD unchanged 

data set of key, RMSprop and Adam often produce a small interval of generalization. This is also situation with 

ASCAD unchaged key information set. As evident through Figure 6a, a lower guess entropy pertaining to 

RMSprop and Adam only lasts for a short period of time- less than 10 epochs-and then it begins to steadily increase. 

As it can be observed in the case of Figure 6b, interval where entropy of guessing is lower covers a greater range 

when larger training sets are used. This dataset was contributed by ASCAD random data sets keys. With this 

particular scenario, the guessing entropy is low, and it maintains that state for a minimum of fifty processing 

epochs. 

 

(a) ReLU (b) ELU 

Figure (6):Adaptive optimizers applied to huge MLP prototypes for use in ASCAD with fixed keys. 

5. Conclusions 

The optimizer method that was used during the training phase of SCA profiling has a considerable impact over 

outcomes that were obtained from attacks. With such investigation, findings from eight various optimizers was 

provided by us, which we have categorized into groups for SGD and adaptive optimization respectively. It was 

observed by us, that RMSprop and Adam optimizers perform good if network of neural systems to be optimized 

is on smaller side and the training time is kept to a minimum. Both the Adagrad and the Adadelta adaptive 

algorithms perform quite well when large models are taken into consideration. In addition to this, we confirmed 

that the activation function for hidden layers is the sole factor that has a role in the selection of the adaptive 

optimizer. In our further study, we want to investigate the performance of a number of optimizers, as well as the 

identity value leaking model. In addition, we limit our attention to only two datasets for the duration of this 

research. In order to ensure the accuracy of our findings, we plan on extending the scope of the research to include 

other datasets that are available to the general public. Then, we are going to look at twice descent SCA’s 

performance. Even though it was discovered by us, that elongated training do not always result in greater behavior, 

we were still attracted in discovering that greater models do not always perform in a good way and longer phases 

of profiling contribute to better performance. Both of these hypotheses are now under investigation by our team. 
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