
Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

85

Open Access ISSN: 3007-1437 (Online), ISSN: 3007-1429 (Print)

Design of Deep Learning Techniques for Side-Channel Attacks on

Masked 128-bit AES Implementations

1Mohammed Saeb Nahi, 2Ahmed Imran Fattah, 3Hassan Jameel Mutashar & 4 Opeyemi Lateef Usman

1Department of Computer Techniques Engineering, Al-Kadhum College (IKC), Baghdad, Iraq;

mohammed.saib@alkadhum-col.edu.iq

2Department of Computer Techniques Engineering, Al-Kadhum College (IKC), Baghdad, Iraq;

ahmed.omran@alkadhum-col.edu.iq

3Department of Computer Techniques Engineering, Al-Kadhum College (IKC), Baghdad, Iraq;

hasan.jamel@alkadhum-col.edu.iq

4Department of Computer Science, Tai Solarin University of Education Ogun, Nigeria

p99943@siswa.ukm.edu.my

Article information
Article history:

Received: February, 11, 2024

Accepted: March, 11, 2024

Available online: March, 14, 2024
Keywords:

AES, Deep Learning, VGG, Side Channel

Analysis and Attacks
*Corresponding Author:

Mohammed Saeb Nahi

mohammed.saib@alkadhum-col.edu.iq

DOI:

https://doi.org/10.53523/ijoirVolxIxIDxx

This article is licensed under:

Creative Commons Attribution 4.0

International License.

Abstract

Researchers are exploring the use of convolutional neural networks (CNNs) in

side-channel attacks to understand the weaknesses in cryptographic

implementation. CNNs can learn hierarchical characteristics automatically

from electromagnetic radiation or power usage during cryptographic processes.

Researchers train CNNs on side-channel data to extract meaningful

representations and deduce secret keys. Deep learning algorithms are helpful in

evaluating the security of embedded systems, and CNNs are a feasible paradigm

for profiling side-channel analysis attacks. In this paper, it has been introduced

a VGG (Visual Geometry Group)-Net architecture, which is a typical deep

convolutional neural network design with numerous layers. It uses the ASCAD

dataset to conduct experiments. They found that VGG-Net architecture Side

Channel Attacks (SCA) provides better results than the previously optimized

CNN model by significantly reducing the number of side-channel traces

required for successful attacks on desynchronized datasets. The researchers also

discovered that synchronous traces serve as the pre-training source for VGG-

Net architecture, functioning successfully in terms of jittering with minimal

fine-adjusting after training.

1. Introduction

 It is possible to safeguard the confidentiality of messages that are sent between peers by using the most used

block cipher [1], which is known as AES (Advanced Encryption Standard)[2]. On the other hand, a variety of side-

channel attacks have been proposed as a straightforward method for an adversary to discover secret keys that are

Alkadhim Journal for Computer Science

(KJCS)

https://alkadhum-col.edu.iq/JKCEAS

mailto:mohammed.saib@alkadhum-col.edu.iq
https://doi.org/10.53523/ijoirVolxIxIDxx
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://alkadhum-col.edu.iq/JKCEAS

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

86

stored in hardware [3],[4]. In the realm of side-channel analyses, one of the most prevalent attacks is the power

analysis attack, which considers the utilization of power as information that has been disclosed. In particular, side-

channel attacks[5],[6] against the implementation of naïve block cipher algorithms are considered to be significant

hurdles when it comes to ensuring information confidentiality. The problem of side-channel analysis has been

addressed by several different strategies that have been proposed. It is common practice to use masking

countermeasures to obstruct side-channel analysis, which is a process in which we randomly construct the

intermediate computation values. The masking strategy is another method that may be used to ensure the safety of

the AES implementation[7].

 To protect the compromised AES implementation, we use a Boolean masking approach. A Boolean function,

such as the XOR operation, is used in this context to create the output of the S-Box randomly[8]. It is possible to

determine the amount of security provided by the masking approach by using the number of secret shares. A d-

masking is a countermeasure[9] that applies d-masks to a single variable. This countermeasure is known as d-

masking, and it has the potential to give resistance against d-masking order attacks[10].

 To obtain the secret key, this paper proposes a variety of power analysis attacks that make use of either profiling

or nonprofiling techniques that are based on Convolutional Neural Network (CNN)[11] models. Since Z originally

presented the concept of side-channel attack, there have been several fascinating advancements in the actual

research that has been conducted in this sector[12].

1.1 Review of Works

 According to Martinasek et al.[13], it was shown that MLP can crack naïve AES. In addition, R. Gilmore et. al.,

demonstrated that a neural network-based profile attack has the potential to make the masked countermeasure of

AES. The researchers achieved an accuracy of 91.8% when extracting the mask values and 88.4% when extracting

the secret keys, respectively. Through the use of Differential Deep Learning Analysis (DDLA)[14], it can be

circumvent that the first-order masking countermeasure when the circumstance does not include profiling. An

attack method that does not use profiling and is based on deep learning is referred to as the DDLA[15]. It can train

the deep learning models for each hypothetical key during the attack phase, which does not include the profiling

phase. This phase does not contain data collection. In the case that a verified key was available, it would be possible

to acquire the correct key by comparing parameters such as accuracy and cost (loss). When it comes to establishing

the efficacy of non-profiling attacks, one of the most important components is the identification of the label for

deep learning models. Examples of such labels include binary and HW (Hamming Weight) labeling. The authors

proposed a HW-based binary labeling approach based on the idea that efficiency and performance should be taken

into consideration[16].

 In the article [17], the authors report on many tests that were conducted on the implementation of masked AES.

These tests used real power traces that were measured from the ASCAD dataset for attacks that did not include

profiling and the Chip Whisperer platform was used for attacks that involved profiling. The deep learning-based

analysis of the profiling attacks was divided into two steps: the mask value recovery phase and the masked S-box

output recovery phase [18]. Both phases were segregated into their distinct phases. To directly implement AES-

128 encryption, the authors make use of the XMEGA128 microcontroller. Additionally, they use CNN and MLP

models to carry out power analysis attacks [19] To break the masked AES using the MLP-based DDLA, the authors

do not need to split the attack phases or do any preprocessing. As a result, they were able to confirm that the secret

key of masked AES may be used to produce an accuracy of 81.0% with MLP and 75.4% with CNN. Furthermore,

the DDLA attack is fully capable of extracting the secret key of the disguised AES implementation when the epoch

value is 10 or higher. This is particularly true when the epoch value is larger than 10 [20].

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

87

2. Methodology

 Understanding the basics is crucial to using deep learning to characterize SCA attacks. Supervised learning with

known input and key is the problem. Using the hypothetical leakage model, input and key label side-channel traces

were collected. The side-channel trace dataset may be split into training and test sets. An ideal testing set is

measured using a device comparable to the one being tested but with an unknown key. Training requires a lot of

processing power, whereas testing is quick. VGG networks with unique design strategies are the convolutional

neural network architecture employed in SCA attacks, we believe. Photo classification network VGG was created.

Our side-channel traces are one-dimensional, whereas the incoming signal is two-dimensional. Convolution and

pooling can be done on one-dimensional data, fortunately. We chose the VGG architecture after creating hyper-

parameter limitations from literature and testing. Random search may provide VGG architecture hyper-parameter

values. The amount of pooling and convolutional substrate, the number of epochs and learning speed,

normalization collection, batch proportion, abandonment, convolutional functions for activation, number of

neurons in each fully-connected layer, padding, stride length, kernel dimension of a convolutional filter, and

stochastic descent gradient must be tuned.

 Six convolutional, pooling, and two fully-connected layers make up our deep neural network. Filters with a kernel

size of 11 and a stride of 1 generate numerous activation mappings for each convolutional layer. Convolutional

layers activate using Leaky Rectified Linear Units. Zero-slope sections are eliminated in the Leaky ReLU to solve

the dying ReLU issue. As convolutional and pooling layers are added, the network may learn more abstract

representations from training input. Each convolutional layer has the same padding, so the output is the same size

as the input. The number of filters each layer increases geometrically from 32 to 512. The average pooling kernel

doubles in size and stride. Both layers are connected and h SoftMax operates 2048 units. Based on input

parameters, the classification layer computes a distribution of possibilities using SoftMax. Fully connected and

convolutional substrate layers have no dropout. Normalizing batches is a common way to train deep neural

networks quickly and reliably. We batch normalized the output values using the main and final convolutional

layers after utilizing Leaky ReLU activation. For this reason, we called our deep neural network architecture

DLSCA in writing and comparison. Figure 1 shows the DLSCA network design, and Table 1 lists its hyper-

parameters. Input/output forms, filter size, sampling, and activation function are hyper-parameters. Unlike VGG

best, our DLSCA adds one convolutional/pooling layer and batch normalization after the first and last

convolutional layers to complete the neural network. We reduced trainable parameters by reducing the number of

neurons in the last two fully connected layers from 4096 to 2048. Several hyper-parameters were considered while

training a deep neural network to characterize SCA attacks. Due to space constraints, we cannot study each hyper-

parameter independently in the following section.

3. Evaluation Metrics

 Accuracy and loss are two measure types that are often used in machine learning. A training set's successful

classification rate is referred to as its training accuracy, whereas the training set's error rate is referred to as its

training loss. Over the course of many epochs, we can determine Test precision is a measurement of how accurately

the model that has been trained predicts side-channel examines from the test set that has not been taught; on the

other hand, the key recovery precision for profiled SCA attacks is rather inadequate. It is observed that the deep

neural network is learning about the training set while the training accuracy and the training loss decreases. The

mathematical equations for accuracy[17] and loss[18] functions are shown in equations (1) and (2) respectively.

accuracy = (TruePositive+ TrueNegative)/(TruePositive+ TrueNegative+ FalsePositive+ FalseNegative) (1)

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ⌊(𝜃) =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)^2

𝑁

𝑖=0
 (2)

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

88

Figure (1): The architecture of DLSCA. It is a green rectangular block that represents the one-dimensional convolutional

layer, orange layers represent the batch normalization layers, and blue layers represent the average pooling layers. The last

average pooling lay

Table (1): The DLSCA architectural specifications.

Layers Trace

Input

Convolution

1D

Drop out Batch

Normalization

Convolution

1D

Drop

out

Convolution

1D

Drop

out

Input Output

Hyperpara

meters
- F=16, Fl=8,

ReLU,

MaxPL=2

PDrop =

0.3

- F=32, Fl=8,

ReLU,

MaxPL=2

PDrop =

0.3

F=64, Fl=8,

ReLU,

MaxPL=2

PDrop =

0.3

256

neurons

256

neurons

 During multi-trace investigations, utilized the function of rank, rather often to evaluate strikes. When we are

using that greatest likelihood estimate to obtain the secret key, we concentrate on all side channel traces' ultimate

probability output. Rank function scores take into consideration the likelihood of key candidate output. Ranking

all of the key candidate scores is what the rank function does. If the attack is successful, the function for the correct

secret key k∗ will possess a rank of zero. The definition of the rank function is given in eq. [19]:

rank(ek, Sa) = ||{𝑘𝑖 ∈ 𝐾|𝑠𝑐𝑜𝑟𝑒(𝑘𝑖) > 𝑠𝑐𝑜𝑟𝑒(𝑘 ∗)}|| (3)

 Where i = 0, 1, 2,..., 255 and score (k) stands for a crucial candidate's score. For improved rank function

measurements, we execute Ten times cross-validation in subsequent attack trials. The mean rank function is the

proper key's average rank. Thus, profiled SCA attacks are evaluated using the mean rank function.

3.2 Algorithm for Side-Channel Attacks on Masked 128-bit AES:

 Presented below in algorithm 1 is the approach for side-channel attacks against masked 128-bit AES. The first step in

launching an attack on the target device is to collect input power traces and matching plaintexts from a copy of the target

device. A final prediction about the rank of the suitable candidate key is made by the model. As part of the ID classification

model, we first sort the list of components produced by the model, which includes all of the probabilities linked to each

possible value. The key rank is the index of the key byte being targeted within the list.

Algorithm 1:

Entry: Plaintexts; 128-bit key Key, tr: traces

Step1: Key as the outputRank: One byte's average "key rank"

Step2: Set up maxepoch and SOP for epoch= 1 as follows: maximal epoch

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

89

Step3: Divide the input data (tr and Pl) into attack (tra and Pla) and profile (trp and Plp) subsets.

Step4: Train Deep K-TSVM using Algorithm 1 for num = 0.

Step5: Size(Pla) does the following to forecast tra[num] for k=0: 255 do L=SBox(Pla[num] ⊕ k);

Step6: Add class L probability prediction to SOP[k]

Step6: To calculate the average key rank throughout all epochs, save the key

Step7: end.

4. Experiments and Results

 The DLSCA framework is constructed using Kera’s and TensorFlow as the backend. The training is carried out

on a personal computer configured with an Intel Processor Xeon E5-2698 v4 processing device operating at 2.2

GHz, 16 gigabytes of random-access memory RAM) as well as an NVIDIA Tesla P100 graphics card. With every

single trial, profiled traces from ASCAD datasets were selected, which randomly included 256 different classes.

4.1 Dataset of ASCAD

 The architecture of DLSCA was put through its paces by a dataset from ASCAD, that may be accessed via

ANSSI-FR/ASCAD's GitHub page. An 8-bit AVR microcontroller that operates with a masked AES-128

algorithm can acquire side-channel traces via the use of electromagnetic emission. By the MNIST format, the

dataset contains a total of 50000 side-channel traces for training purposes and 10000 for testing purposes. The S-

Box output byte without protection, denoted as The S-Box[pi ⊕ ki] model can leak information. The Masked S-

Box is the pre-selected window that contains 700 samples that are important to the side-channel trace. The only

S-Box that is targeted by our attack testing in this research is the third one that is processed during the first round

of AES.

 Through the process of parametrically desynchronizing side-channel traces in the ASCAD dataset, the SCA

efficiency of different attack techniques against jittering is analyzed and evaluated. Desyncmax desynchronization

allows for the random movement of each side-channel trace to the left, with δ belonging to that range [0,

Desyncmax]. The creation of a fresh side-channel trace serves as the result of desynchronizing that trace. Because

of its translation invariance, the VGG side-channel traces can be used by architecture to retrieve information that

has been desynchronized.

 4.2 Results

 Within the scope of this study, the impacts of hyper-parameters on DLSCA's efficiency have not been thoroughly

investigated. This is because Proof et al. [20] address VGG hyper-parameter selection in great detail. This is the

primary explanation for this. As a result, hyper-parameters including loss function, batch size, padding, kernel

size, learning rate optimization, and so on are not investigated in this article. In this study, we investigated how

DLSCA's efficiency is affected by epochs, batch normalization layer, and pre-training method. Additionally, we

compared the effectiveness of DLSCA with VGG’s best SCA in our testing.

 To prepare DLSCA for the first experiment, many epochs were used for training. The hyper-parameter epoch is

responsible for determining the frequency at which a learning algorithm revisits the training set. Every training set

instance has the potential to occur within each epoch to change the model's internal parameters. DLSCA can better

match training set side-channel traces by acquiring optimum parameters when the number of epochs is increased.

The average rank of DLSCA is shown in Figure 2 as a function of epochs with desynchronization values of 100.

The SCA efficiency of DLSCA also rises in tandem with the mean rank's growth during the course of epochs.

According to these data, our rank function does not seem to overfit as the number of epochs increases.

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

90

 As long as the training phase includes a sufficient number of epochs, the mean rank will be very close to 0. As

maximum desynchronization measures rise, more time must be spent during the testing phase training DLSCA

parameters settings and side-channel traces, which is also known as the crucial recovery phase. Since

desynchronization is rising, epochs are having an increasingly negative impact on DLSCA's efficiency.

Figure (2): DLSCA mean ranks for different epochs when desynchronization is equal to zero

 For our datasets, an epoch measurement of fifty is adequate due to median rank.; nevertheless, desynchronizing

side-channel traces does not increase performance. For training duration and robustness's sake, this example makes

use of sixty epochs. Whenever Desyncmax is set to zero, DLSCA can record less than one hundred side-channel

traces. There is a need for three thousand traces in the scenario where the highest desynchronization value is one

hundred and the mean rank is zero. DLSCA is effective when working with desynchronized traces; nevertheless,

to retrieve the secret key during the test phase, it needs several side-channel traces to be completed.

Table (2): The DLSCA training loss is shown in with 0, 50, and 100 epochs of desynchronization present.

No. of epochs

Loss

Desynchronization=0 Desynchronization=50 Desynchronization=100

1 5.56 5.56 5.56

20 5.48 5.4 5.32

40 5.18 5.04 5.0

60 4.82 4.52 4.5

 Table 2 shows the DLSCA training loss with 0, 50, and 100 epochs of desynchronization present. When

desynchronization is 0, 50, or 100, Figure 3 illustrates how the loss of training differs depending on number of

epochs it takes. Through the use of epochs, training loss is reduced. Data shown in Figure 4 demonstrates that

DLSCA's SCA efficiency continues to improve due to training accuracy improves. The speed of DLSCA training

is increased by desynchronization. The desynchronization resilience of the DLSCA may be explained by the

elements of the convolutional layer that are associated with local connections.

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

91

Figure (3): The DLSCA training loss is shown in with 0, 50, and 100 epochs of desynchronization present.

Figure (4): Desynchronization epochs of 0, 50, and 100 are shown to illustrate the accuracy of DLSCA training.

 Both desynchronization 50 and desynchronization 100 have a similar impact on the amount of loss and accuracy

that DLSCA training experiences. An interesting fact is that random guessing has a 0.39% accuracy rate (1 256).

Furthermore, we do not employ more epochs in an attempt to decrease loss and raise test accuracy. The main

argument in favor of this option is that DLSCA's SCA efficiency at sixty epochs is enough when a median rank

mechanism is applied and becomes sufficient. The secondary proceeding investigated the impact that batch

normalization has on the efficiency of DLSCA SCA computations. To do this, we removed the Deep-SCA batch

normalization layers and then retrained it. On the test set, the DLSCA median rank in the absence of normalization

across batch stages is shown in Figure 5. This indicates that the training process was successful.

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

92

Figure (5): The mean DLSCA ranks for several epochs where desynchronization is zero.

 DLSCA, when used with batch normalization layers, results in tests that are more accurate. The process of

training is substantially sped up by batch normalization. When using DLSCA with batch normalization layers, the

process of normalizing output during training takes longer, which increases in training time of each period was

between 10 and 11 seconds. One way to reduce the amount of time spent on epochs is to increase the learning rate,

implement Dropout, and make other adjustments that are enabled by batch normalization. Instead of focusing on

finding the optimal configurations for cutting-edge performance, our primary objective is to verify batch

normalization. As a result, we have not addressed the details that were discussed before.

 Figures 6 compare VGG’s best mean ranks and DLSCA mean rankings, respectively. For desynchronized side-

channel records having 60 epochs, DLSCA performs better than VGG, even though it was constructed with the

architecture of VGG. DLSCA minimizes the quantity of side-channel traces needed to disclose secret keys for

significantly desynchronized datasets. The layers of convolution and pooling enable DLSCA to extract

increasingly abstract and sophisticated interpretations from the training set. Batch normalization strengthens and

expands the network's capacity for generalization. Our results show that the average guess accuracy is substantially

higher at 0.39%, whereas DLSCA as well as VGG best models have poor test accuracy of 0.8%. Both DLSCA

and VGG best models attempt to estimate the distribution of several side-channel traces rather than a single trace

from each side channel.

Figure (6): The mean ranks of DLSCA with a variety of epochs and 50 desynchronizations

 The pre-trained mechanism was developed to streamline and obtain more precise parameters in a training

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

93

procedure of that shorter amount of duration. When datasets are comparable, it is possible to employ pre-trained

neural networks. Both the weights and biases of the pre-trained model are reflective of the properties that were

acquired from the prior datasets via the process of comprehensive training. It is possible to transfer learned

properties to different datasets. Rather than beginning from zero, the pre-trained approach enables us to take

advantage of features that have been learned from problems that are also similar.

 The DLSCA algorithm was used to train the pre-trained model on the dataset for a total of forty epochs with no

desynchronization. For the sake of convenience, the DLSCA040 network was trained on datasets that had either

fifty or one hundred desynchronizations after the pre-training phase. By fine-tuning its parameters, the DLSCA040

network may be able to identify patterns that are specific to the dataset that it is currently working with, even

though it has learned numerous features. Two examples of DLSCA using the pre-trained network are shown in

Figure 7 at 50 desynchronizations. When referring to the DLSCA040 network, which is used to anticipate

desynchronization quantities of fifty or one hundred, the phrase "0 epochs" is utilized in the caption.

Figure (7): The average DLSCA ranks on a 50 desynchronization level using the pre-train network.

 As was anticipated, the DLSCA040 network that has been fine-tuned has a much greater SCA efficiency than the

DLSCA network that was first developed. To fine-tune the parameters of the pre-trained DLSCA040 network,

which requires less CPU resources, we just need three epochs to complete the process. The DLSCA network that

has been pre-trained makes use of less than 200 traces to reveal the secret key during the attack phase.

Regularization is added to the target function by using when synchronous traces exhibit jittering or

desynchronization, which is referred to as data augmentation. This results in DLSCA being more robust throughout

the classification process.

5. Conclusion

 To perform profiled SCA attacks using deep learning, it is necessary to do exact hyper-parameter tuning of deep

neural networks. Deep neural networks are required to locate stolen information about side-channel traces in

attacks that are profiled as SCA. The ability to approximate complicated functions using deep neural networks is

achieved through the overlaying of levels. Therefore, deep learning has the potential to interfere with concealment,

switching, and desynchronization. In this inquiry, we proved that DLSCA is capable of retrieving the key byte

efficiently during the desynchronization process. This is the reason why the convolutional layer of DLSCA collects

features independent of their placement inside a single trace, making it resistant to desynchronized side-channel

recordings. Considering that jitter is caused by unstable clock domains, DLSCA can prevent it. This article

demonstrates how batch normalization may improve the SCA efficiency of DLSCA. Through the provision of

more exact parameters, the pre-trained DLSCA model makes training easier and saves time. Since the VGG best

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

94

model requires 66,652, 544 characteristics to train, its extreme complexity prevents it from being useful in most

applications. Even though our DLSCA is lighter, it yet has 20, 011, 200 trainable parameters. The final two

completely connected layers regulate most of the settings. While the DLSCA architecture was being designed

initially, we intend to either remove the fully linked layer or decrease the total number of neurons. Our test results,

however, run counter to this. However, further research is needed on lightweight neural network architectures for

profiled SCA attacks.

References

[1] K. Kuroda, Y. Fukuda, K. Yoshida, and T. Fujino, “Practical aspects on non-profiled deep-learning side-
channel attacks against AES software implementation with two types of masking countermeasures
including RSM,” in Proceedings of the 5th Workshop on Attacks and Solutions in Hardware Security, 2021,
pp. 29–40.

[2] A. A. Ahmed, M. K. Hasan, N. S. Nafi, A. H. Aman, S. Islam, and M. S. Nahi, “Optimization Technique for
Deep Learning Methodology on Power Side Channel Attacks,” in 2023 33rd International
Telecommunication Networks and Applications Conference, 2023, pp. 80–83.

[3] D. Bae, J. Hwang, and J. Ha, “Breaking a masked aes implementation using a deep learning-based attack,”
in Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging
Applications, 2020, pp. 1–5.

[4] A. A. Ahmed, M. K. Hasan, N. S. Nafi, A. H. Aman, S. Islam, and S. A. Fadhil, “Design of Lightweight
Cryptography based Deep Learning Model for Side Channel Attacks,” in 2023 33rd International
Telecommunication Networks and Applications Conference, 2023, pp. 325–328.

[5] S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina, “Sok: Deep learning-based physical side-channel
analysis,” ACM Comput. Surv., vol. 55, no. 11, pp. 1–35, 2023.

[6] A. A. Ahmed et al., “Detection of Crucial Power Side Channel Data Leakage in Neural Networks,” in 2023
33rd International Telecommunication Networks and Applications Conference, 2023, pp. 57–62.

[7] A. Rădulescu and M. O. Choudary, “Side-Channel Attacks on Masked Bitsliced Implementations of AES,”
Cryptography, vol. 6, no. 3, p. 31, 2022.

[8] A. A. Ahmed and M. K. Hasan, “Design and Implementation of Side Channel Attack Based on Deep
Learning LSTM,” in 2023 IEEE Region 10 Symposium (TENSYMP), 2023, pp. 1–6.

[9] R. Gilmore, N. Hanley, and M. O’Neill, “Neural network based attack on a masked implementation of AES,”
in 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 2015, pp. 106–
111.

[10] A. A. Ahmed, R. A. Salim, and M. K. Hasan, “Deep Learning Method for Power Side-Channel Analysis on
Chip Leakages,” Elektron. ir Elektrotechnika, vol. 29, no. 6, pp. 50–57, 2023.

[11] P. Socha, V. Miškovský, and M. Novotný, “A comprehensive survey on the non-invasive passive side-
channel analysis,” Sensors, vol. 22, no. 21, p. 8096, 2022.

[12] A. A. Ahmed, M. K. Hasan, S. Islam, A. H. M. Aman, and N. Safie, “Design of Convolutional Neural Networks
Architecture for Non-Profiled Side-Channel Attack Detection,” Elektron. Ir Elektrotechnika, vol. 29, no. 4,
pp. 76–81, 2023.

[13] N. Do, V. Hoang, V. S. Doan, and C. Pham, “On the performance of non‐profiled side channel attacks based

Alkadhim Journal for Computer Science, Vol. 2, No. 1 (2024)

95

on deep learning techniques,” IET Inf. Secur., vol. 17, no. 3, pp. 377–393, 2023.

[14] M. Randolph and W. Diehl, “Power side-channel attack analysis: A review of 20 years of study for the
layman,” Cryptography, vol. 4, no. 2, p. 15, 2020.

[15] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J. Vandewalle, “Machine learning in side-
channel analysis: a first study,” J. Cryptogr. Eng., vol. 1, no. 4, pp. 293–302, 2011.

[16] K. Pu, H. Dang, F. Kong, J. Zhang, and W. Wang, “A Quantitative Analysis of Non-Profiled Side-Channel
Attacks Based on Attention Mechanism,” Electronics, vol. 12, no. 15, p. 3279, 2023.

[17] J. Ming, Y. Zhou, H. Li, and Q. Zhang, “A secure and highly efficient first-order masking scheme for AES
linear operations,” Cybersecurity, vol. 4, pp. 1–15, 2021.

[18] S. Jin, P. Johansson, H. Kim, and S. Hong, “Enhancing time-frequency analysis with zero-mean
preprocessing,” Sensors, vol. 22, no. 7, p. 2477, 2022.

[19] S. R. Shanmugham and S. Paramasivam, “Power analysis attack resilient block cipher implementation
based on 1‐of‐4 data encoding,” ETRI J., vol. 43, no. 4, pp. 746–757, 2021.

[20] F. Kenarangi and I. Partin-Vaisband, “Security Network On-Chip for Mitigating Side-Channel Attacks,” in
2019 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP), 2019, pp. 1–6.

