MIXED SERRE FIBRATION

Zahraa Yassin

College of Education for pure sciences, Wasit University

E-mails: zahraaya1101@uowasit.edu.iq

Daher Al Baydli

College of Education for pure sciences, Wasit University

E-mails: daheralbaydli@uowasit.edu.iq

Abstract:- In this paper we introduce and study new concept the mixed Serre fibration (M-Serre fibration) on CW-complex space, and Mixed path lifting property (by short M-PLP). Most of theorems which are valid for Serre fibration be also valid for M-Serre fibration.

Keywords: M-Serre fibration, CW-complex space, M-path lifting property, M-Covering Homotopy Property.

1 Introduction

The following problem is one of the problems in algebraic topology. Let $f: E \to X$ be a Serre fibration (Jean-Pierre Serre, born 15 September 1926) of CW-complex space. In this study, we looked at Serre fibration at the functions of the numbers of Serre fibration one and two, to become the function $f_i: E_i \to X$ (Mixed Serre fibration).

We use the following notation for the closed unit m-disk, the open unit m-disk and the unit $(m-1)$ sphere

$$
D^{m} = \{x \in \mathbb{R}^{m} : ||x|| = 1\},\
$$

$$
int(D^{m}) = \{x \in \mathbb{R}^{m} : ||x|| < 1\},\
$$

$$
S^{m-1} = \{x \in \mathbb{R}^{m} : ||x|| = 1\}
$$

where $\|\cdot\|$ is the standard norm, $\|(x^1, x^2, \ldots, x^m)\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_m^2}$

2 Preliminaries

Definition 2.1. [9] [8]

An $m - cell$, $m \ge 0$ is a topological space that is homeomorphic to the open m-disk $int(D^m)$.

Definition 2.2. [8][9]

Let X be a topological space and the cell-decomposition of X is a family $\omega = \{e_t | t \in I\}$ of subspace of X such that each e_t is a cell and $X = \bigsqcup_{t \in I} e_t$ which disjoint union of sets, the m -skeleton of X is the subspace $X=\amalg_{t\in I,\dim{(e_t)}\leq m}e_t$

Definition 2.3. [8]

A pair (X, ω) consisting of a Hausdorff space X and a cell-dcomposition ω of X is called a CWspace if the following are satisfied:

• For each $m - cell$ $e \in \omega$ there is a map $\psi_e: D^m \to X$ restricting to a homeomorphism $\psi_e|$ int (D^m) : int $(D^m) \to e$ and taking S^{m-1} into X^{m-1} , which is called Characteristic Maps.

• For any cell $e \in \omega$ the closure \bar{e} intersects only a finite number of other cells in ω , which is called Closure Finiteness.

• A subset $A \subseteq X$ is closed iff $A \cap \overline{e}$ is closed in X for each $e \in \omega$, which is called Weak Topology

The restrictions $\psi|_{\partial D^m}$ are called the attaching maps.

Notice that we can recover X (up to homeomorphism) from a knowledge of X^0 and the attaching maps. The recovery is described in as follows:

1. If we start with a discrete set X^0 , whose points are regarded as 0-cell.

2. From X^{m-1} by attaching m-cells e_t^m by maps $\psi_t : S^{m-1} \to X^{m-1}$, we get form the m-skeleton $X^m.$ The quotient space of the disjoint union $\,X^{m-1} \amalg_t D_t^m$ of $\,X^{m-1} \,$ with a collection of m-disks D_t^m under the identifications $X \sim \psi_t(x)$ for $x \in \partial D_t^m$. Thus as a set $X^m = X^{m-1} \sqcup_t e_t^m$ where each e_t^m is an open *m*-cell.

3. Setting X = X^m for some $n < \infty$, setting $X = \cup_m X^m$. In the latter case X is given the weak topology: A set $A \subset X$ is open (or closed) iff $A \cap X^m$ is open (or closed) in X^m for each m.

So we have ,

$$
X^0\;\subset\;X^1\;\subset\;X^2\;\subset\ldots\subset\;X^m\;\subset\ldots
$$

If there exist an integer m such that $X^m = X$ then X is called finite dimensional.

Definition 2.4. [3]

A CW-space is said to be regular if all its attaching maps are homeomorphisms.

Definition 2.5. [1]

A triple (E, p, B) called a fiber structure consisting of two space E, B and a continuous onto map $p: E \longrightarrow B$. The total space is E (or fibered) space the projection is p. The base space is called B, the space for each $b_0 \in B$, the set $F = p^{-1}(b_0)$ and F is called fiber over b_0 . We refer to (E, p, B) as a fiber structure over B .

Definition 2.6. [4] [1]

Let $p : E \longrightarrow B$ be a map, we say that p has Covering Homotopy Property (C.H.P.by short) with respect to X iff given a map $f: X \to E$ and $h_t: X \to B$ is homotopy such that $p \circ f = h_0$. Then there exist a homotopy $h_t^*: X \to E$ such that (1) $h_0^* = f$. (2) $p \circ h_t^* = h_t$, for all $x \in X$ and $t \in I$.

Figure 1: Covering Homotopy Property

Definition 2.7.

The map p is siad to be (Hurewicz) Fibration if it has covering homotopy property w.r.t all space.

3 M-Serre Fibration

In this section we introduce and study a new concept which is namely Mixed Serre fibration M-Serre Fibration . we start with following definition.

Definition 3.1.

(1) Let E_1, E_2 and X be three topological spaces, let $E_i = \{E_1, E_2\}$, $f_i = \{f_1, f_2\}$ where $f_1: E_1 \rightarrow X$, $f_2: E_2 \to X$ are two maps, and $\alpha: E_2 \to E_1$ such that $f_1 \circ \alpha = f_2$ then { E_i, f_i, X, α } is a M-fiber space (Mixed-fiber space).

Figure 2: M-fiber space

If $E_1 = E_2 = E$, α = identity, = $f_1 = f_2 = f$ then (E, F, X) is the usual fiber space.

(2) Let $\{E_i, f_i, X, \alpha\}$ be a M-fiber space , let $x_0 \in X$ then $f = \{f_i^{-1}(x_0)\}$ is the M-fiber over x_0 .

Definition 3.2. [4] [6]

Let $p: E \longrightarrow B$ be a continuous map of spaces, p has the covering homotopy property (C.H.P) with respect to a CW-complex space X is called Serre Fibration.

Figure 3: Serre Fibration

Definition 3.3.

Let $\{E_i$, f_i , X , $\alpha\}$ be a Mixed fiber structure , where $i=1,2$. Let X , B be a CW-complex spaces and $h_t: B \to X$ be map . A continuous $k_1: B \to E_1$ and $k_2: B \to E_2$ such that $f_1 \circ k_1 = h_t$ and $f_2 \circ k_2$ $k_2 = h_t$, where $K_i = \{k_1, k_2\}$ is called a Mixed-covering (M-covering) of h_t .

Figure 4: M-covering

Definition 3.4.

Let Y be a CW-complex space , $f_1: E_1 \to Y$, $f_2: E_2 \to Y$, $\alpha: E_2 \to E_1$ are maps of a spaces such that $f_1 \circ \alpha = f_2$, let $E_i = \{E_1, E_2\}$ where i = 1, 2. $f_i = \{f_1, f_2\}$, the quartic $\{E_i, f_i, Y, \alpha\}$ has the Mixed covering homotopy property (M-CHP) w.r.t a CW-space X iff given a map $k: X \to E_2$ and a homotopy $h_t: X \to Y$ such that $f_2 \circ k = h_0$, then exists a homotopy $g_t: X \to E_1$ such that (1) $f_1 \circ g_t = h_t$. (2) $\alpha \circ k = g_0$.

Figure 5: M-Serre Fibration

M-fiber space is called M-Serre fibration , is it has the (MCHP) with respect to all CW -complex.

Theorem 3.5. Every Serre fibration is a Mixed Serre fibration .

Proof:

Let $\{E, f, Y, \alpha\}$ is fiber space such that $E = E_1 = E_2$, $\alpha = I_d$ (identity), $f = f_1 = f_2$.

Let $g: X \to E_2$ and homotopy $h_t: X \to Y$ such that $f_2 \circ g = h_0$, then there exist $g_t: X \to E_1$ such that $g_0 = \alpha \circ g$ and $f_1 \circ g_t = h_t$ for all $x \in X$ and $t \in I$

Then f has M-CHP w.r.t space CW-complex .

Therefore f has M-Serre fibration.

Proposition 3.6.

Mixed Serre fibration may not be a Serre fibration. As show by the following example

Example: Let E_1, E_2 , B be a three CW-complex spaces, and $E_1 \neq E_2$, $f_1 : E_1 \times B \rightarrow B$ be the projection defined as $f_1(e_1, b) = b$, $f_2 : E_2 \times B \rightarrow B$ be the projection defined as $f_2(e_2, b) = b$, $\alpha: E_2 \to E_1$ be any map, $E_1^{\hat{}} = E_1 \times B$, $E_2^{\hat{}} = E_2 \times B$, $E_i = \{E_1^{\hat{}} , E_2^{\hat{}} \}$, $f_i = \{f_1, f_2\}$.

Let $p: E_1 \times B \to E_1$ be the projection defined as $p(e_1, b) = e_1$ for all $(e_1, b) \in E_1 \times B$, $q: E_2 \times B \to E_2$ be the projection defined as $q(e_2, b) = e_2$ for all $(e_2, b) \in E_2 \times B$. Let $k : X \to E_2 \times B$ be any map, and $h_t: X \to B$ be any homotopy such that $f_2 \circ k = h_0$.

Define $g_t: X \to E_1 \times B$ as follows $g_t(x) = \{ \alpha \circ q \circ k(x), h_t(x) \}$, the g_t satisfy (1) $f_f \circ g_t = h_t \quad \forall t \in I$ (2) $g_0 = (\alpha \times I_B) \circ k$ Therefore $f_i : E_i \times B \to B$ is M-Serre fibration, which is not Serre fibration.

Definition 3.7.

Let (X_i, f_i, Y, α) be M-fiber structure X_i be a CW-complex , and $g: Y' \to Y$ be any continuous map into base Y .

Let $X'_1 = \{(x_1, y') \in X_1 \times Y' : f_1(x_1) = g(y')\}$, and $X'_2 = \{(x_2, y') \in X_2 \times Y' : f_2(x_2) = g(y')\}$, then

 $X'_i = \{X'_1, X'_2\}$ is called a M-pullback of f_i by g and $f'_i = \{f'_1, f'_2\} : X' \to Y'$ is called induced M-function of f_i by g .

Define $\alpha': X_2' \rightarrow X_1'$ by $\alpha'(x_2,y') = (\alpha(x_2), y')$.

To show α' is continuous .

Since $\alpha' = \alpha \times I_{y'}$, α is continuous and $I_{y'}$ is continuous then α' is continuous.

To show is commutative .

$$
f'_1 \circ \alpha'(x_2,y') = f'_1(\alpha(x_2),y') = y'. \ f'_2(x_2,y') = y'.
$$

Therefore $f'_1 \circ \alpha' = f'_2$.

Figure 6: M-Pullback

Theorem 3.8.

The M-pullback of M-Serre fibration is also M-Serre fibration.

proof:

Let $k': X \to E'_2$ and $k: X \to E_2$. Define a homotopy $h_t: X \to Y$ such that $h_0 = f_2 \circ k$, since f_i is M-Serre fibration ,

then there exist $k_t : X \to E_1$ such that $f_1 \circ k_t = h_t$ and $k_0 = \alpha \circ k$.

Define $h'_t : X \to Y'$ as $g \circ h'_t = f_1 \circ k_t$ and $h'_0 = f'_2 \circ k'$, then there exist $k'_t : X \to E'_1$, where $k'_t(x) = (k_t(x), h'_t(x))$. Hence $f'_1 \circ k'_t = h'_t$ and $k'_0 = \alpha' \circ k'.$ there for $f'_i: E_i \to Y'$ is M-Serre fibration.

Proposition 3.9.

Let $f'_i: E'_i \to Y$ be two M-Serre fibration then $f_i * f'_i: E_i * E'_i \to Y * Y'$ is also M-Serre fibration.

Proof:

Let X be a CW-complex space Let $K^*: X \to E_2 \times E_2'$ be a map, where $K^*(x) = (k(x), k'(x))$ such that $k: X \to E_2$ and $k': X \to E'_2$ and $h_t^*: X \to Y \times Y'$ define as $h_t^*(x) = \{h_t(x), h_t'(x)\}$ and $(f_2 \times f_2') \circ k^* = h_0$.

Such that $h_t: X \to Y$ and $h'_t: X \to Y'$ since f_i, f'_i are M-Serre fibretion, then there exists a homotopy $k_t: X \to E_1$ such that $f_1 \circ k_t = h_t$, $k_0 = \alpha \circ k$ and a homotopy $k'_t: X \to E'_1$ such that $f'_1 \circ k'_t = h'_t$, $k'_0 = \alpha' \circ k'$.

Now, for h_t^* there exist $K_t^*: X \to E_1 \times E_1'$ define as $K_t^*(x) = \{k_1(x), k_t'(x)\}$ such that $(f_i * f'_i) \circ K_t^*(x) = h_t^*(x)$ and $K_0^* = (\alpha * \alpha^1) \circ K^*$ since X be a CW-complex. Therefore $f_i \times f'_i : E_i \times E'_i \rightarrow Y \times Y'$ is M-Serre fibration.

Definition 3.10. [4]

Let $p : E \to B$ be a map is said to be have the bundle property (BP) for each $b \in B$, if there exists a space X such that , there is an open neighborhood V of b in B together with a homeomorphism,

$$
Q_V \colon \mathbf{V} \times \mathbf{X} \to p^{-1}\left(\mathbf{V}\,\right)
$$

satisfying the condition

 $P_{O_{V}}(v, x) = v$, $(v \in V, x \in X)$

In this case , "the space E is called a bundle space over the base space B relative to the projection $p: E \rightarrow B$ ". "The space X will be called a director space . The open sets V and the homeomorphisms Q_V will be called the decomposing neighborhoods and the decomposing functions respectively". If $p: E \rightarrow B$ has the bundle property (BP), then it has the paraCHP.

Figure 7: Bundle Property

Definition 3.11.

Let $p: E_1 \to A$ and $q: E_2 \to B$ be a maps said to have the M-bundle property (MBP) if there exists a space X such that, for each $a \in A$ and $b \in B$, have an open neighborhood U,V of b in B together with a homeomorphism ,

$$
Q_U = \mathrm{U} \times \mathrm{X} \rightarrow p^{-1} \left(\mathrm{U} \right)
$$

satisfying the condition, $P_{Q_U}(\mu, x) = \mu$, $(\mu \in U, x \in X)$.

And $N_V = V \times X \rightarrow q^{-1} (V)$

satisfying the condition $G_{N_{11}}(\varepsilon, x) = \varepsilon$, $(\varepsilon \in V, x \in X)$.

The space E_i , where $i = 1$, 2 is called a M-bundle space over the base spaces B, A relative to the projection $p : E_1 \to A$ and $q: E_2 \to B$. The space D will be called a director space . The open sets U, V and the homeomorphisms Q_U , N_V will be called the decomposing neighborhoods and the decomposing functions respectively .If the maps have the M-BP , then its have the M-paraCHP

4 The path lifting propert

In this section we speaking, let $p: E \to B$ be a map and is said to have the path lifting property (PLP by short) if, each path $f: I \to B$ with $f(0) = p(e)$, for each $e \in E$, there exists a path $\omega: I \to E$ such that $\omega(0) = e$, $p\omega = f$, and that ω depends continuously on e and f. For a precise definition , let $\mathit{\Omega}_p$ denote the subspace of the product space E×B I defined by $\Omega_p = \{ (e, f) \in \mathbb{E} \times B^I \mid p(e) = f(0) \}.$

Define a map $q: E^I \to \Omega_p$. By taking $q(\omega) = (\omega(0), p\omega)$ for each $\omega: I \to E$ in E^I . Then $p: E \to B$ is said to have the PLP if there exists a map $\lambda: \Omega_p\to E^I$ such that $q\lambda$ is the identity map on $\Omega_p\,$. It is well-known that a map $p: E \to B$ has the PLP iff it has the ACHP. The map λ in the above definition is called a lifting function for $p: E \to B$. If λ lifts constant paths to constant paths, then it is called a regular lifting function for $p: E \to B$ and the triple $\xi = (E, p, B)$ is called a regular serre fiber space.

Definition 4.1.

Let (E_i, f_i, Y, α) be M-fiber structure and $Y^I = \{\omega : I \to Y\}$, $\Omega_{f_i} \subseteq E_i \times Y^I$ be the subspace, $\Omega_f = (e, \omega)$ $\in E_i \times Y^I / f_i(e) = \omega(0)$. A M-lifting function for (E_i, f_i, Y, α) is continuous map $\lambda_i : \Omega_f \to E_i^I$ such that λ_i (e, ω) (0) = e and $f \circ \lambda_i$ (e, ω) (t) = ω (t) for each $(e, \omega) \in \Omega_f$ and $t \in I$ thus $\lambda_i = {\lambda_1, \lambda_2}$ and $\Omega_{f_i} = {\Omega_{f_1}, \Omega_{f_2}}$, where $\lambda_1: \Omega_{f_1} \to E_1^I$ and $\lambda_2: \Omega_{f_2} \to E_2^I$ defind as λ_1 $(e_1, \omega)(0) = e_1$, $f_1 \circ \lambda_1$ $(e_1, \omega)(t) = \omega(t)$ and λ_2 $(e_2, \omega)(0) = e_2$, $f_2 \circ \lambda_2$ $(e_2, \omega)(t) = \omega(t)$. Thus a M-lifting function therefore associates .

Figure 8: M-Lifting Function

With each $e \in E$, and each bath ω in Y starting at $f_i(e)$ a path λ_1 (e_1, ω) in E_1 and λ_2 (e_2, ω) in E_2 , starting at e_2 and e_1 ,and is M-cover of $\,\omega\,$ since the c-topology used in E^I , the continuity of $\,\lambda\,$ is equivalent to that of associated $\lambda_i \colon \Omega_f \times I \to E_i$.

Example 4.2.

A well-known example of a M-Serre fiber space is the $(E_i$, f_i , Y, α), Y^I = { ω : I \rightarrow Y } and $f_1(\omega)$ = ω(1), $f_2(\omega') = \omega'(1)$, where ω, ω': I → Y. A lifting functions $\lambda_1: \Omega_{f_1} \to E_1^I$ for $f_1: E_1 \to Y$ and λ_2 : $\Omega_{f_2} \to E_2^I$ for $f_2 : E_2 \to Y$, are defined as follows:

$$
\lambda_1(\sigma, \omega)(t)(s) = \begin{cases}\n\sigma\left(\frac{4s}{1+t}\right) & \text{if } 0 \le s \le \frac{1+t}{4} \\
\omega(4s - t - 1) & \text{if } \frac{1+t}{4} \le s \le \frac{2+t}{4} \\
\lambda_2(\sigma', \omega')(t)(s) = \begin{cases}\n\sigma'(4s - t - 2) & \text{if } \frac{2+t}{4} \le s \le \frac{3+t}{4} \\
\omega'\left(\frac{4s - t - 1}{1-t}\right) & \text{if } \frac{3+t}{4} \le s \le 1\n\end{cases}\n\end{cases}
$$

Note that this particular λ_1 , λ_2 are not regular.

Definition 4.3.

We say that a space Y admit ϕ -function , if there exists a function $\phi: Y^I \to I$ such that $\phi(\omega)$ = 0 iff ω is a constant path.

Proposition 4.4.

If a space Y admit a φ- function , then every M-Serre fiber space $\xi = (E_i, f_i, Y)$ is regular.

Proof:

Since Y admit a ϕ -function , there exists a function $\phi_1: Y^I\to \mathrm I$ such that $\phi_1(\omega)$ = 0 iff ω is constant , and $\phi_2: Y^I \to I$ such that $\phi_2(\sigma) = 0$ iff σ is constant.

Define a functions $g: Y^I \to Y^I$ by $g(\omega)(t) = u(\frac{t}{\phi_1(\omega)})$ for $t < \phi_1(\omega)$ and $g(\omega)(t) = \omega(1)$ for $\phi_1(\omega) \le t \le 1$, $h: Y^I \to Y^I$ by $h(\sigma)(t) = v(\frac{t}{\phi_2(\sigma)})$ for $t < \phi_2(\sigma)$ and $h(\sigma)(t) = \sigma(1)$ for $\phi_2(\sigma) \le t \le 1$.

Now if λ_i are any lifting function for (E_i, f_i, Y) , where $i = 1,2$ define : $\lambda'_1: \Omega_{f_1} \to E_1^I$ as follows:

$$
\lambda_1' (e_1, \omega)(t) = \lambda_1(e_1, g(\omega)) (\phi_1(\omega) \cdot t).
$$

And define : λ'_2 : $\Omega_{f_2} \to E_2^I$ as follows:

$$
\lambda_2' (e_2, \sigma)(t) = \lambda_2(e_2, h(\sigma)) (\phi_2(\sigma) \cdot t).
$$

Then λ'_i are an regular lifting function for (E_i, p_i, X) , where $i = 1,2$ hence $\xi = (E_i, p_i, X)$ is a regular M-Serre fiber space .

Corollary 4.5.

If X is metric space ,then every M-Serre fiber space $(E_i$, p_i , X) is regular.

Proof:

Define $\phi: X^I \to I$ as follows: $\phi(u) = \text{diam}(u(I))$ where $u: I \to X$ and diam means diameter. It is easy to see that $\phi(u) = 0$ iff *u* is constant, hence B admit a φ-function, so by the above proposition, every M-serre fiber space $(E_i$, p_i , X) is regular .

5 Concolusion

- Every Serre fibration is a Mixed Serre fibration .
- Mixed Serre fibration may not be a Serre fibration.
- The M-pullback of M-Serre fibration is also M-Serre fibration.
- Two M-Serre fibration is also M-Serre fibration
- If the space Y admit a φ function, then every M-Serre fiber space ξ = (E_i, f_i, Y) is regular.
- If X is metric , then every M-Serre fiber space (E_i, p_i, X) is regular.

References

[1] Daher W. Al Baydli, "New types of Fibration " ,M.S.C, Babylon University,2003.

[2] Hu, S.T, " Homotopy theory", Academic press,1959.

[3] Allen Hatcher. "Algebraic topology", Cambridge University,Press, New York,NY, USA, 2010.

[4] Mustafa, H.J," Some theorems on Fibration and Cofibration",Ph.Dr.Thesis ,California University ,Los Angeles ,1972.

[5] Michael Cole, Mixing model structures, Journal of topology and its Applications 153 p1016– 103,(2006).

[6] Stephen A.Mitchell, "Notes on Serre fibration",website link internet, August 2001.

https://sites.math.washington.edu/~mitchell/Atopc/serre.pdf

[7] Spanir, F,H. "Algebraic topology", Mc Graw-Hill, 1966.

[8] Soren Hansen, "Lecture note on algebraic topology", website link internet, 2013. (http://www.math.ksu.edu/hansen/CWcomplex.pdf).

[9] Bui Anh Tuan, Discrete Vector Fields and the Cohomology of Certain Arithmetic and Crystallographic Groups.,PhD thesis, National University of Ireland,Galway