On Composition of Continuity in ideal Topological spaces

Muna Jabbar Mohammad

Education College for Pure Sciences, Wasit University, Iraq

Jbarmny7@gmail.com

Faik J. H. Mayah College of Sciences, Department of Physics, Wasit University, Iraq

faik.mayah@gmail.com

Abstract

We define new classes of sets called pre- $\hat{\delta}$ -closed set and pre- $\hat{\delta}$ -open set. Also we define new ideal topological spaces is called $\mathbb{T}_{p\hat{\delta}}$ -spaces, the notion of pre- $\hat{\delta}$ closed set in is applied to study a new class of functions, continuous function and composition of continuity in ideal topological spaces, so that we investigate some properties, characterizations of these functions.

Keywords: Ideal topological spaces, continuous functions, Pre- $\hat{\delta}$ -closed, Pre- $\hat{\delta}$ -open, $\mathbb{T}_{p\hat{\delta}}$.-space.

1 Introduction

A nonempty collection $\mathbb I$ of subsets in a topological space $(\mathbb X, \mathbb T)$ is said to be an ideal if it satisfies

- $A \in \mathbb{I}$ and $B \subseteq A$ implies $B \in \mathbb{I}$.
- $A \in \mathbb{I}$ and $B \in \mathbb{I}$ implies $A \cup B \in \mathbb{I}$.

A topological space (X, T) with an ideal $\mathbb I$ is called an ideal topological space or simply ideal space, if $P(\mathbb{X})$ is the set of all subsets of X. A set operator $(\cdot)^*$: $P(\mathbb{X}) \rightarrow$ $P(X)$ is called a local function [1] of a subset A with respect to the topology T and ideal II is defined as $A^*(X, T) = \{x \in X : \mathcal{W} \cap \mathcal{A} \notin I, \forall \mathcal{W} \in T(X) \}$ where $\mathbb{T}(\mathbb{X}) = \{ \mathcal{W} \in \mathbb{T} : x \in \mathcal{W} \}.$ A kuratowski closure operator $cl^*(\cdot)$ for a topology $\mathbb{T}^*(\mathbb{I}, \mathbb{T})$, called the *-topology; finar than \mathbb{T} is defined by $cl^*(\mathcal{A}) = \mathcal{A}^*(\mathbb{I}, \mathbb{T}) \cup \mathcal{A}$ [2]. Levine [3]; velicko [4] introduced the notions of generalized closed (briefly g closed) and δ-closed sets respectively and studied their basic properties. The notion of \mathbb{I} g-closed sets first introduced by Dontchev [5] in 1999; Navaneetha Krishanan and Joseph [6] further investigated and characterized $\mathbb{I}g$ -closed sets. Julian Dontchev and

Maximilian Ganster [7]; Yuksel; Acikgoz and Noiri [8] introduced and studied the notions of δ -generalized closed (briefly δ g-closed) and δ -I-closed sets respectively.

Pre- δ -closed sets a novel type of sets that will be defined in this paper with fundamental characteristics.

2 Fundamental Concepts

Definition 2.1. Let $\mathcal A$ subset of a topological space $(\mathbb X, \mathbb T, \mathbb I)$ is said a:

- Semi-open set [9] if $\mathcal{A} \subseteq cl(int(\mathcal{A}))$.
- Semi-closed set [10] if $int(cl(\mathcal{A})) \subseteq \mathcal{A}$.
- Pre-open set [11] if $\mathcal{A} \subseteq int(cl(\mathcal{A}))$.
- Pre-closed set [12] if $cl(int(\mathcal{A})) \subseteq \mathcal{A}$.
- Regular open set [13] if $\mathcal{A} = int(cl(\mathcal{A}))$.
- Regular closed set [14] if $\mathcal{A} = cl(int(\mathcal{A}))$.

The semi- closure (respectively, pre-closure) of a subset $\mathcal A$ of $(\mathbb X,\mathbb T)$ is the intersection of all semi-closed (respectively, pre-closed) sets containing A and is denoted by $\mathit{scl}(\mathcal{A})$ (respectively, $\mathit{pcl}(\mathcal{A})$).

Definition 2.2. [8] Let $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ be an ideal topological-space, let A a subset of \mathbb{X} and x is a point of X, then: x is called a δ -I-cluster points of A if $\mathcal{A} \cap (int \, cl^*(\mathcal{W})) \neq \phi$ for all open neighborhood W of x .

The family of each δ -I-cluster points of $\mathcal A$ is said the δ -I-closure of $\mathcal A$ and is denoted by $[\mathcal{A}]_{\delta-\mathbb{I}}$.

A subset A is called to be δ -I-closed if $[\mathcal{A}]_{\delta-\mathbb{I}} = \mathcal{A}$.

The complement of a δ -I-closed set of X is called to be δ -I-open.

Remark 2.1. We can write $[\mathcal{A}]_{\delta-\mathbb{I}} = \{x \in \mathbb{X} : int(cl * (\mathcal{W}) \cap \mathcal{A} \neq \phi \}$, for all $\mathcal{W} \in$ T(X)}. We use the notation σ cl(A) =[A]_{δ−I}.

Lemma 2.1. [8] Let $\mathcal A$ and $\mathcal B$ be subset of an ideal topological space $(\mathbb X, \mathbb T, \mathbb I)$. Then the following properties satisfy:

- $\mathcal{A} \subseteq \sigma cl(\mathcal{A}).$
- If $\mathcal{A} \subset \mathcal{B}$, then $\sigma cl(\mathcal{A}) \subset \sigma cl(\mathcal{B})$.
- $\sigma cl(\mathcal{A}) = \bigcap \{ G \subset \mathbb{X} : \mathcal{A} \subset \mathcal{G} \text{ and } G \text{ is } \delta-\mathbb{I}\text{-closed} \}.$
- If *A* is δ-I-closed set of X for all $\alpha \in \Delta$; then $\bigcap {\mathcal A}_{\alpha} : \alpha \in \Delta \}$ is δ-I-closed.
- σ cl(A) is δ -I-closed.

Remark 2.2. It is well-known that the family of regular open sets of (X, T) is a basis for a topology which is weaker than T .

This topology is called the semi-regularization of $\mathbb T$ and is denoted by $\mathbb T_s$. Actually, \mathbb{T}_s is the same as the family of δ -open sets of (X, T).

Lemma 2.2. [8] Let $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ be an ideal topological-space, and $\mathbb{T}_{\delta - \mathbb{I}} = \{ \mathcal{A} \subset \mathbb{X} : \mathcal{A} \text{ is }$ δ -I-open set of (X, T, I)}. Then $T_{\delta-\mathbb{I}}$ is a topology such that $\mathbb{T}_{s} \subset \mathbb{T}_{\delta-\mathbb{I}} \subset \mathbb{T}$.

Remark 2.3. [8] \mathbb{T}_s (respectively, $\mathbb{T}_{\delta-1}$) is the topology created by the family of δ open sets (respectively, δ -I-open sets).

Lemma 2.3. Let (X, T, I) be an ideal topology space, and A a subset of X . $\sigma cl(\mathcal{A}) = \{x \in \mathbb{X} : \mathcal{A} \cap \text{int}(cl^*(\mathcal{W})) \neq \phi\}$; for each $\mathcal{W} \in \mathbb{T}(\mathbb{X})\}$ is closed. **Proof.** If $x \in cl(\sigma cl(\mathcal{A}))$, and $\mathcal{W} \in \mathbb{T}(\mathbb{X})$, then $\mathcal{W} \cap \sigma cl(\mathcal{A}) \neq \emptyset$. Then $y \in W \cap \sigma cl(A)$ for some $y \in X$. Since $W \in \mathbb{T}(y)$ and $y \in \sigma cl(\mathcal{A})$, from the definition of $\sigma cl(\mathcal{A})$ we have $\mathcal{A} \cap int(cl^*)$

 $(\mathcal{W}) \neq \phi$. Therefore, $x \in \sigmacl(\mathcal{A})$. So $cl(\sigmacl(\mathcal{A})) \subset \sigmacl(\mathcal{A})$ and hence $\sigmacl(\mathcal{A})$ is closed.

Definition 2.3. Let (\mathbb{X}, \mathbb{T}) be a topological-space; a subset A of \mathbb{X} is said to be :

- g-closed set [3] if cl(\mathcal{A}) $\subseteq \mathcal{W}$, whenever $\mathcal{A} \subset \mathcal{W}$ and \mathcal{W} is open in (X, T)
- δ -closed set [4] if $\mathcal{A} = cl_{\delta}(\mathcal{A})$; where $\delta cl(\mathcal{A}) = cl_{\delta}(\mathcal{A}) = \{x \in \mathbb{X} : (int(cl(\mathcal{W}))$ \bigcap $\mathcal{A} \neq \emptyset$, $\mathcal{W} \in \mathbb{T}$ and $x \in \mathcal{W}$.
- δ-generalized closed set (short, δg-closed) set [7] if $cl_δ(A) ⊆ W$, whenever $\mathcal{A} \subseteq \mathcal{W}$ and \mathcal{W} is open.
- $\delta \hat{g}$ -closed set [15] if $cl_{\delta}(\mathcal{A}) \subseteq \mathcal{W}$, whenever $\mathcal{A} \subseteq \mathcal{W}$ and \mathcal{W} is \hat{g} -0pen set in (X, T) .

Definition 2.4. Let (X, T, I) be an ideal space. A subset A of X is said to be: Ig-closed set [5] if \mathcal{A} * ⊆ \mathcal{W} , whenever $\mathcal{A} \subseteq \mathcal{W}$ and \mathcal{W} is open in X.

Definition 2.5. [16] Let $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ be an ideal space, a subset A of \mathbb{X} is called δ -closed if $\sigma cl(\mathcal{A}) \subset \mathcal{W}$, whenever $\mathcal{A} \subset \mathcal{W}$, and \mathcal{W} is open in $(\mathbb{X}, \mathbb{T}, \mathbb{I})$. The complement of $\hat{\delta}$ -closed set in $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ is called $\hat{\delta}$ -open set in $(\mathbb{X}, \mathbb{T}, \mathbb{I})$.

Definition 2.6. In ideal topological-space $(\mathbb{X}, \mathbb{T}, \mathbb{I})$; let $\mathcal{A} \subset \mathbb{X}, \mathcal{A}$ is called pre- $\hat{\delta}$ -closed if $\sigma cl(\mathcal{A}) \subset \mathcal{W}$ whenever $\mathcal{A} \subset \mathcal{W}$ and \mathcal{W} is pre-open in (X, T, I). The complement of pre- $\hat{\delta}$ -closed in (X, T, I) is called pre- $\hat{\delta}$ -open set in (X, T, I) .

Example 2.1. Let $\mathbb{X} = \{e_1, e_2, e_3\}$, $\mathbb{T} = \{\mathbb{X}, \varphi, \{e_1\}, \{e_2\}, \{e_1, e_2\}\}$, $\mathbb{I} = \{\varphi, \{e_3\}\}$. Let $A = \{e_1, e_3\}$ then A is pre- $\hat{\delta}$ -closed.

Remark 2.4. Each Pre- $\hat{\delta}$ -closed is $\hat{\delta}$ -closed, but the opposite of is not true. It is clear from the following example.

Example 2.2. Let $\mathbb{X} = \{e_1, e_2, e_3, e_4\}; \mathbb{T} = \{\mathbb{X}, \phi, \{e_1\}, \{e_2\}, \{e_1, e_2\}, \{e_2, e_3\},\$ $\{e_1, e_2, e_3\}$, and $\mathbb{I} = {\phi, \{e_1\}}$. Let $\mathcal{A} = \{e_1, e_4\}$, then \mathcal{A} is δ -closed but not pre- δ closed.

Remark 2.5. The collection of all pre- $\hat{\delta}$ -closed set in $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ denoted by $P \hat{\delta} C(\mathbb{X})$; the family of all pre- $\hat{\delta}$ -open sets denoted by $P\hat{\delta}O(X)$.

Definition 2.7. [17]

A function $\Gamma: (\mathbb{X}, \mathbb{T}) \to (\mathbb{Y}, \mathbb{T})$, continuous function if $\Gamma^{-1}(\mathbb{Y})$ is an open set in X, for all open set in Y .

3 Some types of Continuous Function

In this section, a new classes of continuous functions are defined and studied the relations between these concepts.

Definition 3.1.

A function $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ is called:

- Pre- δ ²-continuous function denoted by p δ ²-continuous function, if $f^{-1}(\mathcal{V})$ is a pre- δ -open set in X, whenever ν is a pre- δ -open set in Y.
- δ ⁻irresolute function if $f^{-1}(\mathcal{V})$ is a δ ⁻open set in X, whenever \mathcal{V} is a δ ⁻open set in Y.
- δ $\hat{\delta}$ -continuous function if $f^{-1}(\mathcal{V})$ is a δ -open set in X, whenever \mathcal{V} is a pre- δ open set in Y .
- Strongly pre- δ -continuous function denoted by strongly p δ -continuous function if $f^{-1}(\mathcal{V})$ is a pre- δ open set in X, whenever $\mathcal V$ is a δ open set in Y.

The following diagram shows the relations among the variant concepts were introduced in Definition (3.1).

Figure 3.1: Relationships among the function that defined in Definition (3.1).

Proposition 3.1.

If the function $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ is a strongly po-continuous function then f is a $p\hat{\delta}$ -continuous function.

Proof. Let f be a strongly $p\delta$ -continuous function. Let $V \in \mathbb{T}$ and V is a pre- $\hat{\delta}$ -open set, Since every pre- $\hat{\delta}$ -open is a $\hat{\delta}$ -open. Then V is a $\hat{\delta}$ -open set in Y.This implies $f^{-1}(\mathcal{V}) \in \mathbb{T}$, and $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open. so f is a p $\hat{\delta}$ -continuous function.

Proposition 3.2.

If the function f is a strongly p $\hat{\delta}$ -continuous function then f is a $\hat{\delta}$ -irresolute function. **Proof.** Let f be a strongly $p\hat{\delta}$ -continuous function.

Let V be a $\hat{\delta}$ -open set in Y. Since f is a strongly p $\hat{\delta}$ -continuous function,

so $f^{-1}(\mathcal{V}) \in \mathbb{T}$ and $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set. Since every pre- $\hat{\delta}$ -open set is a $\hat{\delta}$ -open set. This implies $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in X. Then f is a δ -irresolute function.

Proposition 3.3.

If the function f is a $\hat{\delta}$ -irresolute function then f is a $\hat{\delta}$ -continuous function. **Proof.** Let f be a $\hat{\delta}$ -irresolute function. Let V be a pre- $\hat{\delta}$ -open set in Y. Then V be a $\hat{\delta}$ -open in Y, since every pre- $\hat{\delta}$ -open is a $\hat{\delta}$ -open. Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in X. Then f is a $\hat{\delta}$ -continuous function.

Proposition 3.4.

If the function f is a $p\hat{\delta}$ -continuous function then f is a $\hat{\delta}$ -continuous function. **Proof.** Let f be a p $\hat{\delta}$ -continuous function. Let V be a pre- $\hat{\delta}$ -open set in Y. Then $f^{-1}(\mathcal{V}) \in \mathbb{T}$ and $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set. Since every pre- $\hat{\delta}$ -open is a $\hat{\delta}$ -open set. Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in X. Hence f is a $\hat{\delta}$ -continuous function.

Corollary 3.1.

If the function f is a strongly p $\hat{\delta}$ -continuous function then f is a $\hat{\delta}$ -continuous function. **Proof.** Let f be a strongly $p\hat{\delta}$ -continuous function. Let V be a pre- $\hat{\delta}$ -open set in Y. Since every pre- $\hat{\delta}$ -open is a $\hat{\delta}$ -open set. Since f is a strongly $p\hat{\delta}$ -continuous function. Therefore $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set in X. so $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in X. Then f is a $\hat{\delta}$ -continuous function.

Proposition 3.5.

If $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ and $g: (\mathbb{Y}, \mathbb{T}', \mathbb{I}') \to (\mathbb{W}, \mathbb{T}'', \mathbb{I}'')$ are both p δ -continuous function then $gof: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{W}, \mathbb{T}^*, \mathbb{I}^*)$ is a p $\hat{\delta}$ -continuous function. **Proof.** If $A \subseteq \mathbb{W}$ is a pre- $\hat{\delta}$ -open. Then $g^{-1}(A)$ is a pre- $\hat{\delta}$ -open in Y. Then $f^{-1}(g^{-1}(\mathcal{A}))$ is a pre- $\hat{\delta}$ -open in X, since q and f are $p\hat{\delta}$ -continuous. Thus $(gof)^{-1}(\mathcal{A}) = f^{-1}(g^{-1}(\mathcal{A}))$ is a pre- δ -open in X. Then $g \circ f$ is a p δ -continuous function.

Proposition 3.6.

If $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ and $g: (\mathbb{Y}, \mathbb{T}', \mathbb{I}') \to (\mathbb{W}, \mathbb{T}'', \mathbb{I}'')$ are both $\hat{\delta}$ -irresolute functions then $qof: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{W}, \mathbb{T}^{\prime\prime}, \mathbb{I}^{\prime\prime})$ is a $\hat{\delta}$ -irresolute functions. **Proof.** If $\mathcal{A} \subseteq \mathbb{W}$ is a $\hat{\delta}$ -open. Then $g^{-1}(\mathcal{A})$ is a $\hat{\delta}$ -open in Y. Then $f^{-1}(g^{-1}(\mathcal{A}))$ is a $\hat{\delta}$ -open in X,

since g and f are $\hat{\delta}$ -irresolute functions. Thus $(g \circ f)^{-1}(\mathcal{A}) = f^{-1}(g^{-1}(\mathcal{A}))$ is a $\hat{\delta}$ -open in X. Then *gof* is a $\hat{\delta}$ -irresolute function.

Proposition 3.7.

Let X, Y and W be any ideal spaces for any $p\hat{\delta}$ -continuous function $f: \mathbb{X} \to \mathbb{Y}$ and any strongly $p \hat{\delta}$ -continuous function $g: \mathbb{Y} \to \mathbb{W}$ then composition $gof: \mathbb{X} \rightarrow \mathbb{W}$ is strongly p $\hat{\delta}$ -continuous function. **Proof.** Let $\mathcal{A} \subseteq \mathbb{W}$ be a $\hat{\delta}$ -open. Then $g^{-1}(\mathcal{A})$ is a pre- $\hat{\delta}$ -open in \mathbb{Y} , since g is strongly p $\hat{\delta}$ -continuous function, by the p $\hat{\delta}$ -continuous of f. $f^{-1}(g^{-1}(\mathcal{A}))$ is a pre- $\hat{\delta}$ -open in X. But $(g \circ f)^{-1}(\mathcal{A}) = f^{-1}(g^{-1}(\mathcal{A}))$. Hence $(g \circ f)^{-1}(\mathcal{A})$ is a pre- $\hat{\delta}$ -open in X. Then *gof* is a strongly $p\hat{\delta}$ -continuous function.

Proposition 3.8.

Let X , Y and W be any ideal spaces for any δ -irresolute function $f: \mathbb{X} \to \mathbb{Y}$ and any $\hat{\delta}$ -continuous function $g: \mathbb{Y} \to \mathbb{W}$ then composition $g \circ f: \mathbb{X} \to \mathbb{W}$ is a δ -continuous function. **Proof.** Let $\mathcal{A} \subseteq \mathbb{W}$ be a pre- $\hat{\delta}$ -open. Then $g^{-1}(\mathcal{A})$ is a $\hat{\delta}$ -open in Y, since q is a δ -continuous function. By the δ -irresolute function of f. $f^{-1}(g^{-1}(\mathcal{A}))$ is a $\hat{\delta}$ -open in X. But $(gof)^{-1}(\mathcal{A}) = f^{-1}(g^{-1}(\mathcal{A})).$ Hence $(gof)^{-1}(\mathcal{A})$ is a $\hat{\delta}$ -open in X. Then *gof* is a $\hat{\delta}$ -continuous function.

Remark 3.1.[18]

Let (X, T) be a topological space if every dense is open then every pre-open set is open set.

Remark 3.2.

Let $(X,\mathbb{T},\mathbb{I})$ be an ideal space, and since every pre-open set is open set by (Remark 3.1) then every δ -closed is pre- δ -closed.

Definition 3.2.

Let $(X,\mathbb{T},\mathbb{I})$ be an ideal space is said to be a $\mathbb{T}_{p\hat{\delta}}$ -space if every $\hat{\delta}$ -open subset of X is pre- δ -open.

Theorem 3.1.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if \mathbb{Y} is a $\mathbb{T}_{p\hat{\delta}}$ -space then f is a strongly $p\hat{\delta}$ continuous function if and only if it is a $p\hat{\delta}$ -continuous function. **Proof.** Suppose \mathbb{Y} is a $\mathbb{T}_{p\hat{\delta}}$ -space and f is a p $\hat{\delta}$ -continuous function. Let ν be a δ -open set in Y. Then ν is a pre- δ -open set, since Y is a $\mathbb{T}_{p\delta}$ -space. Then $f^{-1}(\mathcal{V})$ is a pre- δ -open set in X, since f is a p $\hat{\delta}$ -continuous function.

Then f is a strongly $p\hat{\delta}$ -continuous function. Converse is obvious (Proposition 3.1).

Theorem 3.2.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if X is a $\mathbb{T}_{p\hat{\delta}}$ -space then f is a strongly $p\hat{\delta}$ continuous function if and only if it is a $\hat{\delta}$ -irresolute function. **Proof.** Suppose X is a $T_{\rho\delta}$ -space and f is a δ -irresolute function. Let V be a $\hat{\delta}$ -open set in Y. Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in X. Then $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set in X. Then f is a strongly $p\hat{\delta}$ -continuous function. Converse is obvious (Proposition 3.2).

Theorem 3.3.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if \mathbb{Y} is a $\mathbb{T}_{p\hat{\delta}}$ -space then f is a $\hat{\delta}$ -irresolute function if and only if it is a $\hat{\delta}$ -continuous function. **Proof.** Suppose \mathbb{Y} is a $\mathbb{T}_{P\hat{\delta}}$ -space and f is a $\hat{\delta}$ -continuous function. Let V be a $\hat{\delta}$ -open set in Y. Then V is a pre- $\hat{\delta}$ -open set in Y. Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in X. Then f is a $\hat{\delta}$ -irresolute function. Converse is obvious (Proposition 3.3).

Theorem 3.4.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if \mathbb{X} is a $\mathbb{T}_{p\hat{\delta}}$ -space then f is a p $\hat{\delta}$ -continuous function if and only if it is a $\hat{\delta}$ -continuous function. **Proof.** Suppose X is a $\mathbb{T}_{p\hat{\delta}}$ -space and f is a $\hat{\delta}$ -continuous function. Let ν be a pre- $\hat{\delta}$ -open set in Y. Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in X. Then $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set in X. Then f is a p $\hat{\delta}$ -continuous function. Converse is obvious (Proposition 3.4).

Theorem 3.5.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if \mathbb{X} and \mathbb{Y} are a $\mathbb{T}_{p\delta}$ -spaces then f is a strongly p $\hat{\delta}$ -continuous function if and only if it is a $\hat{\delta}$ -continuous function. **Proof.** Suppose X and Y are a $T_{\rho \hat{\delta}}$ -spaces and f is a $\hat{\delta}$ -continuous function. Let ν be a $\hat{\delta}$ -open set in Y. Let V be a pre- $\hat{\delta}$ -open set in Y. Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in X. Then $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set in X. Then f is a strongly $p\delta$ -continuous function. Converse is obvious (Corollary 3.1) .

4 Conclusion

In this work, several properties of $p \, \hat{\delta}$ -continuous, $\hat{\delta}$ -irresolute, $\hat{\delta}$ -continuous, strongly p $\hat{\delta}$ -continuous functions were studied and the relationship between p $\hat{\delta}$ -continuous and $\hat{\delta}$ -continuous, strongly p $\hat{\delta}$ -continuous and (p $\hat{\delta}$ -continuous, $\hat{\delta}$ -continuous, $\hat{\delta}$ irresolute) also between $\hat{\delta}$ -irresolute and $\hat{\delta}$ -continuous in ideal topological spaces, as well as the relationship between them in $\mathbb{T}_{p\hat{\delta}}$ –space.

References

- [1] Kannan, K. *On* ̂*-Generalized closed sets and open sets in topological spaces*, Int. Journal of Math. Analysis, Vol.6, 2012, No.57, 2819-2828.
- [2] Stone, M. *Application of the theory of Boolian rings to general topology*, Trans. Ameer. Math. Soc., 41(1937), 374-481.
- [3] Levine, N. *Semi-open sets and semi-continuity in topological spaces.* Ameer Math. Monthly, 70 (1963), 36-41.
- [4] Veera Kumar, M.K.R.S. \hat{g} -*closed sets in topological spaces*, Bull. Allah. Math. Soc, 18(2003), 99-112.
- [5] Dontchev, J. and M. Ganster. On δ -generalized closed sets and $T_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 15-31.
- [6] Nagaveni, N. *Studies on generalizations of homeomorphisms in topological spaces*, Ph. D., Thesis, Bharathiar University. Coimbatore (1999).
- [7] Bhattacharya, P. and B. K. Lahiri. *Semi-generalized closed sets in topology*, Indian J. Math., 29(1987), 375-382.
- [8] Velicko, N.V. *H-closed topological spaces*, Amer. Math. Soc. Transl., 78(1968), 103-118.
- [9] Lellis Thivagar, M, B. Meera Devi and E. Hatir. $\delta \hat{g}$ -closed sets in topological *spaces*, Gen. Math. Notes, Vol.1, No.2(2010), 17-25.
- [10] N. Levine. *Generalized closed sets in topology*, Rend. Del Circ. Mat. Di Palermo, vol. 19, no. 1, pp. 89-96, 1970.
- [11] Maki, H., J. Umehara, and K. Yamamura. *Characterizations of* T_{1/2}-spaces *using generalized ν-sets*, Indian Journal of pure and applied Mathematics, VoI. 19, No.7, PP 634-640,1988.
- [12] Jiling Cao, M. Ganster, C. Konstadilaki, Ivan L. Reilly. *On preclosed sets and their generalizations*, Houston Journal of Mathematics, 28 (4), 771-780, 2002.
- [13] Ravi, O., S. Tharmar, M. Sangeetha, J. Antony Rex Rodrigo. **g-closed sets in ideal topological spaces*, Jordan Journal of Mathematics and statistics (JJMS) 6(1), 2013 PP.1-13.
- [14] Umit Karabiyik, Aynur Keskin Kaymakci. *Some New Regular Generalized Closed Sets in Ideal Topological Spaces*, European Journal of Pure and Applied Mathematics , Vol. 9, No. 4, 2016, 434-442, 2016.
- [15] Kuratowski, K. *Topology*, Vol.1, Academic Press, New York, NY, USA, 1966.
- [16] M. Navaneethakrishnan, P. Periyasamy, S. Pious Missier. δ̂-closed sets in ideal

 topological spaces, IOSR Journal of mathematics Vol. 11 Issue 1 Ver. II, pp. 01- 12,2015.

- [17] Sabiha. I. Mahmood. *On generalized Regular Continuous Function in Topolog ical Spaces*, Ibn Al-Haithatham Journal for Pure and Applied Science, 25; (2012), 377-385.
- [18] I.L. Reilly and M. K. Vamanamurthy. *On some questions concerning preopen sets*, Kyungpook Mathematical JOUTllal Volume 30, Number 1, June, 1990.