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1. Introduction  

     Through replacement of the single kernel in the classic derivative of fractal 
fractional Caputo with the ordinary kernel. Exponential kernel has used by the fractal 
fractional Caputo-Fabrizio (FFCF) operator, which is a non-single kernel FFCF have 
suggested the modern operator. It does not only have two various exemplifications for 
locative and temporal variables, but the entire impact of the memory can be pertraged 
else [1]. In heat convey model this modern operator has been successfully utilized [2], 
Freedman and nonlinear Baggs model [3], the equation of space time fractal fractional 
propagation [4], mathematical paradigms for an unstable Maxwell fluid flux and its 
thermic demeanor in a micro-pipe [5], mass-spring-damper system [6], and fractal 
fractional Maxwell liquid [7]. In this research, to the trouble determined in the sense 
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of the fractal fractional Caputo (FFC) and FFCF operators some existent analytical and 
numeral methods to solve fractal fractional calculus trouble have been expanded, 
amongst them is the paper of Morales Delgado et.al. In [8], to detect the essential so-
lution for the fractal fractional advection propagation equation with the exporter the 
authors employ integral converts where the derivative is considered in FFCF sense. 
Nevertheless, since FFCF operator is comparatively modernistic, there are still com-
paratively bounded works conducted to gain the authoritative, precision and simple 
solving for the fractional calculus trouble determined in FFC and FFCF operators.  
Moreover, in solving several fractal fractional calculus troubles operational matrix 
(OPM) method relied on perpendicular function was successfully utilized which are 
acquainted in classic sense of FFC. The method minimizes these troubles to solve a 
system of algebraic equations, thence extremely simplify the trouble. In this research 
field the major contribution starts with the seminal paper concerning Legendre wave-
lets OPM through Yousefi and Razzaghi [9] and OPM relied on Legendre polynomials 
in [10]. To solve changeable arrangement fractal fractional differential equations this 
OPM process has been expanded as in [11]. Nevertheless, there are still no OPM re-
lated processes to solve the troubles determined in FFC and FFCF operators. Thereafter, 
by pursuing the work of Dehghan and Saadatmandi [10], we derive the OPM relied 
on SLP to solve troubles in FFC and FFCF operators.  

It is the first time that the OPM is used for solving the problem in FFCF sense. The 
goal from this paper is to compare the accuracy, strength, and convergence of solu-
tions between the FFC and FFCF.  

The article is arranged as the following: section 2 clarify fractal fractional of Ca-
puto and fractal fractional of Caputo-Fabrizio derivative. In section 3 Fractal Frac-
tional operational matrix for Caputo and Caputo-Fabrizio.  

In section 4 the Legendre OPM of fractal fractional derivative is gained. In section 
5 clarify Procedure of the operational matrix of fractal fractional derivative. In section 
6 the suggested method is utilized to many examples. 

 
2.  Basic concept 
 

2.1 Fractal Fractional operator 

 
Definition 2.1: The FFC left-sided Ɗ𝜔,𝛽 

𝐹𝐹𝐶  of a function   
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𝑦(𝑧) ∈  𝑌1(0, 𝑏) with 0 <  ⍵ <  1 ,  is acquainted as: 
 

Ɗ 
𝐹𝐹𝐶 𝜔,𝛽𝑦(𝑧) =

1

𝛤(1−⍵)
∫

𝑑𝑦(𝜏)

𝑑𝜏𝛽
(𝑧 − 𝜏)−𝜔𝑑𝜏 

𝑧

0
  

 

Definition 2.2: The definition of Caputo of the fractal fractional-order derivative is 
acquainted as: 

 

Ɗ 
𝐹𝐹𝐶 𝜔,𝛽𝑦(𝑧)  =

1

𝛤(1 − ⍵)
∫
𝑑𝑦(𝜏)

𝑑𝜏𝛽
(𝑧 − 𝜏)−𝜔𝑑𝜏

𝑧

0

 

 

Where  𝜔 >  0 is the order of the derivative.  
 
In [1], FFCF submitted the novel operator through substituting the single Kernel    
 

(z − τ) −⍵   with    e
(
−⍵(z − τ)

(1−𝜔)
)    and   1

𝛤(1−⍵)
 with   𝑀(𝜔)

1−⍵
  

 in Eq (1) to acquire: 
 
For   0 <  𝜔 <  1, 𝑎 ∈  [−∞, 𝑧) and 𝑦(𝑧)  ∈  𝑌1 (𝑎, 𝑏), 𝑏 >  𝑎   the FFCF operator 

or more accurately the left-sided FFCF operator of y (z) is acquainted as:  
 

Ɗ 
𝐹𝐹𝐶𝐹

𝑎+;𝑧
𝜔,𝛽

𝑦(𝑧)  =
𝑀(𝜔)

1 − ⍵
∫
𝑑𝑦(𝜏)

𝑑𝜏𝛽
  𝑒
−⍵(𝑧 − 𝜏)
(1−𝜔) 𝑑𝜏

𝑧

𝑎

 

 
 

Where the normalization function is 𝑀(⍵) for example𝑀(0) = 𝑀(1) = 1. 
Here ⍵ denoted as the fractal fractional order, 𝛽 denotes the fractal order and the 

integral has power law kernel and, 
 

𝑑𝑦(𝜏)

𝑑𝑧𝛽
= lim
𝑧→𝜏

𝑦(𝑧) − 𝑦(𝜏)

𝑧𝛽 − 𝜏𝛽
 

 

           =
1

𝛽 𝜏𝛽−1
𝑑

𝑑𝜏
 𝑦(𝜏) 

 
 

2.2    Fractal Fractional Derivative 
      

 For the Caputo derivative, we have [15] 
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Ɗ𝜔𝐶 = 0 , (𝐶 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), 
 

 Ɗ𝜔𝑧𝛽 = {

0                                                                𝑓𝑜𝑟 𝛽 ∈ ℕ0
  𝑎𝑛𝑑 𝛽 <  ⌈𝜔⌉

𝛤(𝛽 + 1)

𝛤(𝛽 + 1 − 𝜔)
𝑧𝛽−𝜔 , 𝑓𝑜𝑟𝛽 ∈ ℕ0 

 𝑎𝑛𝑑 𝛽 ≥  ⌈𝜔⌉ 𝑜𝑟 𝛽 ∉ ℕ0 𝑎𝑛𝑑 𝛽 > ⌊𝜔⌋
  

 
 
 

Theorem 1: Let   𝑛 < 𝜔 < 𝑛 + 1, for a presented integer β ≥ ⌈ω⌉, the FFCF operator 
of order 𝜔 = ⌈𝜔⌉ is of  (𝜏 − 𝑎)𝛽  presented as [13]: 

 
 

Ɗ 
𝐹𝐹𝐶𝐹

𝑎+;𝜏
𝜔,𝛽

(𝜏 − 𝑎)𝛽  

=
𝑀(𝜐)𝛤(𝛽 + 1)

1 − 𝜐
[( ∑

(−1)𝛿(𝜏 − 𝑎)𝛽−𝑛−1−𝛿

𝛤(𝛽 − 𝑛 − 𝛿)(
𝜐

1 − 𝜐
)𝛿+1

𝛽−𝑛−1

𝛿=0

)

+
(−1)𝛽−𝑛

(
𝜐

1 − 𝜐
)𝛽−𝑛

𝑒
−𝜐(𝜏−𝑎)
1−𝜐

 

] 

 

Proof: in [13] 
 

 
2.3    Some Properties of the Shifted Legendre Polynomials 
 

The notable Legendre polynomials are acquainted with this interval [-1, 1] and can 
be resolved with the guide of the accompanying repeat formulation [14]: 

 

𝐿𝛿+1(𝑡) =
2𝛿 + 1

𝛿 + 1
𝑡𝐿𝛿(𝑡) −

𝛿

𝛿 + 1
𝐿𝛿−1(𝑡),    𝛿 = 1,2, … 

 
 

Where  𝐿0(𝑡)  =  1  and𝐿1(𝑡)  =  𝑡 . For utilizing these polynomials on the interval 
𝑧 ∈  [0, 1] we limit which is named SLP through presenting the alteration of variable 
 =  2𝑧 –  1 .   
Let the SLP 𝐿𝛿(2𝑧 −  1) be indicated through 𝑃𝛿(𝑧). Then 𝑃𝛿(𝑧) can be acquired as 
the following: 

 

𝑃𝛿+1(𝑧) =
(2𝛿 + 1)(2𝑧 − 1)

(𝛿 + 1)
𝑃𝛿(𝑧) −

𝛿

𝛿 + 1
𝑃𝛿−1(𝑧),    𝛿 = 1,2, … 
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Where 𝑃0(𝑧)  =  1 and 𝑃1(𝑧)  =  2𝑧 − 1 . The analytic form of the SLP 𝑃𝛿(𝑧)of de-
gree δ is given by: 

 

𝑃𝛿(𝑧) =∑(−1)𝛿+𝑠
(𝛿 + 𝑠)!

(𝛿 − 𝑠)!
 
𝑧𝑠

(𝑠!)2

𝛿

𝑠=0

 

 
 

Notice that 𝑃𝛿(0)  =  (−1)
𝛿 𝑎𝑛𝑑 𝑃𝛿(1)  =  1.  

The orthogonality condition is 
 
 

∫ 𝑃𝛿(𝑧)𝑃𝜂(𝑧)𝑑𝑧 =  {

1

2𝛿 + 1
,       𝛿 = 𝜂 

0  ,                𝛿 ≠ 𝜂

1

0

 

 
 

A function 𝑔(𝑧) square-integrable in [0, 1] may be expressed in terms of SLP as: 
 

 𝑔(𝑧) = ∑𝑐𝜂

∞

𝜂=0

𝑃𝜂(𝑧) 

 

Where the coefficients cη are presented through 
 

𝑐𝜂 = (2𝜂 + 1)∫ 𝑔(𝑧)
1

0

𝑃𝜂(𝑧)𝑑𝑧,         𝜂 = 1,2, … 

 

Practically speaking, only the first (N + 1)-terms SLP are consider.  
So we have 

𝑔(𝑧) =∑𝑐𝜂

𝑁

𝜂=0

𝑃𝜂(𝑧) = 𝐶
𝑇∅(𝑧) 

 

Where the shifted Legendre vector 𝜙(𝑧) and the shifted Legendre coefficient vector C 
are presented by 

 
𝐶𝑇 = [𝑐0 , … , 𝑐𝑁] 

 
𝜙(𝑧) = [𝑃0(𝑧) , 𝑃1(𝑧), … , 𝑃𝑁(𝑧)]

𝑇 
 

The derivative of the vector 𝜙(𝑧) can be expressed through 
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𝑑𝜙(𝑧)

𝑑𝑧
= Ɗ(1)𝜙(𝑧), 

 

Where Ɗ(1)is the  (𝑁 +  1)  ×  (𝑁 +  1) OPM of derivative presented through 
 
 

Ɗ(1) = (𝑑𝛿𝜂) = {
2(2𝜂 + 1), 𝑓𝑜𝑟 𝜂 = 𝛿 − 𝑠, {

𝑠 =  1, 3, … , 𝑁,                 𝑖𝑓 𝑁 𝑜𝑑𝑑,
𝑠 =  1, 3, … , 𝑁 − 1, 𝑖𝑓 𝑁 𝑒𝑣𝑒𝑛,

0              ,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               
 

 

For instance, for even N we have 
 

 

Ɗ(1) = 2

(

 
 
 
 

0 0 0
1 0 0
0 3 0

0 ⋯
0 ⋯
0 ⋯

       
0           0     0
0           0     0
0             0        0 

1 0 5 0 ⋯        0             0        0 
⋮ ⋮ ⋮
1 0 5
0 3 0

⋮ ⋮
0 ⋯
7 ⋯

⋮ ⋮ ⋮
2𝑁 − 3 0 0
0 2𝑁 − 1    0 )

 
 
 
 

 

 
 
3. Fractal Fractional OPM 

 

Ɗ(𝜔,𝛽) =

(

 
 
 
 
 
 
 
 
 

0                          0
⋮                          ⋮

⋯                 0
⋯                 ⋮

          

0 0   

∑ 𝜃⌈𝜔⌉,0,𝑠    
⌈𝜔⌉

𝑠=⌈𝜔⌉
∑ 𝜃⌈𝜔⌉,1,𝑠

⌈𝜔⌉

𝑠=⌈𝜔⌉

⋮ ⋮

⋯       0

⋯ ∑ 𝜃⌈𝜔⌉,𝑁,𝑠
⌈𝜔⌉

𝑠=⌈𝜔⌉

⋯ ⋮

∑ 𝜃𝛿,0,𝑠
𝛿

𝑠=⌈𝜔⌉
      ∑ 𝜃𝛿,1,𝑠     

𝛿

𝑠=⌈𝜔⌉

⋮ ⋮

∑ 𝜃𝑁,0,𝑠      
𝑁

𝑠=⌈𝜔⌉
∑ 𝜃𝑁,1,𝑠

𝑁

𝑠=⌈𝜔⌉
    

⋯   ∑ 𝜃𝛿,𝑁,𝑠
𝛿

𝑠=⌈𝜔⌉

⋯   ⋮

⋯  ∑ 𝜃𝑁,𝑁,𝑠
𝑁

𝑠=⌈𝜔⌉ )

 
 
 
 
 
 
 
 
 

 

 

 
Where 𝜃𝛿,𝜂,𝑠 of the FFC is presented through 
 
 

𝜃𝛿,𝜂,𝑠 = (2𝜂 + 1)∑
(−1)𝛿+𝜂+𝑠+𝑖(𝛿 + 𝑠)! (𝑖 + 𝜂)!

(𝛿 − 𝑠)! 𝑠! 𝛤(𝑠 − 𝜔 + 1)(𝜂 − 𝑖)! (𝑖)2(𝑠 + 𝑖 − 𝜔 + 1)

𝜂

𝑖=0
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Notice that inƊ(𝜔,𝛽), the premier ⌈𝜔⌉  rows, are all zero. 
 
 

Where 𝜃𝛿,𝜂,𝑠 of the FFCF is presented through 
 
 

 𝜃𝛿,𝜂,𝑠 =
(2𝜂 + 1)𝑀(𝜐)

(1 − 𝜐)
∑
(−1)𝛿+𝜂+𝑖(𝛿 + 𝑠)! (𝜂 + 𝑖)!

(𝛿 − 𝑠)! 𝑠! (𝜂 − 𝑖)! 𝑖!
[
(−1)1−⌈𝜔⌉

𝛾𝑠−⌈𝜔⌉+𝑖+2
+∑

(−1)⌈𝜔⌉𝑒−𝛾

(𝑖 − 𝑟)! 𝛾𝑠−⌈𝜔⌉+𝑟+2

𝑖

𝑟=0

𝜂

𝑖=0

+ ∑
(−1)𝑠+𝑟

(𝑖)! 𝛤(𝑠 − ⌈𝜔⌉ − 𝑟 + 1)(𝛾)𝑟+1(𝑠 − ⌈𝜔⌉ − 𝑟 + 𝑖 + 1)

𝑠−⌈𝜔⌉

𝑟=0

] 

 

Where 
𝛾 =

𝜐

1 − 𝜐
 

  
𝛿 = ⌈𝜔⌉ , … , 𝑁 ,     𝜂 = 0, 1, 2, … , 𝑁 –  1 

 
 

4.  OPM for fractal fractional order differential equation 

 
 By utilizing (12), can be written the higher derivative as follows [14]: 

 
𝑑𝑛𝜙(𝑧)

𝑑𝑧𝑛
= (Ɗ(1))𝑛𝜙(𝑧) 

 
Where 𝑛 ∈  𝑁 and the superscript symbol, in Ɗ(1), indicate matrix powers. Thus 
 

Ɗ(𝑛) = (Ɗ(1))𝑛  ,     𝑛 = 1,2, … 
 

5. Procedure of the OPM of fractal fractional derivative 

 
In this section, we apply OPM of fractal fractional derivative for solving multi-order 
fractal fractional differentiation equation for showing the high significance of it. The 
continuous dependence and existence of the solving to this problem are debated in 
[16]. 
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5.1 Linear multi-order fractal fractional differential equation 

 

    Consider the linear multi-order fractal fractional differentiation equation 
 
Ɗ𝜔,𝛽𝑔(𝑧) = 𝑎1Ɗ

𝛽1𝑔(𝑧) +⋯+ 𝑎𝑠Ɗ
𝛽𝑠𝑔(𝑧) + 𝑎𝑠+1 𝑔(𝑧) + 𝑎𝑠+2ℎ(𝑧), 

 
With initial conditions 
 

𝑔(𝛿)(0) =  𝑑𝛿 ,   𝛿 =  0, … , 𝑛, 
 

where 𝑎𝜂  , for 𝜂 =  1, . . . , 𝑠 +  2    are real constant coefficients and also  
𝑛 <  𝜔 ≤  𝑛 +  1, 0 <  𝛽1 < 𝛽2  < . . . <  𝛽𝑠  <  𝜔, and Ɗ𝜔,𝛽 indicates the frac-

tal fractional derivative of Caputo of order 𝜔. 
By solving problem (19) and (20) we approximate 𝑔(𝑧) and ℎ(𝑧) by the SLP as: 
 

𝑔(𝑧) ≃ ∑𝑐𝛿

𝑁

𝛿=0

𝑃𝛿(𝑧) = 𝐶
𝑇𝜙(𝑧) 

ℎ(𝑧) ≃ ∑ℎ𝛿

𝑁

𝛿=0

𝑃𝛿(𝑧) = 𝐻
𝑇𝜙(𝑧) 

 
Where vector 𝐻 =  [ℎ0, . . . , ℎ𝑁]𝑇  is known but 𝐶 =  [𝑐0, . . . , 𝑐𝑁]T  is an unbeknown 
vector. 
By utilizing Eq (21) we have 

 

Ɗ𝜔,𝛽𝑔(𝑧) ≃  𝐶𝑇Ɗ𝜔,𝛽𝜙(𝑧) ≃  𝐶𝑇Ɗ(𝜔,𝛽)𝜙(𝑧), 
 

Ɗ𝛽𝜂𝑔(𝑧) ≃  𝐶𝑇Ɗ𝛽𝜂𝜙(𝑧) ≃  𝐶𝑇Ɗ(𝛽𝜂)𝜙(𝑧),     𝜂 = 1,2, … , 𝑠. 
 
 

By utilizing Eqs. (21)- (24) The residue  𝑅𝑁(𝑧) for Eq. (19) can be written as:  
 
 

 𝑅𝑁(𝑧) ≃ (𝐶
𝑇Ɗ𝜔,𝛽 − 𝐶𝑇∑𝑎𝜂Ɗ

(𝛽𝜂)

𝑠

𝜂=1

− 𝑎𝑠+1𝐶
𝑇 − 𝑎𝑠+2𝐻

𝑇)𝜙(𝑧) 
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As in a model tau method [17], we generate N − n linear equations by applying 
 

〈 𝑅𝑁(𝑧)𝑃𝜂(𝑧)〉 = ∫  𝑅𝑁(𝑧)𝑃𝜂(𝑧)𝑑𝑧 = 0  , 𝜂 = 0,1, … , 𝑁 − 𝑛 − 1 .
1

0

 

 
Also, through replacing Eqs. (18) and (21) in Eq. (20) we get 
 

𝑔(0) =  𝐶𝑇𝜙(0) =  𝑑0, 
 

𝑔(1)(0) =  𝐶𝑇Ɗ(1)𝜙(0) =  𝑑1, 
 

⋮ 
 

𝑔(𝑛)(0) =  𝐶𝑇Ɗ(𝑛)𝜙(0) =  𝑑𝑛 , 
 

Eqs. (26) and (27) generate (N −n) and (n+1) set of linear equations, respectively.  
These linear equations can be solved for unbeknown coefficients of the vector C. Sub-
sequently, 𝑔(𝑧) which is presented in Eq. (21) can be calculated. 

 
 
5.2 Nonlinear multi-order fractal fractional differential equation 
 

        Consider the nonlinear multi-order fractal fractional differential equation 
 

Ɗ𝜔,𝛽𝑔(𝑧) = 𝑌 (𝑧 , 𝑔(𝑧) , Ɗ𝛽1𝑔(𝑧) , … , Ɗ𝛽𝑠𝑔(𝑧)) 
With initial conditions 
 

𝑔(𝛿)(0) =  𝑑𝛿 , 𝛿 =  0, … , 𝑛, 
 
where  𝑛 <  𝜔 ≤  𝑛 +  1 , 0 <  𝛽1  <  𝛽2  < . . . <  𝛽𝑠  <  𝜔 , and Ɗ𝜔,𝛽  indicates 

the fractal fractional derivative of Caputo of order 𝜔 . It ought to be noticed that Y 
can be nonlinear in generic. 

To utilizing SLP for this problem, we firstly approximate 
𝑔(𝑧), Ɗ𝜔,𝛽𝑔(𝑧) 𝑎𝑛𝑑 Ɗ𝛽𝜂𝑔(𝑧), for 𝜂 =  0, . . . , 𝑠 as Eqs. (21), (23) and (24) respec-
tively. Through replacing these equations in Eq. (28) we obtain  
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𝐶𝑇Ɗ(𝜔,𝛽)𝜙(𝑧) ≃ 𝑌 (𝑧 , 𝐶𝑇𝜙(𝑧) , 𝐶𝑇Ɗ(𝛽1)𝜙(𝑧) , … , 𝐶𝑇Ɗ(𝛽𝑠)𝜙(𝑧)) 
 
Also, through replacing Eqs. (18) and (21) in Eq. (29) we get 
 

𝑔(0)  =  𝐶𝑇𝜙(0)  =  𝑑0, 

 
𝑔(𝜆)(0)  =  𝐶𝑇Ɗ(𝛿)𝜙(0)  =  𝑑𝛿 , 𝛿 =  1, 2, . . . , 𝑛. 

 
We firstly calculate Eq. (30) at (N − n) points, to find the solution 𝑔(𝑧). we utilize 

the first (N −n) roots of shifted Legendre of 𝑃𝑁+1(𝑧) for suitable collocation points. 
 Together these equations with Eq. (31) generate (N + 1) nonlinear equations which 

disbanded by utilizing the iterative method of Newton. Subsequently, 𝑔(𝑧) presented 
in Eq. (21) can be calculated. 

 
6. Numerical Examples 

In part, of linear and nonlinear fractal fractional differential equations with the left-
sided FFC and FFCF operators, some numerical examples are solved by utilizing the 
enforcement of the recently derived OPM for left-sided FFCF and FFC operators. 

 
6.1 Examples of linear Fractal Fractional Differential Equations 
 

Example 1. Consider the following linear fractal fractional differential equation  
Ɗ𝜔,𝛽 

𝐹𝐹𝐶 𝑔(𝑧) =  𝑧, 𝑔(0)  =  0. 
The exact solution 0.5206 𝑧1.94  . By enforcing the technicality depicted in section 
(5.1) with 𝑁 =  9, 

 
𝐶𝑇Ɗ𝜔,𝛽𝛷(𝑧) −  𝐺𝑇  𝛷(𝑧)  =  0 

 
 
 
 
 
 
 
 
Table1: The Absolute errors for different value of ⍵ = 0.95, for example (1). 
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     𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝒐𝒇 𝛽 
     z             0.98             0.99 
   0.1    6.33272497 e−4    5.35556634 e−4 
   0.2    1.20901104 e−3    9.75384431 e−4 
   0.3    1.08106160 e−3    7.59135314 e−4 
   0.4    5.096925597 e−4    1.86648489e−4 
   0.5    1.36126394 e−4    6.45023111 e−5 
   0.6    3.76981795 e−4    3.14033053 e−4 
   0.7    1.3287005 e−3    8.48336444 e−4 
   0.8    2.03742244 e−3    9.62804444 e−4 
   0.9    2.229664746 e−3    4.39371269 e−4 

 
Table1: The Absolute errors for different value of ⍵ = 0.95, for example (1). 

𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝒐𝒇 𝛽 
     z             0.98             0.99 
   0.1    4.57683093 e−4    5.53517948 e−4 
   0.2    1.44165637 e−3    1.67287727 e−3 
   0.3    2.77814482 e−3    3.09572247 e−3 
   0.4    4.36502560 e−3    4.68337397 e−3 
   0.5    6.14471036 e−3    6.35067164 e−3 
   0.6    8.07349162 e−3    8.03146772 e−3 
   0.7    1.01116439 e−2    9.66841268 e−3 
   0.8    1.22303121 e−2    1.12181727 e−2 
   0.9    1.44040145 e−2    1.26456882 e−2 
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Figure 1: The exact solution and approximate solution of ⍵ = 0.98, for example (1). 
 

Example 2. Consider the following linear fractal fractional differential equation 
 

Ɗ𝜔,𝛽 
𝐹𝐹𝐶𝐹 𝑔(𝑧) =  𝑧, 𝑔(0)  =  0. 

 
The exact solution 0.5206 𝑧1.94 . By enforcing the technicality depicted in section 

(5.1) with 𝑁 =  9, 
 

𝐶𝑇Ɗ𝜔,𝛽𝛷(𝑧) −  𝐺𝑇  𝛷(𝑧)  =  0 
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Table 3: The Absolute errors for different value of ⍵ = 0.95, for example (2). 
𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝒐𝒇 𝛽 

     𝑧             0.98          0.99 
   0.1    4.07026907 e−3    3.91809610 e−3 
   0.2    6.59733458 e−3    6.32871425 e−3 
   0.3    8.02828359 e−3    7.70952792 e−3 
   0.4    8.56190922 e−3    8.28724902 e−3 
   0.5    8.33333735 e−3    8.21791034 e−3 
   0.6    7.43803558 e−3    7.61683703 e−3 
   0.7    5.94941171 e−3    6.57482872 e−3 
   0.8    3.93506356 e−3    5.17010931 e−3 
   0.9    1.45445011 e−3    3.46855073 e−3 

 
 
 
 
 
 
 
Table4: The Absolute errors for different value of ⍵ = 0.98, for example (2). 

𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝒐𝒇 𝛽 
     Z            0.98             0.99 
   0.1 1.36709723 e−3 1.25309054 e−3 
   0.2 1.54662335 e−3 1.30828539 e−3 
   0.3 9.65775982 e−4 6.56285183 e−4 
   0.4 2.19266765 e−4 5.135029698 e−4 
   0.5 1.84555682 e−3 2.01279799 e−3 
   0.6 3.82538987 e−3 3.73245085 e−3 
   0.7 6.11202200 e−3 5.60798464 e−3 
   0.8 8.62478202 e−3 7.54516309 e−3 
   0.9 1.129634595 e−2 9.46808480 e−3 
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Figure 2: The exact solution and approximate solution of ⍵ = 0.98, for example (2). 
 

6.2 Examples of Nonlinear Fractal Fractional Differential Equations 
 
    Example 3. Consider the following nonlinear fractal fractional differential equa-

tion 
 

Ɗ3𝑔(𝑧) + Ɗ𝜔,𝛽 
𝐹𝐹𝐶 𝑔(𝑧) + 𝑔2(𝑧) =  𝑧4 , 𝑔(0) = 𝑔́(0) = 0 , 𝑔́́(0) = 2 

 
𝑦(𝑧) = 𝑧2  is the exact solution of this problem and N = 3.  
We solved the above problem 
 

𝐶𝑇Ɗ3𝛷(𝑧) + 𝐶𝑇 Ɗ𝜔,𝛽 
 𝛷(𝑧) + [𝐶𝑇𝛷(𝑧)]2 − 𝑧4 = 0  
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Table5: The Absolute errors for different value of ⍵ = 2.5, for example (3). 
𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝒐𝒇 𝛽 

     
z 

              2.95               2.98              2.99 

   
0.1 

   4.39218151 e−10    5.22071608 e−11   6.94919216 e−11 

   
0.2 

  0.2351374537 e−9   4.17657252 e−10   5.55935438 e−10 

   
0.3 

  0.3118588907 e−8    1.40959319 e−9   1.87628213 e−9 

   
0.4 

  0.4281099631 e−8    3.34125789 e−9   4.44748358 e−9 

   
0.5 

  0.5549022716 e−8    6.52589428 e−9   8.68649139 e−9 

   
0.6 

  0.6948711254 e−8    1.12767453 e−8   1.50102571 e−8 

   
0.7 

  0.7150651833 e−7    1.79070538 e−8   2.38357324 e−8 

   
0.8 

  0.8224879705 e−7    2.67300628 e−8   3.55798688 e−8 

   
0.9 

  0.9320190048 e−7   3.80590152 e−8   5.06596179 e−8 
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Figure 3: The exact solution and approximate solution of ⍵ = 2.5, for example (3). 
 
Example 4.  Consider the following nonlinear fractal fractional differential equa-

tion 
Ɗ3𝑔(𝑧) + Ɗ𝜔,𝛽 

𝐹𝐹𝐶𝐹 𝑔(𝑧) + 𝑔2(𝑧) =  𝑧4 , 𝑔(0) = 𝑔́(0) = 0 , 𝑔́́(0) = 2 

 
𝑦(𝑧) = 𝑧2  is the exact solution of this problem and N = 3.  
We solved the above problem 
 

𝐶𝑇Ɗ3𝛷(𝑧) + 𝐶𝑇 Ɗ𝜔,𝛽 
 𝛷(𝑧) + [𝐶𝑇𝛷(𝑧)]2 − 𝑧4 = 0  
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Table6: The Absolute errors for different value of ⍵= 2.5, for example (4). 
𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝒐𝒇 𝛽 

     
z 

              2.95            2.98              2.99 

   
0.1 

  4.27066859 e−10    5.07711699 e−11   6.75841409 e−11 

   
0.2 

  0.2341653491 e−9    4.06169291 e−10   5.40673194 e−10 

   
0.3 

  0.3115308053 e−8    1.37082135 e−9   1.82477205 e−9 

   
0.4 

  0.4273322793 e−8    3.24935432 e−9   4.32538563 e−9 

   
0.5 

  0.55338335797 e−8    6.34639516 e−9   8.44801881 e−9 

   
0.6 

  0.6922464426 e−8    1.09665708 e−8   1.45981765 e−8 

   
0.7 

  0.7146483934 e−7    1.74145083 e−8   2.31813636 e−8 

   
0.8 

  0.8218658234 e−7    2.59948346 e−8   3.46030851 e−8 

   
0.9 

  0.9311331743 e−7   3.70121766 e−8   4.92688458 e−8 
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Figure 4: The exact solution and approximate solution of ω = 2.5, for example (4). 
 
 
Conclusion 
 To solve linear and non-linear of the fractal fractional Caputo and Caputo-Far-

bizo by utilizing operational matrix. Some numerical examples appear that the 
method is soft to employ and giving aloft fineness. The numerical results of fractal 
Caputo-Fabizo is more accuracy and convergence when compare with fractal Caputo. 
The new operational matrix of the operator of fractal fractional Caputo-Fabrizio in-
herits the gorgeous advantage from the well-known operational matrix of the frac-
tional derivative of fractal fractional Caputo.  

The method reduces the problem in the fractal fractional of Caputo and fractal 
fractional Caputo-Fabrizio for solving a system of algebraic equations, hence greatly 
simplifying the problem. 
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