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Abstract— The steady increase in reliance on robotic systems in industrial 

applications arises the need to ensure their reliability despite the presence of 

external disturbances in the environment they work in and their parameters 

variations due to several factors like: change of temperature, wear and tear 

effect, and payload variation. Traditional controllers usually fail to maintain 

the system's stability and performance in the presence of uncertainty, while 

robust controllers aim to guarantee stability and desired performance across a 

range of possible uncertainties in the system through incorporating these 

uncertainties into their design process. This paper investigates the robustness of 

three controllers namely, H2 controller, H-infinity controller, and mixed H2/H-

infinity controller, applied to the triple inverted pendulum system which 

translates to robustly control legged robots and robotic arms. The results show 

that among the three controllers, only the mixed H2/H-infinity control system is 

robustly stable and maintains its performance with stability margin 1.1864 and 

performance margin 1.1662. 

Index Terms— H2, H-infinity, Mixed H2/H-infinity, Robust Control, triple inverted pendulum. 

I. INTRODUCTION 

The triple inverted pendulum system is a challenging benchmark in control 

engineering due to its complex inherently-unstable nonlinear dynamics.  Robust control 

offers a powerful framework to design controllers for this system that can guarantee desired 

performance and stability despite the presence of uncertainties. 

There are several sources of uncertainty in this system including external disturbance, 

noise, unmodelled dynamics of actuators, and parameters variations. The external 

disturbances can be wind gusts, or unexpected applied forces while the noise in 

potentiometer readings produces fluctuations in measurements. The unmodelled dynamics 

of actuators are the physical behavioral characteristics of actuator that might not be 

perfectly captured in the mathematical model. Parameters variations come either from 

imperfect knowledge of the system's physical parameters (inertia or friction) or from 

environmental factors or are caused by the  manufactoring tolerances of components.  

Ignoring the presence of uncertainty in the system may lead to performance degredation 

when the system deviates from its nominal case or even may cause instability leading to 

oscillations or unexpected behavior. 

Several controllers have been designed in the last few years for the triple inverted 

pendulum system. Masrom et al. [1] used Interval Type-2 Fuzzy Logic Control (IT2FLC) 

as control algorithm for the system and utilized the error and its rate of change as inputs to 

the controller and applied the output to the motors of the system. Yet, only disturbance 

rejection on the third link has been tested.  Then in [2], they applied particle swarm 

optimization to obtain the optimal gains of the input and output variables of the IT2FLC 

without testing system performance under uncertainty. Later in [3], they utilized another 
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optimization technique, namely, spiral dynamic algorithm to obtain the controller gains. 

The study examined only the disturbance effect on the performance. 

In [4] Gupta et al. applied state feedback to control the fully actuated triple inverted 

pendulum system, without considering the unmodelled actuators dynamics or parameters 

variations.   Pang et al.  [5] proposed a data-driven optimistic least-squares-based policy 

iteration algorithm, to solve the optimal stationary control problem with realtive accuracy 

for the triple inverted pendulum system perturbed by noise, hence, the functionality of the 

proposed method was not been validated for perturbations caused by disturbance, 

unmodelled actuators dynamics, or parameter variations. 

The triple inverted pendulum was used by Lippi et al. [6] to represent the bio-inspired 

humanoid for posture control, a distributed control strategy was presented to let balance one 

module only at a time, keeping other joints fixed. The control system receives real-time 

estimates of external disturbances. This allows it to adjust the joint torque automatically, 

hence, other sources of uncertainty in the system were not considered. 

Sayer et al. [7] have developed and implemented both Discrete Linear Quadratic 

Regulator (DLQR) and Linear Quadratic Gaussian (LQG) controllers to balance the triple 

inverted pendulum, Kalman filter was used to reduce the noise. Both controllers could 

stabilize the system in the vertical position in an appropriate period with better performance 

achieved by DLQR control system. Though, the work has not study the effect of parameters 

uncertainty. 

H2 and H-infinity controllers have been used effectively in differenet control systems 

[8]-[13] to over come the effects of uncertainty. For instance, in [8] H2 sliding mode 

controller has been used for mobile inverted pendulum stablization despite parameters 

variations and applied disturbance. The simulation results have shown that the addition of 

the H2 controller to the sliding mode control yields lower control effort and better response.  

Model reference control has been integrated with H-infinity technique in [9] to control 

the magnetic levitation system, the controller was found to be very effective in handling 

system parameters variations within range of ± 10%. The double pendulum structure has 

been used by [10] to model human swing leg system, the system has been stabilized by an 

H-infinity based full state feedback controller within 0.25 sec  and 0.21 sec for hip and knee 

joints, respectively.  

A hybrid H-infinity and IT2FLC controller has been proposed by [11] to assure both 

robust stability and robust performance of human swing lag system. Compared to the 

classical H-infinity controller, the proposed method enhanced both tracking performance 

and disturbance rejection. In addition, the system's robustness to parameters changes has 

been increased to 98%. 

Mhmood et al. have applied optimal H-infinity model reference control for tail-sitter 

vertical takeoff and landing unmanned aerial vehicles [12] and nonlinear systems [13], The 

results indicate that the proposed controller is very powerful in compensating the systems' 

nonlinearity, parameters variations, rejecting external disturbances, and in achieving 

asymptotic tracking performance. 

Mixed H2/H-infinity approach has been utilized significantly in many applications. In 

[14], hard disk drive has been controlled and the disturbance has been rejected successfully 

through minimizing the H2 norm of the piezoelectric actuator stroke's variance and 

constraining the H-infinity norm of the sensitivity function. [15] has developed mixed 

H2/H-infinity state feedback controller for active suspension system with input delay, the 

controller could handle parameters uncertainty and increase the ride comfort. Stoica [16] 

has employed mixed H2/H-infinity in networked systems with fading communication 
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channels for disturbance attenuation, whereas, Chen et al. have employed it in elevator 

active guide shoe and succeeded in suppressing the vibration of elevator car [17]. 

Bai et al. [18] have used sum of squares method to form the mixed H2/H-infinity 

control problem by linear matrix inequality (LMI), the approach has enhanced both the 

disturbance attenuation and the transient response of a mass-spring-damper system 

compared with the traditional H-infinity control. LMI has been also used in designing 

mixed H2/H-infinity controller for the hybrid multi-infeed high-voltage direct current 

system by Li et al. [19] to place the poles in a desired region to avoid the inaccuracy caused 

by uncertainty. 

The literature review shows a gap in complete robustness analysis of triple inverted 

pendulum and directs towards getting benefit from the effectiveness of H2, H-infinity and 

mixed H2/H-infinity methods to control the system. 

On this basis, this paper develops and evaluates the robustness of H2 controller, H-

infinity controller, and mixed H2/H-infinity controller for triple inverted pendulum system 

which is a challenging task because of system's high nonlinearity, inherent instability, multi 

input/multi output nature, under actuation, and uncertainty. 

The rest of the paper is organized as follows: Section II investigates the triple inverted 

pendulum model. Then the control problem is formulated in section III. The results are 

given and discussed in section IV. Lastly, conclusions are made in section V. 

II. TRIPLE INVERTED PENDULUM SYSTEM 

The triple inverted pendulum system is composed of of three links hinged  by ball 

bearings as shown in Fig. 1. The angles of the three links 𝜃1, 𝜃2, and 𝜃3 are to be controlled 

by two DC motors attached to the first and third links. The torques produced by motors are 

provided through timing belts to the second and third hinges. A horizontal bar is added on 

each link to help in system's balance. In order to measure the three angles, three 

potentiometers are mounted on the three hinges. The system's nomenclature is defined in 

Table I [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1. TRIPLE INVERTED PENDULUM [20]. 
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The mathematical equations of the model is obtaind by applying Lagrange equations 

 

𝑀(𝜃) [

𝜃1̈

𝜃2̈

𝜃3̈

] + 𝑁𝑐  [

𝜃1̇

𝜃2̇

𝜃3̇

] +  [

𝑞1

𝑞2

𝑞3

] + 𝐺 [
𝑡𝑚1

𝑡𝑚2
] = 𝑇 [

𝑑1

𝑑2

𝑑3

]                                       (1) 

where: 

 

𝑀(𝜃) =  [

𝐽1 + 𝐼𝑝1 𝑙1 𝑀2 cos(𝜃1 − 𝜃2) − 𝐼𝑝1 𝑙1 𝑀3 cos(𝜃1 − 𝜃3)

𝑙1 𝑀2 cos(𝜃1 − 𝜃2) − 𝐼𝑝1 𝐽2 +  𝐼𝑝1 + 𝐼𝑝2 𝑙2 𝑀3 cos(𝜃2 − 𝜃3) − 𝐼𝑝2

𝑙1 𝑀3 cos(𝜃1 − 𝜃3) 𝑙2 𝑀3 cos(𝜃2 − 𝜃3) − 𝐼𝑝2 𝐽3 +  𝐼𝑝2

], 

𝑁𝑐 =  [

𝐶1 + 𝐶2 + 𝐶𝑝1 −𝐶2 − 𝐶𝑝1 0

−𝐶2 − 𝐶𝑝1  𝐶𝑝1 + 𝐶𝑝2 +  𝐶2 +  𝐶3 −𝐶3 − 𝐶𝑝2

0 −𝐶3 − 𝐶𝑝2 𝐶3 +  𝐶𝑝2

], 

𝑞1 =  𝑙1𝑀2 sin(𝜃1 −  𝜃2) 𝜃̇2
2 + 𝑙1𝑀3 sin(𝜃1 −  𝜃3) 𝜃̇3

2 −  𝑀1𝑔 sin (𝜃1), 

𝑞2 =  𝑙1𝑀2 sin(𝜃1 −  𝜃2) 𝜃̇1
2 + 𝑙2𝑀3 sin(𝜃2 −  𝜃3) 𝜃̇3

2 −  𝑀2𝑔 sin (𝜃2), 

𝑞3 =  𝑙1𝑀3 sin(𝜃1 −  𝜃3) (𝜃̇1
2 − 2 𝜃̇1𝜃̇3) + 𝑙2𝑀3 sin(𝜃2 −  𝜃3) (𝜃̇2

2 − 2 𝜃̇2𝜃̇3)  −  𝑀3𝑔 sin (𝜃3), 

 

TABLE I. THE TRIPLE INVERTED PENDULUM MODEL'S NOMENCLATURE [20] 

Symbol Parameter 

li ith link length, m 

hi the distance from the bottom to the center of gravity of the ith link, m 

mi ith link mass , kg 

θi ith link angle from vertical line, rad 

αi ith potentiometer gain, V. rad -1 

Imj jth motor moment of inertia , kg . m2 

𝐶𝑝𝑖
′ ith hinge viscous friction coefficient of the belt–pulley system, N . m . s 

𝐼𝑝𝑖
′ ith hinge moment of inertia of the belt–pulley system, kg . m2 

Ki ratio of teeth of belt–pulley system of the ith hinge 

Ii ith link moment of inertia around the center of gravity, kg . m2 

Ci ith hinge viscous friction coefficient, N.  M . s 

Cmj jth motor viscous friction coefficient, N . m . s 

uj jth motor input voltage, V 

tmj jth motor control torque, N . m 

τi ith lonk disturbance torque, N . m 

g acceleration of gravity, m . s-2 

 

𝐺 =  [
𝐾1 0

− 𝐾1 𝐾2

0 − 𝐾2

], 𝑇 =  [
1 −1 0
0 1 −1
0 0 1

], 
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𝐶𝑝𝑖 =  𝐶𝑝𝑖

′ +  𝐾𝑖
2 𝐶𝑚𝑖 ,  𝐼𝑝𝑖 =  𝐼𝑝𝑖

′ +  𝐾𝑖
2 𝐼𝑚𝑖, 𝑀1 =  𝑚1 ℎ1 + 𝑚2 𝑙1 + 𝑚3 𝑙1 ,  

𝑀2 =  𝑚2 ℎ2 + 𝑚3 𝑙2 , 𝑀3 =  𝑚3 ℎ3 , 𝐽1 =  𝐼1 + 𝑚1 ℎ1
2 + 𝑚2 𝑙1

2 + 𝑚3 𝑙1
2 ,  𝐽2 =  𝐼2 + 𝑚2 ℎ2

2 + 𝑚3 𝑙2
2 , 

and  𝐽3 =  𝐼3 + 𝑚3 ℎ3
2 . 

For controller design, linearized model is required. The linearized system equations 

are: 

𝑀𝑙 [

𝜃1̈

𝜃2̈

𝜃3̈

] + 𝑁𝑐  [

𝜃1̇

𝜃2̇

𝜃3̇

] +  𝑃𝑙 [

𝜃1

𝜃2

𝜃3

] + 𝐺 [
𝑡𝑚1

𝑡𝑚2
] = 𝑇 [

𝑑1

𝑑2

𝑑3

]                                     (2) 

where: 

𝑀𝑙 =  [

𝐽1 + 𝐼𝑝1 𝑙1 𝑀2 − 𝐼𝑝1 𝑙1 𝑀3

𝑙1 𝑀2 − 𝐼𝑝1 𝐽2 +  𝐼𝑝1 + 𝐼𝑝2 𝑙2 𝑀3 − 𝐼𝑝2

𝑙1 𝑀3 𝑙2 𝑀3 − 𝐼𝑝2 𝐽3 +  𝐼𝑝2

], and 𝑃𝑙 =  [

− 𝑀1𝑔 0 0
0 − 𝑀2𝑔 0
0 0 − 𝑀3𝑔

] 

.  

The measured output vector 𝑦𝑝is 

 𝑦𝑝 = 𝐶𝑝  [

𝜃1

𝜃2

𝜃3

]                                                                             (3)  

where 𝐶𝑝 =  [

𝛼1 0 0
− 𝛼2  𝛼2 0

0 − 𝛼3 𝛼3

]  

Lastly, the actuators are modeled as: 

𝐺𝑚𝑗(𝑠) =  
𝐾𝑚𝑗

𝑇𝑚𝑗 𝑠 +1
                                                                    (4) 

where 𝐾𝑚𝑗 and 𝑇𝑚𝑗 are the gain and time constant of the jth actuator. 

The uncertainty sources of the triple inverted pendulum system are identified as 

external disturbance, measuement noise, variations of mements of inertia (±10%), friction 

coefficients (±15%), actuators' gain coefficients (±10%), and actuators' time constants 

(±20%). 

III. CONTROL PROBLEM FORMULATION 

To develop robust control, the control system in the generalized form shown in Fig. 2 

must be used to represent the system and the controller, while accounting for uncertainties. 

In this form, the generalized plant is represented by P, K represents the controller, the 

signals u, y, w, and z represents the control input, the measured output, external 

disturbances and noise, and the error signal to be minimized; respectively. 

 

FIG. 2. GENERALIZED SYSTEM FORM. 
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The robust control aims to design the controller (K) such that the system becomes 

robust to uncertainties and maintains good performance even when the actual behavior of 

the plant deviates from the nominal model due to uncertainties. Then the control input u is: 

𝑢(𝑠) = 𝐾 𝑦(𝑠)                                                             (5) 

The controller K is to be obtained by  H2 control, H-infinity control, and mixed H2/H-

infinity control as follows: 

A. H2 Control 

The transfer matrix P is partitioned as: 

𝑃(𝑠) = [
𝐴 𝐵1 𝐵2

𝐶1 0 𝐷12

𝐶2 𝐷21 0
] 

so that P22 is strictly proper and to guarantee that the H2 problem is properly posed. 

In order to ensure that G is stabilizable by output feedback, and to avoid nonsingularity 

in the H2 optimal control problem, the followings are assumed [21]: 

a) The pair (A, B2) is stabilizable. 

b) The pair (C2, A) is detectable. 

c) 𝑅1 = 𝐷12
∗ 𝐷12 > 0. 

d) 𝑅2 = 𝐷21 𝐷21
∗ > 0. 

e) The matrix [
𝐴 − 𝑗𝜔𝐼 𝐵1

𝐶2 𝐷21
] has full row rank at all frequencies. 

f) The matrix [
𝐴 − 𝑗𝜔𝐼 𝐵2

𝐶1 𝐷12
] has full row column at all frequencies. 

The stated assumptions also guarantees that the following two Hamiltonian matrices 

belong to the domain of Riccati:  

𝐻2 = [
𝐴 − 𝐵2𝑅1

−1𝐷12
∗ 𝐶1 −𝐵2𝑅1

−1𝐵2
∗

−𝐶1
∗(𝐼 − 𝐷12𝑅1

−1𝐷12
∗ )𝐶1 −(𝐴 − 𝐵2𝑅1

−1𝐷12
∗ 𝐶1)∗]                                  (6) 

𝐽2 = [
(𝐴 − 𝐵1𝐷21

∗ 𝑅2
−1𝐶2)∗ −𝐶2

∗𝑅2
−1𝐶2

−𝐵1(𝐼 − 𝐷21
∗ 𝑅2

−1𝐷21)𝐵1
∗ −(𝐴 − 𝐵1𝐷21

∗ 𝑅2
−1𝐶2)

]                                  (7) 

The solutions of the Riccati of  𝐻2 and  𝐽2  are X2 and Y2; respectively. 

The H2 control problem is to find a proper, real rational controller K2 that stabilizes P 

internally and in the same time, minimizes the H2 norm of the closed loop system. To solve 

this problem, let: 

𝑃𝑐(𝑠) = [
𝐴𝐹2 𝐼
𝐶1𝐹2 0

]                                                          (8) 

 

𝑃𝑓(𝑠) = [
𝐴𝐿2 𝐵1𝐿2

𝐼 0
]                                                         (9) 

where:  

𝐴𝐹2 = 𝐴 + 𝐵2𝐹2, 𝐶1𝐹2 = 𝐶1 + 𝐷12𝐹2, 𝐴𝐿2 = 𝐴 + 𝐿2𝐶2, 𝐵1𝐿2 = 𝐵1 + 𝐿2𝐷21,  

𝐹2 = −𝑅1
−1(𝐵2

∗𝑋2 + 𝐷12
∗ 𝐶1), and 𝐿2 = −(𝑌2𝐶2

∗ + 𝐵1𝐷21
∗ )𝑅2

−1 

then the optimal controller is: 

𝐾2(𝑠) = [
𝐴̂2 −𝐿2

𝐹2 0
]                                                         (10) 

where 𝐴̂2 = 𝐴 + 𝐵2𝐹2 + 𝐿2𝐶2 

The minimum H2 norm of the transfer matrix (𝑇𝑧𝑤) is: 

min‖𝑇𝑧𝑤‖2
2 = ‖𝑃𝑐𝐵1‖2

2 + ‖𝑅1
1/2

𝐹2𝑃𝑓‖
2

2
                                         (11) 
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B. H-infinity Control 

The generalized form given in Fig. 2 is also used in the H-infinity controller design. 

The H-infinity control problem is to find all admissible controllers K∞(s) such that ‖𝑇𝑧𝑤‖∞< 

γ, where γ > 0 is the performance level. The realization of the transfer matrix P is the 

same as used in  H2 control. The followings are assumeptions are made [21]: 

a) The pair (A, B1) is controllable. 

b) The pair (C1, A) is observable. 

c) The pair (A, B2) is stabilizable. 

d) The pair (C2, A) is detectable. 

e) 𝐷12
∗ [𝐶1 𝐷12] = [0 𝐼]. 

f) [
𝐵1

𝐷21
] 𝐷21

∗ = [
0
𝐼

]. 

The two Hamiltonian matrices belong to the domain of Riccati are:  

𝐻∞ = [
𝐴 𝛾−2𝐵1𝐵1

∗ − 𝐵2𝐵2
∗

−𝐶1
∗𝐶1 −𝐴∗ ]                                          (12) 

𝐽∞ = [
𝐴∗ 𝛾−2𝐶1

∗𝐶1 − 𝐶2
∗𝐶2

−𝐵1𝐵1
∗ −𝐴

]                                          (13) 

The solutions of the Riccati of  𝐻∞ and  𝐽∞  are X∞ and Y∞; respectively. The H-infinity controller 

K∞ that stabilizes P internally and minimizes ‖𝑇𝑧𝑤‖∞ is then:  

𝐾∞(𝑠) = [
𝐴̂∞ −𝑍∞𝐿∞

𝐹∞ 0
]                                                         (14) 

where 𝐴̂∞ = 𝐴 + 𝛾−2𝐵1𝐵1
∗𝑋∞ + 𝐵2𝐹∞ + 𝑍∞𝐿∞𝐶2, 𝐹∞ = −𝐵2

∗𝑋∞,  𝐿∞ = −𝑌∞𝐶2
∗, and 

𝑍∞ = (𝐼 − 𝛾−2𝑌∞𝑋∞)−1. 

C. Mixed H2/H-infinity Control 

The generalized form given in Fig. 2 is slightly modified in the mixed H2/H-infinity 

controller design to include two error outputs z2 and z∞ as shown in Fig. 3. 

 

FIG. 3. GENERALIZED SYSTEM FORM FOR MIXED H-2/H-INFINITY CONTROL. 

 

In this configuration, the H-infinity channel is used to improve system's robustness, 

while the H2 channel minimizes the output energy in response to uncertainty. The 

realization of the transfer matrix P is: 

𝑃(𝑠) = [

𝐴 𝐵1 𝐵2

𝐶1 𝐷11 𝐷12

𝐶2

𝐶𝑦

𝐷21

𝐷𝑦1

𝐷22

𝐷𝑦2

] 

The mixed H2/H-infinity control problem is to find a controller Kmixed(s) such that 

‖𝑇𝑧∞𝑤‖
∞

< 𝛾∞, ‖𝑇𝑧2𝑤‖
2
< 𝛾2, and minimizes the trade-off criterion: 

𝑊1‖𝑇𝑧∞𝑤‖
∞

2
+ 𝑊2‖𝑇𝑧2𝑤‖

2

2
 

The mixed H2/H-infinity controller Kmixed is [22]: 
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𝐾𝑚𝑖𝑥𝑒𝑑(𝑠) = [
𝐴𝑚𝑙 + 𝐵2𝐹∞ −𝐿

𝐹∞ 0
]                                                         (15) 

where 𝐴𝑚𝑙 = 𝐴 + 𝛾−2𝐵1𝐵1
∗𝑋∞ + 𝐿(𝐶2 + 𝛾−2𝐷21𝐵1

∗𝑋∞), and 𝐹∞ = −(𝐷12
∗ 𝐶1 + 𝐵2

∗𝑋∞). 

 

IV. RESULTS AND DISCUSSION 

In this section, the three developed controllers are implemented on the triple inverted 

pendulum system. The control stystems are simulated using Matlab R2023b. The robustness 

measurements and results are discussed. 

The weights 𝑊1 and 𝑊2 of  H-infinity norm and H2 norm in mixed H2/H-infinity 

control system  are chosen to be 2 and 1; respectively. 

Fig. 4 shows the upper bounds of the structured singular values over the frquency 

range.For robustness, the structured singular value has to be less than one. As the figure 

shows, the  H2 and H-infinity control systems do not sayisfy the condition for robustness. In 

fact, the bounds for H2 and H-infinity control systems are identical as seen. Only the mixed 

H2/H-infinity control system satisfies the condition of robustness. Other robustness 

measurements are given in Table II besides the structured singular value. 

For H2 and H-infinity control systems, the maximum structured singular value (μ) for 

robust stability is greater than 1 which means that the systems are not robustly stable for the 

modeled uncertainty. The control systems can handle up to 38.3% of the modeled 

uncertainty as indicated by the stability margin. The systems also do not achieve 

performance robustness to modeled uncertainty since μ for robust performance is greater 

than 1 too. A compromise between model uncertainty and system gain is balanced at a level 

of 38.2% of the modeled uncertainty as given by the performance margin. 

 
 

(A) 
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(B) 

FIG. 4. UPPER BOUNDS OF STRUCTURED SINGULAR VALUES (A) FOR ROBUST STABILITY (B) FOR ROBUST PERFORMANCE. 

TABLE II. CONTROL SYSTEMS' ROBUSTNESS MEASUREMENTS  

Measurement H2 H-infinity Mixed H2/ H-infinity 

Maximum μ for robust stability 2.608 2.608 0.842 

Maximum  μ for robust performance 2.615 2.615 0.857 

Performance level γ2 =0.0701 γ∞ =0.4343 γ∞ =0.4343, γ2 =0.0114 

Stability margin 0.383 0.383 1.1864 

Performance margin 0.382 0.382 1.1662 

 

For mixed H2/H-infinity control system, the maximum structured singular value (μ) for 

robust stability is 0.842 which means that the system is robustly stable for the modeled 

uncertainty. The control systems can handle up to 118.6% of the modeled uncertainty. The 

system also maintains performance robustness to modeled uncertainty with peformance 

margin 1.1662. The H-infinity norm of the transfer matrix from w to z∞ , ‖𝑇𝑧∞𝑤‖
∞

, is 

guaranteed to be less than 0.4343 which means that the effect of the modeled uncertainty on 

the desired error z∞ is attenuated. In the same time, the H2 norm of the transfer matrix from 

w to z2 , ‖𝑇𝑧2𝑤‖
2
, is guaranteed to be less than 0.0114 which also indicates the attenuation 

of the uncertainty impact on z2.  

Since the stability and performance margins of the H2 and H-infinity control systems 

are less than 1, the response of the systems would detoriorate when deviated from the 

nominal case due to parameteric variation, disturbance, and noise. On the other hand, 
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having stability and performance margins for the mixed H2/H-infinity control system that 

are greater than 1 leads to maintaining stability and performance in the presence of 

uncertainties.  

Next, two scenarios are simulated to test the effect of parameters variation, noise and 

disturbance. The parameter variation arises in control systems due to continuous use and 

enviromental condition that changes plant physical parameters (moments of enertia and 

friction coefficients). To imitate variations of these physical values, uncertainty in their 

values is modeled such that the robust controller results in stable and good performance 

response when the system deviates from its nominal case. The uncertainty amount of 

moments of inertia and friction coefficients are considered to be 10% and 15% of their 

nominal values, respectively. The noise arises in the fed back signals to the controller due to 

imperfect readings of potentiometers. The considered readings noise is 0.1 V in each 

potentiometer. Finally, the disturbance that arises from air movement or unexpected force is 

tested by applying torque equal to 0.1 N.m which is very reasonable amount for this system. 

A. First Scenario 

The parameters variation effect is tested by simulating 10 system samples of modeled uncertainity. 

The reference input is [0 -5 10]T deg. The applied noise is [0.1 0.1 0.1]T V. The three control systems 

respond as shown in figures 5, 6, and 7. 

Both H2 and H-infinity control systems could not maintain robust stability and 

performance when the systems deviate from the nominal case. While all the 10 samples of 

uncertainty maintain the system's stability and performance in the mixed H2/H-infinity 

control system. As seen in Fig. 5 and 6, the three links become unstable for samples of 

modeled uncertainty which means that the system is not robust according to the stability 

margin. From the response in Fig. 7, it can be seen that θ1 goes under the desired value by 

0.486 deg at 5.58 sec then settles in 21.39 sec on 0.296 deg, θ2 settles with steady state error 

0.197 deg, and θ3 overshoots 0.511 deg above the desired value. 

 

FIG. 5. RESPONSE OF H2 CONTROL SYSTEM (FIRST SCENARIO). 
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FIG. 6. RESPONSE OF H-INFINITY CONTROL SYSTEM (FIRST SCENARIO). 

 

FIG. 7. RESPONSE OF MIXED H2/H-INFINITY CONTROL SYSTEM (FIRST SCENARIO). 

B. Second Scenario 

To study the robustness against disturbance, the reference input is [0 0 0]T deg. The applied 

disturbance is [0.1 0.1 0.1]T N . m. The responses of the three control systems are shown in Fig. 8, 9, & 

10. 
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FIG. 8. RESPONSE OF H2 CONTROL SYSTEM (SECOND SCENARIO). 

 

 

FIG. 9. RESPONSE OF H-INFINITY CONTROL SYSTEM (SECOND SCENARIO). 

The H2 and H-infinity control systems fail to maintain robust stability and performance 

for the modeled uncertainty as shown in Fig. 8 and 9. Both systems diverge from their 

desired value and exhibits unstable behavior. This follows from the fact that their robust 
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stability and performance margins are less than 1. On the other hand, Fig. 10 shows that all 

the 10 samples of uncertainty maintain the system's stability and performance in mixed 

H2/H-infinity control system. 

 

FIG. 10. RESPONSE OF MIXED H2/H-INFINITY CONTROL SYSTEM (SECOND SCENARIO). 

From the response in Fig. 10, it can be seen that θ1 goes under the desired value by 

1.89 deg for mixed H2/H-infinity control system. The steady-state error of θ1 is 0.188 deg. 

θ2 and θ3 overshoot to 2.18 deg and 4.112 deg; respectively. The steady-state error of θ2 and 

θ3 is 0.0109 deg which is very small. 

Based on all the above results, the mixed H2/H-infinity control system is advised since 

it maintains robust stability and performance for all modelled uncertainty and succeeded in 

handling different types of uncertainty.  

V. CONCLUSIONS  

In this paper, the robustness of H2 controller, H-infinity controller, and mixed H2/H-

infinity controller for triple inverted pendulum have been developed and tested. It has been 

shown that the H2 and H-infinity control systems have stability and performance margins 

that are less than one, therefore, both control systems could not handle parameter variation, 

disturbance, nor noise. Conversely, the margins of the mixed H2/H-infinity control system 

are greater than one, hence, the control system is able to maintain robustness against 

parameters variation, disturbances, and noise. This makes the mixed H2/H-infinity control 

system reliable in real world applications where the systems parameters changes with use 

and where external disturbances and readings imperfections are inevitable. In future, it is 

recommended to apply multi-objective optimization algorithms like genetic algorithms or 

particle swarm optimization to find best weights of the H2 and H-infinity norms in order to 

find good trade-off between system's performance and robustness. 
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