

122

MJPAS Vol. 1, No. 3 (2023) 122-133

Mustansiriyah Journal of Pure and Applied Sciences

www.MJPAS.com

A B S T R A C T

 The capabilities of the cloud are extended to intermediate network devices by fog computing,

providing computational and storage resources. This extension enables the execution of applications

closer to edge devices and end-users by deploying services on these intermediate devices. The

performance of the fog architecture is significantly impacted by the placement of these services. In

this study, iFogger, a fog computing simulator, is proposed to analyze the design and deployment of

applications using customized and dynamic strategies. To achieve this, the relationships among

deployed applications, network connections, and infrastructure characteristics are modeled using

complex network theory. This allows the integration of topological measures in dynamic and

customizable strategies, including the placement of application modules, workload location, and path

routing and scheduling of services. The iFogger simulator is built on top of the OMNeT++ network

simulator. A comparative analysis is performed to assess the efficiency and convergence of results

obtained with our simulator compared to the widely referenced iFogSim. The results show that

iFogger exhibits better performance in terms of simulation time convergence.

Keywords: Fog Computing; IoT; Resource placement; QoS.

1. Introduction

The increased number of IoT devices lead to numerous amounts of data transferring

between different applications and devices [1], [2]. This data is processed by their

consumers; industries or individuals to derive different types intellectual knowledge

or decisions. Alongside, a rapid increase in the number of establishments have already

lift their critical data to the cloud which provide pay-per-use, scalability, and

availability [3]. Cloud computing deliver several powerful services such as

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS), that goes along with current trend for Everything as a Service (XaaS)

[4]. The huge pulses of data generated from millions of harmonic and diverse IoT

entities are far from being smoothly consumed by the current convenient cloud, in

consequence a lot of latencies will be generated. Dissolving this problem was done by

the means of Fog Computing, which provide enough computing, storage and

networking to extend the range of the cloud and act as a mediator to bring the cloud

iFogger: A New Framework to Simulate Fog Computing

Resource Placement inside OMNeT++ Environment

B.A. Hussein
1,

* and S.H. hashem
2

1
 Computer Center, University of Babylon, Iraq (balasem@uobabylon.edu.iq)

2
 Computer Sciences Department, University of Technology, Iraq.

(110015@uotechnology.edu.iq)

Fiogger: A New Framework to Simulate

123

nearer to the IoT entities [5]. Table 1 illustrates the main features of Cloud, Fog and

IoT environments.

Table 1. Main features of Clou/Fog/IoT environments

Aspect Cloud Fog IoT

Location of

resources

Centralized datacenters Distributed edge devices Distributed end

devices

Proximity to users Distant Close to edge Closest to end users

Latency Higher Lower Ultra-low

Network usage High Reduced Efficient

Data processing Centralized Distributed Local

Scalability High Medium High

Reliability Dependent on datacenters Distributed and

redundant

Highly variable

Connectivity Broadband networks Multi-hop wireless Wireless and limited

Workload types Data-intensive Latency-sensitive Real-time and low-

power

Applications Generalized Industry-specific Diverse

Resource

flexibility

Limited Dynamic Dynamic and

adaptive

The functionality of the Fog will increase the efficiency and performance by rerouting

the information gathered by the IoT devices to a compute structure like the edge for

processing and storage, instead of passing them over directly to the cloud.

Consequently, the latency and bandwidth requirements will be greatly reduced [6]. As

a result, this integrations between IoT and Fog produce what is called Fog as a

Service (FaaS) [7], Figure 1. This service enables deployment and manage scalable

resources to Fog service providers in any volume and capacity [8]. The distributed

nature of Fog environment and the diverse types of devices contributing in generating

network flow in addition to, generally, wide geo-coverage of these devices makes

resource placement a difficult and challenging task [9]. The study of the feasibility of

a placement algorithm needs to be investigated in virtually two approaches; a physical

arrangement, alternatively researchers use network simulation tools. In addition, a

hybrid method can be used to augment logical nodes behaviors with physical

implementation [10].

Figure 1. Fog computing environment [31]

 B.A. Hussein and S.H. hashem /MJPAS 1(3) (2023) 122-133

2.Fog/Edge Computing Simulators

The Fog simulators taken into consideration as related frameworks to this work are

iFogSim [11], [12], FogNetSim++ [13], EdgeCloudSim [14], YAFS [15], MyiFogSim

[16], MobFogSim [17], ECSNeT++ [18], and DISSECT-CF-Fog [19], [20]. The

common aspect between those simulators is they generally present the way Fog

environment works to be further investigated by researchers. Table 2 shows

comparison of architectural features. The table shows the environment simulated

which include IoT, Edge, Fog, and Cloud to emphasize the scope of the simulator

implementation. The programing language of the simulator shows a dominant of Java

language over most of the Fog simulators with exception of FogNet++ and ECSNet++

which written in C++ programing language, and YAFS written in Python programing

language. The core simulators that were written in Java generally use the commonly

used cloud simulator CloudSim and implemented as extensions. In addition, iFogSim

was used as core simulator for some Fog simulators which itself is an extension of

CloudSim. As for YAFS, it uses the PySim library in Python as the core simulator.

Table 2. Comparison between selected simulators in terms of environment simulated,

programing language and core simulator.

Another dimension to characterize Fog simulators is the technical properties of the

simulator concerning user and developers of Fog simulators. The technical aspects (as

in Table 3, and Table 4) include features like validation of simulations (i.e., using real

datasets and benchmarking) and the Fog environment specific scenarios

(implementation of capabilities like customizable mobility, nodes clustering, and

support of microservices), in addition to the deployment of cost models, energy

consumption modelling, resources administration, results generation, and in

simulation time visualization and animation. Generally, the adaptation of any of these

features is task specific depending on the main goal of the simulator.

Simulator Environment Language Core simulator

AFS Fog Python PySim

EdgeCloudSim Edge Java CloudSim

iFogSim Fog Java CloudSim

MyiFogSim Fog Java iFogSim

MobFogSim Fog Java iFogSim

DISSECT-CF-Fog Fog Java DISSECT-CF

FogNETSim++ Fog C++ OMNET++

ECSNet++ Fog C++ OMNET++

iFogger (this work) Fog C++ OMNET++

Fiogger: A New Framework to Simulate

125

Table 3. Fog Simulators Main Specifications

Table 4. Technologies Implemented in Fog Simulators

S
im

u
la

to
r

C
o

st
 M

o
d

el

E
n

er
g

y
 M

o
d

el

R
es

o
u

rc
e

M
an

ag
em

en
t

S
im

u
la

ti
o

n
 V

is
u

al
iz

at
io

n
s

S
im

u
la

ti
o

n
 A

n
im

at
io

n

R
es

u
lt

s
G

en
er

at
io

n
s

R
es

u
lt

s
V

is
u

al
iz

at
io

n
s

YAFS N Y N N N Y N

EdgeCloudSim N Y Y N N Y N

iFogSim Y Y Y N N Y N

MyiFogSim Y Y Y N N Y N

MobFogSim Y Y Y N N Y N

DISSECT-CF-Fog N Y Y N N Y N

FogNETSim++ Y Y N Y Y Y Y

ECSNet++ Y Y N Y Y Y Y

iFogger (this work) Y Y Y Y Y Y Y

3.iFogger Implementation

Fog computing environment simulators differ in implementation and purpose [21], as

described in section 2. This section will describe the implementation details of the

proposed simulator (iFogger). The iFogger simulator is conceptually built from the

widely used Fog simulator, iFogSim and implemented on top om a commonly used

network simulator OMNeT++. This approach enabled us to benefit from the solid Fog

concepts adopted by iFogSim and transfer them to pure C++ code inside OMNeT++

which offer important facilities like a sophisticated graphical user interface (GUI) to

build networks and built-in reports generator.

The rest of this section will compare iFogger with iFogSim as the main source of our

simulator. Then, a comparision with Fog simulators already built using OMNeT++,

namely FogNetSim++ and ECSNeT ++.

Simulator
Using

real data

Benchmar

king
GUI

Mobility

Modelli

ng

Customiz

able

Mobility

Nodes

Clusteri

ng

Micro-

service

s

Topology

YAFS Y Y Y Y N Y Y Fog/IoT

EdgeCloudSim N Y N Y N N N Edge

iFogSim Y Y Y Y Y Y Y Cloud/Fog

MyiFogSim Y Y Y Y N N N Fog/Edge

MobFogSim Y Y Y Y N N Y Fog/Edge

DISSECT-CF-

Fog
N N N Y N N N

Cloud/Fog

FogNETSim++ N N Y Y Y N N Cloud/Fog

ECSNet++ Y Y Y Y Y N Y Cloud/Edge

iFogger (this

work)
Y Y Y Y Y Y Y

Cloud/Fog/Io

T

 B.A. Hussein and S.H. hashem /MJPAS 1(3) (2023) 122-133

3.1 iFogger and iFogSim

The main motivation for us to implement iFogSim on top of OMNeT++ is the

richness of features embedded in iFogSim and additionally the wide use of this

simulator in academic papers concerning different disciplines of Fog computing

implementations (at the time of writing the main transcript of iFogSim [12] was cited

by more than 1350 academic papers and publications). Another reason is its

credibility in simulations validation against real network traffic in addition to the wide

variety of resource management algorithms[22]. iFogSim is very scalable when

comes to network design in both vertical (number of computing layers) and

horizontally (number of entities per computing layer. The realization of a Fog

application in iFogSim is to define the flow of entities through the fog distributed

environment, starting from sensors sending tuples to the fog devices and then

processed them to get results to be sent to actuators[23]. The task of orchestration the

processing flow is dominated by a Fog controller (i.e., Fog broker) to handle

resources management[24], [25]. Generally, a Fog controller audit the placement of

VMs according to the network’s Fog devices’ computing constraints and

application(s) requirements[26]. Accordingly, Fog device allocate the required

resources (e.g., CPU, ram, and bandwidth) for these VMs and control the scheduling

of requests[27].

Basically, preparing an application to be executed on iFogSim requires manual setting

for devices or using a GUI tool to visualize the network devices, which are limited to

Sensor, Device, Actuator, and the links between them, Figure 2. While in iFogger, as

it’s an OMNeT++ based simulator, visualizing the network settings will be as simple

as drag-and-drop of iFogger entities and any applicable OMNeT++ entity, in form of

NED files (network definition files), Figure 3.

Figure 2. iFogSim GUI window Figure 3. OMNeT++ Network design window

Communication channel delays in iFogSim is simulated using the edge latency

property or events scheduling delays (for propagation delays). While in iFogger

(baring OMNeT++) communication channels are modules can be used to simulate

different types of communication delays in addition their classes can be derived to

create any unimplemented channel behavior.

Fiogger: A New Framework to Simulate

127

 Typically, when simulating an environment like Fog computing the main

purpose is to get results as basis to simulating insights or comparisons. iFogSim

provide textual results for tuple flow and computing resources constraints and a final

summary of performance, these results can be manually converted to useful outcomes.

The results in iFogger are represented via the results engine implemented in

OMNeT++ to be automatically represented graphically (such as line graphs and

histograms) and statistical summaries to be exported in various common file formats

(like CSV files and Excel files). In addition, OMNeT++ gives the ability to process

simulations results using Python for further data analysis.

3.2 iFogger and OMNeT++ Fog Simulators

iFogger was designed as a framework to simulate Fog environment on top of

OMNeT++ to simulate the performance of different algorithms for resource

placement algorithms. Hence, to compare it with other OMNeT++ based simulators

from the same scope two simulators are selected (i.e., FogNetSim++ [13] and

ECSNet++ [18]).

FogNetSim++ is an open-source Fog environment simulator built on top of OMNet++

to simulate Fog networks and nodes [28]. Static along with dynamic devices can be

used to simulate mobility and Fog network communication protocols, such as

Message Queue Telemetry Transport (MQTT) [29] and Constrained Application

Protocol (CoAP) [30]. Despite the limited support [31], device handover is a major

contribution of the FogNetSim++ simulator. This simulator has two dependencies;

OMNeT++ v4.6 and the high-level library INET v3.3.0. The internal structure and

communication logic for Fog nodes is taken from INET without any significant

alteration. In addition, mobility modeling and energy consumption models are also

taken from INET. FogNetSim++ implements MQTT [29] as the Fog network

communication protocol to simulate IoT layer messages to higher layers (Edge, Fog

and Cloud) via its one hop access points. A central controlling node (Broker) is

responsible for managing compute requests to maintain the Service License

Agreement (SLA) [32] between the user and the service provider. This simulator

lacks virtual machine migration which is necessary to achieve better load balancing

between over-utilized nodes and under-utilized nodes[33].

ECSNet++ [18] suggested as a framework to simulate distributed stream processing

(DSP) applications which built on top of OMNeT++ network simulator. The

developers claimed that when there are sufficient calibrations to the network

placement topology, the simulator can model real-world scenarios. Another feature,

its ability to foresee the behavior and measure the performance of large-scale

distributed applications run on multi-core, multi-thread CPUs. ESCNet++ evaluate

various metrics like network environment delays (end-to-end, processing, and

network) in addition to energy consumption evaluations. Placement plan in this

simulator requires a special XML template to specify the placement requirements of

the network devices (the template is provided with the framework, and a simple

example is also provided which span over 126 lines). The placement plan is a

 B.A. Hussein and S.H. hashem /MJPAS 1(3) (2023) 122-133

requirement for the simulation to run. In contrast to iFogSim and FogNetSim++, this

simulator does not support SLA satisfaction. This simulator requires three

dependencies; OMNeT++ v5.1, INET v3.6.0 [34] and TinyXML2 library to parse the

placement plan XML document.

To emphasize the points of difference between iFogger and those two Fog simulators

we can mention that in terms of virtual machines both simulators lack the capability to

perform VM migration. In addition, user license agreement satisfaction is not

considered in ECSNet++. The heavy dependency on INET library in OMNeT++ for

both FogNetSim++ and ECSNet++ couples these simulators to the version used by

the user because they cannot run their simulations unless the versions requirements

met. In addition to the tinyXML2 library required by ECSNet++ to load placement

plans.

Virtual machines migration is fully implemented in iFogger and works according to

load balancing requirements for the particular host. The dependency issue noticed on

the mentioned fog simulators are not present in iFogger. The development

environment for iFogger is only the core of OMNeT++ simulator without any INET

dependency or any OMNeT++ version specific feature. That means, once the user has

a version of OMNeT++ IDE they can start developing their Fog environment, that

elevates the usability of iFogger simulations, see Table 5.

Table 5. Fog Simulators Capabilities and Features

S
im

u
la

to
r

V
M

 M
ig

ra
ti

o
n

O
M

N
eT

+
+

 V
er

si
o

n

In
d

ep
en

d
en

t

IN
E

T
 V

er
si

o
n

In
d

ep
en

d
en

t

E
x

te
rn

al
 L

ib
ra

ry

In
d

ep
en

d
en

t

S
L

A
 S

u
p

p
o

rt

iFogSim Y - - N Y

FogNetSim++ N N N Y Y

ECSNet++ N N N N N

iFogger Y Y Y Y Y

4. Simulation Experiment

We conducted a comparison between two simulators using the first case study from

the iFogSim paper, specifically the EGG Tractor Beam game application. This

application comprises three modules: client, concentration, and coordinator. The

experiment deploys these modules in a hierarchical three-based topology, where a

cloud entity is connected to a gateway that links all fog devices, Figure 4. The

network can be scaled by generating multiple subgroups from the gateway device.

Two placement strategies were analyzed: a cloud-only placement where all modules

are deployed in the cloud entity, and an edge policy where the modules are deployed

in fog devices. We focused on analyzing execution time while varying the number of

fog nodes (4, 8, 12, and 16).

Fiogger: A New Framework to Simulate

129

Figure 4. Logical flow of modules and messages for the EGG example application.

The simulation was executed on a machine with i7-core running at 3.745 GHz with 16

GB RAM. Figure 5 shows the execution time for both policies as the number of fog

nodes increases. The blue lines represent the results of iFogSim, and the magenta

lines represent iFogger. Sloid lines correspond to the cloud policy, and dashed lines

represent the edge policy.

Figure 5. Simulation time results for the VR game example.

Both simulators exhibit similar behavior, but some differences can be observed:

I) Cloud policy requires more transmissions since all messages go through multiple

network links to reach the cloud entity. This high volume of traffic may lead to

network saturation and affect iFogSim's runtime.

II) Edge policy generates more application modules, leading to more events processes

to control each module. This slightly affects iFogger runtime, which is reasonable due

 B.A. Hussein and S.H. hashem /MJPAS 1(3) (2023) 122-133

to the increased number of modules, but the saturation of the simulated system should

not affect the simulator itself.

5.Conclusions and Future Work

Fog computing is a computing paradigm extends cloud computing and bring the

computing to the vacancy of users near computer edge devices. The cloud/edge/fog

continuum serve IoT latency sensitive applications and real-time approaches. A Fog

Computing simulator was proposed in this paper to serve deploying of resources

placement algorithms named as iFogger. The simulator was adopted from iFogSim

the widely used Fog simulator and built on top of OMNeT++ a commonly used

network simulator. For future work the simulator, mobile nodes handover can be

added as a new feature that iFogSim does not has. In addition to enhancing the

messaging system to include network protocols such as MQTT and CoAP. The

generated results can be extended to include network nodes queueing times to monitor

the effects of placement algorithms on the behavior of these nodes.

6.References

[1] Silva, L., Magaia, N., Sousa, B., Kobusińska, A., Casimiro, A., Mavromoustakis,

C. X., ... & De Albuquerque, V. H. C. (2021). Computing paradigms in emerging

vehicular environments: A review. IEEE/CAA Journal of Automatica

Sinica, 8(3), 491-511.

[2] Das, R., & Inuwa, M. M. (2023). A review on fog computing: issues,

characteristics, challenges, and potential applications. Telematics and Informatics

Reports, 100049.

[3] Sabireen, H., & Neelanarayanan, V. J. I. E. (2021). A review on fog computing:

Architecture, fog with IoT, algorithms and research challenges. Ict Express, 7(2),

162-176.

[4] Angel, N. A., Ravindran, D., Vincent, P. D. R., Srinivasan, K., & Hu, Y. C.

(2021). Recent advances in evolving computing paradigms: Cloud, edge, and fog

technologies. Sensors, 22(1), 196.

 [5] Akana, C. M. V. S., Kumar, K. S., Divakar, C., & Satyanarayana, C. (2011).

Dynamic resource allocation in computing clouds through distributed multiple

criteria decision analysis using PROMETHEE method. International Journal of

Advanced Networking and Applications, 3(2), 1060.

[6] Hanumantharaju, R., Sowmya, B. J., Paul, A., Muralidhar, A., Aishwarya, R.,

Shriya, B. N., & Shreenath, K. N. (2022, November). Secured Fog-Based System

for Smart Healthcare Application. In Futuristic Trends in Networks and

Computing Technologies: Select Proceedings of Fourth International Conference

on FTNCT 2021 (pp. 185-197). Singapore: Springer Nature Singapore

[7] Chen, N., Yang, Y., Zhang, T., Zhou, M. T., Luo, X., & Zao, J. K. (2018). Fog as

a service technology. IEEE Communications Magazine, 56(11), 95-101.

Fiogger: A New Framework to Simulate

131

[8] Das, R., & Inuwa, M. M. (2023). A review on fog computing: issues,

characteristics, challenges, and potential applications. Telematics and Informatics

Reports, 100049.

 [9] Salaht, F. A., Desprez, F., & Lebre, A. (2020). An overview of service placement

problem in fog and edge computing. ACM Computing Surveys (CSUR), 53(3), 1-

35.

[10] Manishankar, S., Harshitha, S., Mukhopadhyay, A., & Anoop, A. (2019, March).

Technologies for network testing: A hybrid approach. In 2019 3rd International

Conference on Computing Methodologies and Communication (ICCMC) (pp.

946-951). IEEE.

 [11] Mahmud, R., Pallewatta, S., Goudarzi, M., & Buyya, R. (2022). Ifogsim2: An

extended ifogsim simulator for mobility, clustering, and microservice

management in edge and fog computing environments. Journal of Systems and

Software, 190, 111351.

[12] Khan, E. U. Y., Soomro, T. R., & Brohi, M. N. (2022, October). iFogSim: A Tool

for Simulating Cloud and Fog Applications. In 2022 International Conference on

Cyber Resilience (ICCR) (pp. 01-05). IEEE.

[13] Qayyum, T., Malik, A. W., Khattak, M. A. K., Khalid, O., & Khan, S. U. (2018).

FogNetSim++: A toolkit for modeling and simulation of distributed fog

environment. IEEE Access, 6, 63570-63583.

[14] Sonmez, C., Ozgovde, A., & Ersoy, C. (2018). Edgecloudsim: An environment

for performance evaluation of edge computing systems. Transactions on

Emerging Telecommunications Technologies, 29(11), e3493.

 [15] Lera, I., Guerrero, C., & Juiz, C. (2019). YAFS: A simulator for IoT scenarios in

fog computing. IEEE Access, 7, 91745-91758

[16] Lopes, M. M., Higashino, W. A., Capretz, M. A., & Bittencourt, L. F. (2017,

December). Myifogsim: A simulator for virtual machine migration in fog

computing. In Companion proceedings of the10th international conference on

utility and cloud computing (pp. 47-52).

 [17] Puliafito, C., Gonçalves, D. M., Lopes, M. M., Martins, L. L., Madeira, E.,

Mingozzi, E., ... & Bittencourt, L. F. (2020). MobFogSim: Simulation of mobility

and migration for fog computing. Simulation Modelling Practice and

Theory, 101, 102062.

[18] Amarasinghe, G., de Assuncao, M. D., Harwood, A., & Karunasekera, S. (2020).

ECSNeT++: A simulator for distributed stream processing on edge and cloud

environments. Future Generation Computer Systems, 111, 401-418.

[19] Markus, A., Al-Haboobi, A., Kecskemeti, G., & Kertesz, A. (2023). Simulating

IoT Workflows in DISSECT-CF-Fog. Sensors, 23(3), 1294.

 B.A. Hussein and S.H. hashem /MJPAS 1(3) (2023) 122-133

[20] Kecskemeti, G. (2015). DISSECT-CF: a simulator to foster energy-aware

scheduling in infrastructure clouds. Simulation Modelling Practice and

Theory, 58, 188-218.

 [21] El Idrissi, M., Elbeqqali, O., & RIFfi, J. (2019, October). A review on

relationship between Iot–cloud computing–fog computing (Applications And

Challenges). In 2019 third international conference on intelligent computing in

data sciences (ICDS) (pp. 1-7). IEEE.

[22] Asif-Ur-Rahman, M., Afsana, F., Mahmud, M., Kaiser, M. S., Ahmed, M. R.,

Kaiwartya, O., & James-Taylor, A. (2018). Toward a heterogeneous mist, fog,

and cloud-based framework for the internet of healthcare things. IEEE Internet of

Things Journal, 6(3), 4049-4062.

 [23] Stojmenovic, I. (2014, November). Fog computing: A cloud to the ground

support for smart things and machine-to-machine networks. In 2014 Australasian

telecommunication networks and applications conference (ATNAC) (pp. 117-

122). IEEE.

[24] Lan, D., Liu, Y., Taherkordi, A., Eliassen, F., Delbruel, S., & Lei, L. (2021,

March). A federated fog-cloud framework for data processing and orchestration:

a case study in smart cities. In Proceedings of the 36th annual ACM symposium

on applied computing (pp. 729-736).

[25] Varshney, S., & Singh, S. (2018). A survey on resource scheduling algorithms in

cloud computing. International Journal of Applied Engineering Research, 13(9),

6839-6845.

[26] Alqahtani, A. M., Yosuf, B., Mohamed, S. H., El-Gorashi, T. E., & Elmirghani, J.

M. (2022). Energy Efficient VM Placement in a Heterogeneous Fog Computing

Architecture. arXiv preprint arXiv:2203.14178.

 [27] Tsai, J. F., Huang, C. H., & Lin, M. H. (2021). An optimal task assignment

strategy in cloud-fog computing environment. Applied Sciences, 11(4), 1909.

[28] Margariti, S. V., Dimakopoulos, V. V., & Tsoumanis, G. (2020). Modeling and

simulation tools for fog computing—a comprehensive survey from a cost

perspective. Future Internet, 12(5), 89.

 [29] Kurdi, H., & Thayananthan, V. (2022). A Multi-Tier MQTT architecture with

multiple brokers based on fog computing for securing industrial IoT. Applied

Sciences, 12(14), 7173.

[30] Dizdarević, J., Carpio, F., Jukan, A., & Masip-Bruin, X. (2019). A survey of

communication protocols for internet of things and related challenges of fog and

cloud computing integration. ACM Computing Surveys (CSUR), 51(6), 1-29.

 [31] Malik, A. W., Qayyum, T., Rahman, A. U., Khan, M. A., Khalid, O., & Khan, S.

U. (2020). XFogSim: A distributed fog resource management framework for

sustainable IoT services. IEEE Transactions on Sustainable Computing, 6(4),

691-702.

Fiogger: A New Framework to Simulate

133

[32] Chang, V., Sidhu, J., Singh, S., & Sandhu, R. (2023). SLA-based Multi-

dimensional Trust Model for Fog Computing Environments. Journal of Grid

Computing, 21(1), 4.

 [33] Singh, P., Kaur, R., Rashid, J., Juneja, S., Dhiman, G., Kim, J., & Ouaissa, M.

(2022). A fog-cluster based load-balancing technique. Sustainability, 14(13),

7961.

[34] Obelovska, K., & Danych, I. (2022, February). Adoption of the OMNET++

simulator for the computer networks learning: a case study in CSMA schemes.

In The International Conference on Artificial Intelligence and Logistics

Engineering (pp. 234-243). Cham: Springer International Publishing.

