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A B S T R A C T 

 This work focuses on a numerical study of natural convection of a non-Newtonian viscoplastic fluid within 

a cubic enclosure. The viscoplastic behavior is described by the Bingham model. The considered three-

dimensional convective flow is confined within a cavity, subjected to a horizontal temperature gradient, 

where the vertical walls have two imposed temperatures while the rest of the walls are adiabatic. The Navier-

Stokes equations, along with the mass and energy conservation equations, are numerically solved. Fluid 

flow and heat transfer characteristics are systematically studied over a wide range of Rayleigh number Ra 

(103 - 106) and Bingham number Bn (0 - 20). Finally, comparisons were made with previous results obtained 

in two dimensions in order to analyze the existence of a three-dimensional effect on the flow of the Bingham 

fluid. The results shows that the Nusselt number decreases with the increase of the Bingham number, and 

for the large values of the latter the heat transfer is done by conduction. It is also noteworthy that the critical 

Bn of the 2D model is higher than that of the 3D model, which confirms the existence of the three-

dimensional effect. This is attributed to the presence of a wall along the Z axis which hinders and limits the 

flow of fluid within the enclosure. 

© 2024 University of Al-Qadisiyah. All rights reserved.    

1. Introduction

           Viscoplastic fluids, defined by a yield stress τy, are known to exhibit 

a complicated transition between solid and fluid behavior. If the material is 

not sufficiently strained, i.e. less than the yield stress, it does not flow and 

acts as a solid. It flows with shear-thinning behavior above the yield stress. 

The inelastic Bingham [1], Herschel-Bulkley [2] and Casson [3-4]models 

are the most often employed for characterizing viscoplastic fluids. The 

Bingham model is the most basic approach for dealing with yield stress and 

it is the most commonly utilized model in theoretical and numerical 

investigations due to its relative simplicity. However, the Bingham model 

is unrealistic. The majority of real materials behave like shear-thinning 

yield stress fluids like the Herschel-Bulkley or Casson fluids. The Casson 

model is now being utilized in the food industry[5-6]specifically by the 

International Office of Cocoa and Chocolate to describe the rheological 

behavior of chocolate. In addition, the Casson model is frequently used in 

medicine to match blood rheology[7-8] .The buoyancy-driven heat 

convection inside an enclosure has been widely investigated during the last  
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several decades[9-11] .Natural convection in an enclosure [12-14]may be 

seen in various applications such as electronic equipment cooling, building 

cooling and heating, solar heaters, energy drying processes etc. The most 

classical case is a differentially heated cavity filled with Bingham Fluids, 

where the vertical walls have different temperatures while the other walls 

(top and bottom) are adiabatic. Vikhansky [15] investigated the flow of 

Bingham liquid inside a rectangular cage. The top and lower walls are 

thought to be adiabatic, whereas the lateral walls preserve temperature 

consistency. They discovered that convection occurs when the temperature 

difference exceeds a crucial threshold. Boutra and al.[16] numerically 

studied unsustainable free convection for a Bingham fluid that entirely fills 

a square cavity, examining the impact of Rayleigh values, Prandtl 

quantities, and the Viscoplasticity parameter given by the Bingham 

number. The vertical sides are kept at a constant temperature, whereas the 

horizontal walls are supposed to be adiabatic. They claimed that changes in 

Rayleigh, Prandtl, and Bingham quantities had a significant influence on 

heat flow. Fazli and al.[17] utilized Bingham's model fluid to investigate 

the effect of elastic stress on free convection between two vertical plates. 

The flow was unidirectional (1D), and they used the Boussinesq 

approximation. They investigate the answer, which gets quite complex 

when. The fluid flow stagnates, and the 𝐵𝑛 > Bn𝑐𝑟 = 1/16 conduction is a 

prominent phenomenon. Sairamu and al.[18] reported free convection of 

Viscoplastic fluid in "the Bingham fluids model," and the gap is heated by 

the inner cylinder positioned in the middle. The study included a wide range 

of important characteristics, including Rayleigh quantity, Prandtl quantity, 

and Viscoplasticity parameters. They found that increasing the Bingham 

parameter value lowered the heat transmission rate. It was also revealed that 

the Nusselt amount has a very low reliance on Prandtl, which is reflected in 

the Rayleigh number expression. Keyfati[18], [19] quantitatively 

investigated the free double-diffusion, convective generation, and entropy 

of the Bingham liquid in an open and inclined enclosure. The mass 

transference analysis, which takes into account the Soret and Dufour 

components as well as the tilting effect, is unique to these papers. While the 

results from Ref.[21] [20] revealed that increasing Rayleigh numbers 

accelerates fluid flow inside the enclosure. According to Keyfati[19][21], 

increasing the Rayleigh number value improves heat and mass transport, 

while increasing the tilt angles reduces entropy formation. The data reveal 

that high Rayleigh and Darcy values lead to an increase in heat transfer. 

Increasing the Bingham number (viscoplasticity parameters) reduces the 

heat flow within the enclosure. Paulo and al. [22] numerically solved the 

free convection of a yield stress liquid within a chamber with various 

barriers, and the vertical walls were differently heated due to the yield stress 

behavior. It is noted that increasing the viscoplasticity parameter has a 

substantial effect on slowing the circulation of flow inside the cavity, hence 

influencing the heat transfer rate. Turan and al. [23], [24] carried out 2D 

simulations of free laminar convection within the hollow. The investigation 

was conducted on several Newtonian and non-Newtonian fluids (Bingham 

fluid model) heated differently from the sidewalls for various reasons. They 

discovered that the Nusselt values for Bingham fluid are lower than those 

for Newtonian fluid due to the weaker transport via convection in the case 

of Bingham fluid. Hassan and al [25] investigated the hydro-thermal flow 

behavior of viscoplastic fluid (Bingham model) inside a rectangular cavity 

using both computational and experimental methods. This chamber is 

heated at its bottom wall, with the side walls serving as the cooled 

boundary. They discovered that, unlike in the isothermal situation, 

convection flow weakens with continuous heat inflow. Abderrahmane and 

al. [26] investigated numerically free convection inside a square enclosure 

differentially heated and containing Herschel-Bulkely fluid, examining the 

influence of Prandtl and Rayleigh values on the fluid's rheological structure. 

The vertical wall sides are adjusted to various temperatures, while the 

horizontal side wall is insulated. The working fluid is identified by its 

rheological index (n) and yield stress (τy). Variations in Rayleigh, Bingham, 

Prandtl, and flow index have an impact on thermal structure. Huilgol and 

al. [27] investigated free convection in a square cavity with vertical 

differential heating and a viscous fluid. This experiment used different 

Rayleigh, Prandtl, and Bingham numbers. The data show that heat 

transmission increases as Rayleigh numbers climb. However, raising the 

viscoplasticity parameter reduces the heat transfer rate; for further details, 

see Ref[28] . Mebarki and al  [29]examined a steady-state laminar of free 

convection in a square cavity with differently heated side walls. The cavity 

is immersed in a viscoplastic liquid of the Bingham prototype. The 

horizontal walls are assumed to be adiabatic and the vertical wall presents 

two different sinusoidal spatial temperature profiles with different phases 

and amplitudes. The hydro-thermal features are systematically analyzed via 

a broad choice of Rayleigh number Ra, Bingham number Bn, Prandtl 

numbers Pr, amplitude ratio 𝜀, phase difference π and flow index n. It has 

been observed that average Nusselt numbers grow with increasing Rayleigh 

numbers and drop with increasing Bingham quantity, since heat transition 

occurs primarily due to thermal conductivity. The rise in the phase 

difference suggests an upsurge in heat transference, as the impact of the 

phase shift on the Nusselt. The thermal flow rate is bigger in 𝜀 = 1 than in 

the other cases. Other works has been done with non-uniform temperature 

Nomenclature: 
 

 

Cp Heat capacity (J/kg K) Greek symbols 

g gravity (m/ s2) 𝛾̇ Shear rate    (s-1) 

h Height 𝛾̇𝑐 Critical shear rate (s-1) 

k Consistency 𝛽 Thermal expansion coefficient  (T-1) 

L Domain length 𝜆 Thermal conductivity  (W/m 0C) 

p Pressure(p) 𝜃 Temperature 

T Temperature 𝜇 Plastic viscosity (Pa.s) 

Tp Hot temperature 𝜇𝑎 Apparent viscosity  (Pa.s) 

Tc Cold temperature     𝜋            Pi 

U,v,w Velocity vector component 𝜌 Volumic mass (Kg/m3) 

X, y ,z Cartesian coordinates   

Pr Prandtl Number Ra Rayleigh Number 

Gr Grashof Number Bn Bingham Number 
Nu Nusselt Number    



MOHAMMED KEDDAR ET AL./AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES   17 (2024) 273–281                                                                                     275 

 

 

profiles, but in different configurations than the latter (RBC), where the 

enclosure is filled with Bingham fluid and the horizontal walls have been 

subjected to sinusoidal temperatures, while the vertical walls are adiabatic 

see refs [30,31]. In the most published work, the simultaneous impact on 

heat transfer and flow patterns of boundary restrictions and the nature of 

non-Newtonian fluids in a 2D confined space, however this study aims to 

numerically investigate hydrothermal flow of the Bingham type 

viscoplastic fluid in 3D in order to show the three-dimensional impact. The 

effects of Ra and Bn are systematically studied. However, it should be noted 

that in the current review, plastic viscosity and yield strength are considered 

to be independent of temperature. 

2. Description of the mathematical model 

In the case of free convective flowing in a differential heated cubical cavity, 

the vertical walls are subjected to temperatures, as long as the rest of the 

walls are adiabatic (Fig. 1). In order to make the mathematical description 

of the conceptual framework more manageable and straightforward and to 

speed up the accuracy thereof, certain approximations and simplifying 

assumptions are made:  

• 3-D Steady–state flow.  

• The non-Newtonian fluid (viscoplastic model).  

• The regime is supposed to be laminar.  

• The Boussinesq approximation simplifies the pressure forces. 

 

 

Figure 1. 3D model of studied problem 

2.1 Governing equations 

The momentum equations:  

The Navier-Stokes equations system for this study is presented as follows 

,[23]: 

 

Following x: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+ 𝑃𝑟 (2

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝑤

𝜕𝑥𝜕𝑧
)  +

(2
𝜕𝜇𝑎

𝜕𝑥

𝜕𝑢

𝜕𝑥
+

𝜕𝜇𝑎

𝜕𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝜇𝑎

𝜕𝑧

𝜕𝑢

𝜕𝑧
+

𝜕𝜇𝑎

𝜕𝑦

𝜕𝑣

𝜕𝑥
+

𝜕𝜇𝑎

𝜕𝑧

𝜕𝑤

𝜕𝑥
)                          (1) 

 

Following y : 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −

𝜕𝑝

𝜕𝑦
+ 𝑃𝑟 (

𝜕2𝑣

𝜕𝑥2
+ 2

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
+

𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕2𝑤

𝜕𝑦𝜕𝑧
) +

(
𝜕𝜇𝑎

𝜕𝑥

𝜕𝑣

𝜕𝑥
+ 2

𝜕𝜇𝑎

𝜕𝑦

𝜕𝑣

𝜕𝑦
+

𝜕𝜇𝑎

𝜕𝑧

𝜕𝑣

𝜕𝑧
+

𝜕𝜇𝑎

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝜇𝑎

𝜕𝑧

𝜕𝑤

𝜕𝑦
) + 𝑃𝑟. 𝑅 𝑎. 𝜃            (2) 

Following z : 

  𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

𝜕𝑝

𝜕𝑧
+ 𝑃𝑟 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+ 2

𝜕2𝑤

𝜕𝑧2
+

𝜕2𝑢

𝜕𝑥𝜕𝑧
+

𝜕2𝑣

𝜕𝑦𝜕𝑧
) 

+ (
𝜕𝜇𝑎

𝜕𝑥

𝜕𝑤

𝜕𝑥
+

𝜕𝜇𝑎

𝜕𝑦

𝜕𝑤

𝜕𝑦
+ 2

𝜕𝜇𝑎

𝜕𝑧

𝜕𝑤

𝜕𝑧
+

𝜕𝜇𝑎

𝜕𝑥

𝜕𝑢

𝜕𝑧
+

𝜕𝜇𝑎

𝜕𝑦

𝜕𝑣

𝜕𝑧
)                      (3) 

Where:                                          

{
𝜇𝑎 = 𝐾𝛾̇𝑛−1 +

𝜏0

𝛾̇
𝑠𝑖𝜏 > 𝜏0

𝛾̇ = 0(𝜇𝑎 → ∞)𝑠𝑖𝜏 ≤ 𝜏0

  

Continuity formula: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                                                       (4) 

The energy equation: 

𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
+ 𝑤

𝜕𝜃

𝜕𝑧
= (

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
+

𝜕2𝜃

𝜕𝑧2
)                                (5) 

The above equations became dimensionless by introducing these variables. 

𝑥 =
𝑥∗

𝐿
  ,  𝑦 =

𝑦∗

𝐿

 

 , 𝑧 =
𝑧∗

𝐿
 , 𝑢 =

𝑢∗𝐿

𝛼

 

 ,  𝑣 =
𝑣∗𝐿

𝛼

 

 , 𝑤 =
𝑤∗𝐿

𝛼
  𝑝 =

𝑝∗𝐿

𝜌𝛼2
 

𝜃 =
𝑇−𝑇𝑓

𝑇𝑐−𝑇𝑓
 

Left wall of the domain: 

Tc = 1, 𝑢 = 𝑣 = 0  

Right wall of the domain 

Tc = 0, 𝑢 = 𝑣 = 0  

The rest of the walls are considered adiabatic 

 
𝑑𝑇

𝑑𝑦
= 0, 𝑢 = 𝑣 = 0                                                                                   (6) 

The Herschel-Bulkley model is described by the following equations: 

𝛾̇ = 0                    𝑠𝑖      𝜏 ≤ 𝜏0  

𝜏 = 𝜏0 + 𝐾𝛾̇𝑛     𝑠𝑖       𝜏 > 𝜏0                                                                   (7) 

The Bingham model is governed by the following equations: 

𝛾̇ = 0                    𝑠𝑖        𝜏 ≤ 𝜏0 

𝜏 = (𝜇 +
𝜏0

𝛾̇
) 𝛾̇    𝑠𝑖        𝜏 > 𝜏0                                                                  (8) 

Dimensionless Rayleigh number: 

 𝑅𝑎 =
𝜌2𝐶𝑝𝑔𝛽𝛥𝑇𝐿3

𝜇𝜆
= 𝐺𝑟𝑃𝑟                                                (9)  

Dimensionless Grashoff number:  

𝐺𝑟 =
𝜌2𝑔𝛽𝛥𝑇𝐿3

𝜇2
                                                           (10) 

Dimensionless Prandtl number: 

𝑃𝑟 =
𝜇𝐶𝑝

𝜆
                                                                 (11)  

Dimensionless Bingham number: 

𝐵𝑛 =
𝜏0

𝜇
√

𝐿

𝑔𝛽𝛥𝑇𝐿
                                                                                       (12) 

The thermal transfer rate is analyzed by the parameter Nusselt quantity: 

𝑁𝑢 =
ℎ𝐿

𝜆
                                                                  (13) 

Where h is defined by: 

ℎ = |−𝜆
𝜕𝑇

𝜕𝑥
| ×

1

(𝑇𝑤𝑎𝑙𝑙−𝑇𝑟𝑒𝑓)
                                               (14) 

The Nusselt number is calculated for the studied cases to observe when 

rheological behavior leads to an improvement or degradation in heat 
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transfer rate. 

3. Numerical methods 

FLUENT, a commercial CFD software, provides the numerical model. 

Subject to the suggested boundary conditions, the conservation equations 

are discretized using a finite-volume technique based on the COUPLED 

algorithm. The second-order upwind differencing method is used to 

discretize the equations. Finally, the convergence requirements for solving 

the governing equations are regarded met when the sum of the residuals is 

less than 10-6. 

Table 1.Numerical mesh test of the Newtonian fluid for Ra 

= 104; Pr=7; Bn = 0.5. 

Mesh M1 M2 M3 

Grid 31×31×31 51×51×51 80×80×80 

Nu 02.098 02.088 02.080 

Vmax 19.415 19.510 19.530 

 

 

 

Figure 2. Comparison of the Nusselt obtained with those of the article 

[24] 

 

3.1 Mesh test  

The tested the influence of the mesh on the results for this we used three 

structural meshes M1(31×31×31), M2(51×51×51) and M3(80×80×80), 

however the results obtained from the Nusselt number are presented in 

Table 1. The table show that M2 mesh (132651 Nodes, 125000 Elements) 

is a good compromise between precision and CPU time cost. 

 

Table 2. Nusselt validation [27], Ra = 105 

 

B
n
 =

 0
1
 

B
n
 =

 0
3
 

B
n
 =

 0
6
 

B
n
 =

 0
9
 

B
n
 =

 1
8
 

B
n
 =

 2
7
 

Ref. [27] 3.303 3.263 3.083 2.898 2.402 2.143 

This work 3.305 3.265 3.083 2.900 2.403 2.140 

Error (%) 0.06 0.09 0.00 0.07 0.04 0.14 

 

3.2 Validation  

To validate our results, we compared them to those in the literature, namely 

the work of references [24] and [27]. To confirm the validation of our 

results, we calibrated our numerical model by comparing our Nusselt 

results, which includes the speeds and temperatures with the reference [24] 

and [27] in addition to the contours of the Isotherms and the lines of 

common with article [27]. 

 

 

Figure 3. Comparison of isotherms (top) and streamlines (bottom) 

obtained with the and those of the article [24] 

 

In Figure 2, we observe a very good agreement between our results and 

those found in the literature. This agreement is clearly demonstrated by the 

low percentage of error calculated between our results and the reference 

values from literary sources. In addition, the shape of the isotherms and 

streamlines presented in Figure 3 is identical to that shown in reference. 

4. Results and discussion 

In this part we will present the results obtained from three-dimensional 

laminar flow within a closed enclosure filled with a non-Newtonian fluid, 

in this case the Bingham fluid. The non-Newtonian fluid is assumed to be 

incompressible, the regime is assumed to be laminar, for this we have varied 

the Rayleigh number Ra, the Bingham number Bn, and the Prandtl number 

Pr. 



MOHAMMED KEDDAR ET AL./AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES   17 (2024) 273–281                                                                                     277 

 

 

 

Figure 4. Newtonian fluid temperature for ; Bn = 0; Pr = 7 

 

4.1 Effect of Rayleigh number 

We notice that the Rayleigh number has a significant influence on the lines 

of isotherms of the Newtonian fluid which are represented in Figure 6.  

 

 

 

. 

 

 

 

 

 

 

 

 

 

         

 

Figure 5. Newtonian fluid velocities for Bn = 0 ; Pr = 7 

 

This observation is attributable to the increase in the dimensionless number. 

This number is essentially responsible for generating convection, i.e. it is 

the element that induces heat transfer by convection. we can clearly see this 

in Figures 4 and 5 which represent the dimensionless temperatures and 

speeds of the Newtonian fluid.  

The contours of the Bingham fluid isotherms are shown in Figure 9. For a 

number of Ra=103, the isotherms are completely linear due to very low flow 

because the effects of buoyancy forces are dominated by viscous effects. 

Under these conditions, heat transfer occurs entirely by conduction through 

the enclosure. When the Rayleigh number increases to Ra = 104, the 

structure of the isotherms begins to change and become distorted. 

Obviously, at this point, convection is triggered. We can better understand 

if we observe the temperature and speed profiles which are indicated in 

Figures 7 and 8, that with the increase in the Rayleigh number the heat 

transfer goes from conduction to convection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.: Contours of the isotherms of the Newtonian fluid for Bn = 0 ; 

Pr = 7. 

 

Figure 7. Bingham fluid temperature for Bn = 0,5 ; Pr = 7 
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Figure 8. Bingham fluid velocities for Bn = 0,5 ; Pr = 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Isotherm contours for Bn = 0.5 ; Pr = 7. 

4.2 Effect of Bingham number 

For high values of the Bingham number, viscous force more readily 

overcomes buoyancy force, thus preventing any induced flow within the 

enclosure. This behavior can be better understood by comparing the 

contours of isotherms in Figures 12 and 15 for different values of Bn at 

Ra=104 and Ra=106, respectively.  These figures suggest that the effects of 

convection within the enclosure decrease with increasing Bingham number, 

and the Bingham fluid begins to behave like a solid. In the absence of flow 

within the enclosure, heat transfer occurs through conduction. This can be 

better understood by examining temperature and velocity profiles shown in 

Figures 10, 11, 13, and 14 for Ra=104 and Ra=106, respectively, where it 

can be observed that increasing the Bingham number transitions heat 

transfer from convection to conduction. 

 

4.3 Comparison of results obtained in 3D and 2D 

In this final part, we compared the results obtained in 2D and 3D to 

demonstrate the existence of a three-dimensional effect. 

 

4.3 Comparison of results obtained in 3D and 2D 

In this final part, we compared the results obtained in 2D and 3D to 

demonstrate the existenc of a three-dimensional effect. This can be 

observed in Figure 16, which depicts the flow velocity within the enclosure, 

and in Figure 17, which illustrates the Nusselt number incorporating 

velocities and temperatures.The evolution of the results reveals that 

increasing the Bingham number leads to a decrease in flow velocity until it 

reaches nullification, while the Nusselt number decreases until it reaches a 

value of 1. This indicates that the dominant mode of heat transfer shifts 

towards conduction. Finally, it can be observed that the critical Bingham 

number of the 2D model is higher than that of the 3D model, which proves 

the existence of the three-dimensional effect caused by the wall along the 

Z-axis that blocks and prevents fluid flow within the enclosure. 

 

 

Figure 10. Temperature distribution for Ra = 104 ; Pr = 7 
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Figure 11. Velocity distribution for  Ra = 104 ; Pr = 7 

 

 

Figure 12. Isotherm Contours inside the cavity for  Ra = 104 ; Pr = 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Temperature distribution for  Ra = 106 ; Pr = 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Velocity distribution for  Ra = 106 ; Pr = 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  isotherms Contours of  Bingham fluid for Ra = 106 ; Pr = 7. 
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Figure 15 (Continued).  isotherms Contours of  Bingham fluid for Ra = 

106 ; Pr = 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Comparison of velocity distribution between 2D (-) and 3D (o) 

models . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17. Comparison of Nusselt number for different model 2D and 3D. 

 

4 Conclusion  

To conclude, the results obtained from our investigation into three-

dimensional laminar flow within a closed enclosure filled with a non-

Newtonian Bingham fluid, under the assumption of steady-state conditions, 

yield several key insights: Impact of Non-Dimensional Parameters on Heat 

Transfer: We have systematically analyzed the effects of the Rayleigh, 

Prandtl, and Bingham numbers on heat transfer within the system. The 

findings reveal that an increase in the Bingham number corresponds to a 

decrease in the flow velocity, ultimately leading to a cessation of flow. 

Concurrently, the Nusselt number diminishes until it approaches a value of 

1. This trend signifies a transition in the predominant heat transfer 

mechanism from convective to conductive heat transfer, highlighting the 

influence of fluid rheology on thermal performance. Comparison of Critical 

Bingham Numbers: The analysis indicates that the critical Bingham number 

for the two-dimensional (2D) model is higher than that of the three-
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dimensional (3D) model. This discrepancy underscores the presence of a 

significant three-dimensional effect introduced by the enclosure’s geometry 

along the Z-axis. Specifically, the enclosure's walls interact with the flow, 

obstructing and impeding fluid movement more profoundly in three 

dimensions compared to two. This finding confirms that three-dimensional 

effects play a crucial role in accurately capturing the fluid dynamics and 

heat transfer characteristics in the enclosure. In summary, our study 

highlights the critical role of dimensionality in the modeling of non-

Newtonian fluid flows and their thermal behavior, providing a more 

nuanced understanding of how Bingham fluids behave under different 

conditions. 
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