Mustansiriyah Journal of Pure and Applied Sciences <u>https://mjpas.uomustansiriyah.edu.iq</u> Print ISSN: 2957-9910 Online ISSN: 2957-9929

Orthogonal Generalized Higher (σ , τ)-k Derivations on Semi-prime Γ-Rings

Salah M. Salih¹, Hajer H. Abd-Ali²

^{1,2} Department of mathematics, College of Education, Mustansiryah University, Baghdad, Iraq

(¹dr.salahms2014@uomustansiriyah.edu.iq) ²hajerhamed35@uomustansiriyah.edu.iq)

ABSTRACT

In this paper we study the concept of orthogonal generalized higher (σ,τ) -k-derivations and present some of result obtained from orthogonality.

Keywords: semiprime rings, (σ, τ) -derivations, k-derivations, orthogonal, generalized (σ, τ) -derivation.

1. Introduction

The concept of Γ -ring introduced in [5] and develop by Barans in [2]. Kandamar introduce the definition of k-derivations in [3] and evolution the in [4]. The definition of orthogonal presented in [1]. In [9] the concept of (σ , τ)-derivations was introduce and M.Ashraf study the higher (σ , τ)-derivations in [8]. Some important definitions such as,prime,semiprime and 2torison introduced in [6]. We studied orthogonal on higher (σ , τ)-k-derivations and developed it in this paper to orthogonal generalized higher (σ , τ)-k-derivations on semiprime Γ -Rings.

And the most import result we obtain in our study.

Let M be 2-torsion free semiprime Γ -ring, $D = (D_n)_{i \in N}$ and $G = (G_n)_{i \in N}$ generalized higher (σ, τ) -K-derivation with associated higher (σ, τ) -K-derivation $d = (d_i)_{i \in N}$ and $g = (g_i)_{i \in N}$ respectively then D_n and G_n are orthogonal if and only if for all x, y \in M

The following lemma is one of important result that we need in our study.

Lemma 1.1: [8]

Let M be a 2-torsion free semi-prime Γ -ring and $a, b \in M, \alpha, \beta \in \Gamma$, then the following conditions are equivalent.

(1) $a\Gamma x\Gamma b = 0$, for all $x \in M$.

(2) $b\Gamma x\Gamma a = 0$, for all $x \in M$.

(3) $a\Gamma x\Gamma b + b\Gamma x\Gamma a = 0$, for all $x \in M$.

If one of the above conditions is fulfilled then $a\Gamma b = b\Gamma a = 0$.

2. Orthogonal (σ, τ) -k-derivations on semiprime Γ -Rings

Definition 2.1

Let M be Γ -ring, two generalized higher (σ, τ) -k-derivations $D = (D_i)_{i \in N}$ and $G = (G_i)_{i \in N}$ on M where $K = (K_i)_{i \in N}$ family of additive mappings on Γ , then D_n and G_n are called orthogonal if for every $n \in N$, $x, y \in M$ $D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)MK_n(\Gamma)D_n(x)$

Where $D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y) = \sum_{i=1}^n D_i(x)K_i(\Gamma)MK_i(\Gamma)G_i(y)$

Example 2.2

Let $D=(D_i)_{i\in N}$ and $G=(G_i)_{i\in N}$ be two generalized higher (σ, τ) -k-derivations on Γ - ring M associated with (σ, τ) -k-derivations $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$ on M. Let $S=M\times M$ we define $D_n = (D_i)_{i\in N}$, $G_n = (G_i)_{i\in N}$ are generalized higher (σ, τ) -k-derivations on S we defined by $D_n(x, y) = (D_n(x), 0)$

$$G_{n}(x, y) = (0, G_{n}(y))$$

Then D_n and G_n are orthogonal.

Theorem 2.3

Let $D=(D_i)_{i\in N}$ and $G = (G_i)_{i\in N}$ be two generalized higher (σ, τ) -k-derivations with associated higher (σ, τ) -k-derivations $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$ respectively where $D_n and G_n$ are commutative, if D_n and G_n are orthogonal then the following hold

1)
$$D_n(x)k_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x)$$
 hence

 $D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0$

Proof

 D_n and G_n are orthogonal then $D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y) = 0$ = $G_n(y)K_n(\Gamma)MK_n(\Gamma)D_n(x)$

By lemma (1.1) we get:

$$D_n(x)k_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x)$$

Hence $D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0$

2) d_n and G_n are orthogonal higher $(\sigma, \tau) - k$ - derivation and

$$d_n(x)K_n(\Gamma)G_n(y) = G_n(y)K_n(\Gamma)d_n(x) = 0$$

Proof

By (1)
$$D_n(x)K_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x)$$

$$\sum_{i=1}^{n} D_i(x) K_i(\alpha) G_i(y) = 0$$

Replace x by $m\beta x$

$$\sum_{i=1}^{n} D_{i}(m\beta x)K_{i}(\alpha)G_{i}(y) = 0$$

$$\sum_{i=1}^{n} D_{i}\left(\sigma^{n-i}(m)\right)K_{i}(\beta)d_{i}(\tau^{n-i}(x))K_{i}(\alpha)G_{i}(y) = 0$$
Replace $D_{i}\left(\sigma^{n-i}(m)\right)$ by $d_{i}(\sigma^{n-i}(x))K_{i}(\alpha)G_{i}\left(\sigma^{n-i}(y)\right)$

$$\sum_{i=1}^{n} d_{i}(\sigma^{n-i}(x))K_{i}(\alpha)G_{i}\left(\sigma^{n-i}(y)\right)K_{i}(\beta)d_{i}(x)K_{i}(\alpha)G_{i}(y) = 0$$
Replace $K_{i}(\beta)$ by $K_{i}(\beta)mK_{i}(\beta)$

$$\sum_{i=1}^{n} d_{i}(\sigma^{n-i}(x))K_{i}(\alpha)G_{i}\left(\sigma^{n-i}(y)\right)K_{i}(\beta)mK_{i}(\beta)d_{i}(x)K_{i}(\alpha)G_{i}(y) = 0$$
Since M is semiprime $\sum_{i=1}^{n} d_{i}(\sigma^{n-i}(x))K_{i}(\alpha)G_{i}(\sigma^{n-i}(y)) = 0$

$$d_n(x)K_n(\alpha)G_n(y)=0$$

 G_n is commutative $G_n(y)K_n(\Gamma)d_n(x) = 0$

3) D_n and g_n are orthogonal higher $(\sigma, \tau) - k$ - derivations and $g_n(x)K_n(\Gamma)D_n(y) = D_n(y)K_n(\Gamma)g_n(x) = 0$

Proof

By (1) $D_n(x)k_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x)$

 $G_n(y)K_n(\Gamma)D_n(x) = 0$

$$\sum_{i=1}^{n} G_i(x) K_i(\alpha) D_i(y) = 0$$

Replace x by $m\beta x$

$$\sum_{i=1}^{n} G_i(m\beta x) K_i(\alpha) D_i(y) = 0$$

$$\sum_{i=1}^{n} G_i\left(\sigma^{n-i}(m)\right) K_i(\beta) g_i(\tau^{n-i}(x)) K_i(\alpha) D_i(y) = 0$$

Replace $G_i(m)$ by $g_i(\sigma^{n-i}(x))K_i(\alpha)D_i(\tau^{n-i}(y))$ and $g_i(\tau^{n-i}(x))$ by $g_i(\sigma^{n-i}(x))$

$$\sum_{i=1}^{n} g_i(\sigma^{n-i}(x)) K_i(\alpha) D_i(\tau^{n-i}(y)) K_i(\beta) g_i(\sigma^{n-i}(x)) K_i(\alpha) D_i(y) = 0$$

Replace $K_i(\beta)$ by $K_i(\beta)mK_i(\beta)$ and $D_i(y)$ by $D_i(\tau^{n-i}(y))$

$$\sum_{i=1}^{n} g_i(\sigma^{n-i}(x)) K_i(\alpha) D_i(\tau^{n-i}(y)) K_i(\beta) m K_i(\beta) g_i(\sigma^{n-i}(x)) K_i(\alpha) D_i(\tau^{n-i}(y)) = 0$$

Since M is semiprime $\sum_{i=1}^{n} g_i(x) K_i(\alpha) D_i(y) = 0$

$$g_n(x)K_n(\alpha)D_n(y) = 0$$

$$D_n$$
 is commutative $D_n(y)K_n(\Gamma)g_n(x) = 0$

4) d_n and g_n are orthogonal higher $(\sigma, \tau) - K$ – derivations ,

Proof

By (1)
$$D_n(x)K_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x)$$

$$\sum_{i=1}^{n} D_i(x) K_i(\alpha) G_i(y) = 0$$

Replace x by $m\beta z$ and y by $w\beta y$

$$\sum_{i=1}^{n} D_{i}(m\beta x)K_{i}(\alpha)G_{i}(w\beta y) = 0$$

$$\sum_{i=1}^{n} D_{i}\left(\sigma^{n-i}(m)\right)K_{i}(\beta)d_{i}(\tau^{n-i}(x)K_{i}(\alpha)G_{i}\left(\sigma^{n-i}(w)\right)K_{i}(\beta)g_{i}(\tau^{n-i}(y)) = 0$$

$$\sum_{i=1}^{n} d_{i}\left(\tau^{n-i}(x)\right)K_{i}(\beta)D_{i}(\sigma^{n-i}(m)K_{i}(\alpha)G_{i}\left(\sigma^{n-i}(w)\right)K_{i}(\beta)g_{i}(\tau^{n-i}(y)) = 0$$
Replace $d_{i}\left(\tau^{n-i}(x)\right)$ by $d_{i}\left(\sigma^{n-i}(x)\right)$

$$\sum_{i=1}^{n} d_{i}\left(\sigma^{n-i}(x)\right)K_{i}(\beta)D_{i}(\sigma^{n-i}(m)K_{i}(\alpha)G_{i}\left(\sigma^{n-i}(w)\right)K_{i}(\beta)g_{i}(\tau^{n-i}(y)) = 0$$

By lemma (1.1) we get

$$\sum_{i=1}^{n} g_i\left(\tau^{n-i}(y)\right) K_i(\beta) D_i(\sigma^{n-i}(m) K_i(\alpha) G_i\left(\sigma^{n-i}(w)\right) K_i(\beta) d_i(\sigma^{n-i}(x)) = 0$$

Hence d_n and g_n are orthogonal

5) $d_n G_n = G_n d_n = 0$ and $g_n D_n = D_n g_n = 0$

Proof

By (2)
$$d_n(x)K_n(\Gamma)G_n(y) = 0$$

$$\sum_{i=1}^n d_i(x)K_i(\alpha)G_i(y) = 0$$

$$\sum_{i=1}^n G_i(d_i(x)K_i(\alpha)G_i(y)) = 0$$

0

0

$$\sum_{i=1}^{n} G_i \left(d_i (\sigma^{n-i}(x)) \right) K_i(\alpha) g_i \left(G_i (\tau^{n-i}(y)) \right) = 0$$

$$\sum_{i=1}^{n} G_i \left(d_i (\sigma^{n-i}(x)) \right) K_i(\alpha) G_i \left(g_i (\tau^{n-i}(y)) \right) = 0$$
Replace $g_i (\tau^{n-i}(y))$ by $d_i (\sigma^{n-i}(y))$

$$\sum_{i=1}^{n} G_i \left(d_i (\sigma^{n-i}(x)) \right) K_i(\alpha) G_i \left(d_i (\sigma^{n-i}(x)) \right) = 0$$
Replace $K_i(\alpha)$ by $K_i(\alpha) m K_i(\alpha)$

$$\sum_{i=1}^{n} G_i \left(d_i (\sigma^{n-i}(x)) \right) K_i(\alpha) m K_i(\alpha) G_i \left(d_i (\sigma^{n-i}(x)) \right) = 0$$

Since M is semiprime

$$\begin{split} \sum_{i=1}^{n} G_i \left(d_i (\sigma^{n-i}(x)) \right) &= 0 \\ G_n d_n &= 0 \\ \text{By} (2) \quad G_n(y) K_n(\Gamma) d_n(x) &= 0 \\ \sum_{i=1}^{n} G_i(x) K_i(\alpha) d_i(y) &= 0 \\ \sum_{i=1}^{n} d_i (G_i(x) K_i(\alpha) d_i(y)) &= 0 \\ \sum_{i=1}^{n} d_i \left(G_i (\sigma^{n-i}(x)) \right) K_i(\alpha) d_i \left(d_i (\tau^{n-i}(y)) \right) &= 0 \\ \text{Replace } d_i (\tau^{n-i}(y)) \text{ by } G_i(\sigma^{n-i}(x)) \\ \sum_{i=1}^{n} d_i \left(G_i (\sigma^{n-i}(x)) \right) K_i(\alpha) d_i \left(G_i (\sigma^{n-i}(x)) \right) &= 0 \\ \text{Replace } K_i(\alpha) \text{ by } K_i(\alpha) m K_i(\alpha) \\ \sum_{i=1}^{n} d_i \left(G_i (\sigma^{n-i}(x)) \right) K_i(\alpha) m K_i(\alpha) d_i \left(G_i (\sigma^{n-i}(x)) \right) &= 0 \end{split}$$

Since M is semiprime

 $\sum_{i=1}^{n} d_i \left(G_i \left(\sigma^{n-i}(x) \right) \right) = 0$ $d_n G_n = 0$ By (3) $g_n(x) K_n(\Gamma) D_n(y) = 0$ $\sum_{i=1}^{n} g_i(x) K_i(\alpha) D_i(y) = 0$ $\sum_{i=1}^{n} D_i(g_i(x) K_i(\alpha) D_i(y)) = 0$ 59 Orthogonal Generalized Higher (σ, τ)

$$\begin{split} \sum_{i=1}^{n} D_i \left(g_i(\sigma^{n-i}(x)) \right) K_i(\alpha) d_i \left(D_i(\tau^{n-i}(y)) \right) &= 0 \\ \sum_{i=1}^{n} D_i \left(g_i(\sigma^{n-i}(x)) \right) K_i(\alpha) D_i \left(d_i(\tau^{n-i}(y)) \right) &= 0 \\ \text{Replace } d_i(\tau^{n-i}(y)) \text{ by } g_i(\sigma^{n-i}(x)) \\ \sum_{i=1}^{n} D_i \left(g_i(\sigma^{n-i}(x)) \right) K_i(\alpha) D_i \left(g_i(\sigma^{n-i}(x)) \right) &= 0 \\ \text{Replace } K_i(\alpha) \text{ by } K_i(\alpha) m K_i(\alpha) \\ \sum_{i=1}^{n} D_i \left(g_i(\sigma^{n-i}(x)) \right) K_i(\alpha) m K_i(\alpha) D_i \left(g_i(\sigma^{n-i}(x)) \right) &= 0 \\ \text{Since M is semiprime} \\ \sum_{i=1}^{n} D_i \left(g_i(\sigma^{n-i}(x)) \right) &= 0 \end{split}$$

$$D_{n}g_{n} = 0$$

$$By (3) \quad D_{n}(x)K_{n}(\Gamma)g_{n}(y) = 0$$

$$\sum_{i=1}^{n} D_{i}(x)K_{i}(\alpha)g_{i}(y) = 0$$

$$\sum_{i=1}^{n} g_{i}(D_{i}(x)K_{i}(\alpha)g_{i}(y)) = 0$$

$$\sum_{i=1}^{n} g_{i}\left(D_{i}(\sigma^{n-i}(x))\right)K_{i}(\alpha)g_{i}\left(g_{i}(\sigma^{n-i}(y))\right) = 0$$
Replace $g_{i}(\sigma^{n-i}(y))$ by $D_{i}(\sigma^{n-i}(y))$

$$\sum_{i=1}^{n} g_{i}\left(D_{i}(\sigma^{n-i}(y))\right)K_{i}(\alpha)g_{i}\left(D_{i}(\sigma^{n-i}(y))\right) = 0$$
Replace $K_{i}(\alpha)$ by $K_{i}(\alpha)mK_{i}(\alpha)$

$$\sum_{i=1}^{n} g_i \left(D_i \left(\sigma^{n-i}(y) \right) \right) K_i(\alpha) m K_i(\alpha) g_i \left(D_i \left(\sigma^{n-i}(y) \right) \right) = 0$$

Since M is semiprime

$$\sum_{i=1}^{n} g_i \left(D_i (\sigma^{n-i}(y)) \right) = 0$$

$$g_n D_n = 0$$

(6) $D_n G_n = G_n D_n = 0$
Proof

Proof

$$D_n(x)K_n(\Gamma)G_n(y) = 0$$

$$\sum_{i=1}^n D_i(x)K_i(\alpha)G_i(y) = 0$$

$$\sum_{i=1}^{n} G_{i}(D_{i}(x)K_{i}(\alpha)G_{i}(y)) = 0$$

$$\sum_{i=1}^{n} G_{i}\left(D_{i}(\sigma^{n-i}(x))\right)K_{i}(\alpha)g_{i}\left(G_{i}(\tau^{n-i}(y))\right) = 0$$

$$\sum_{i=1}^{n} G_{i}\left(D_{i}(\sigma^{n-i}(x))\right)K_{i}(\alpha)G_{i}\left(g_{i}(\tau^{n-i}(y))\right) = 0$$
Replace $g_{i}(\tau^{n-i}(y))$ by $D_{i}(\sigma^{n-i}(x))$

$$\sum_{i=1}^{n} G_{i}\left(D_{i}(\sigma^{n-i}(x))\right)K_{i}(\alpha)G_{i}\left(D_{i}(\sigma^{n-i}(x))\right) = 0$$
Replace $M_{i}(x)$ is $M_{i}(x)$.

Replace $K_i(\alpha)$ by $K_i(\alpha)mK_i(\alpha)$

$$\sum_{i=1}^{n} G_i\left(D_i(\sigma^{n-i}(x))\right) K_i(\alpha) m K_i(\alpha) G_i\left(D_i(\sigma^{n-i}(x))\right) = 0$$

Since M is semiprime

$$\begin{split} \sum_{i=1}^{n} G_i \left(D_i (\sigma^{n-i}(x)) \right) &= 0 \\ G_n D_n &= 0 \\ G_n(x) K_n(\Gamma) D_n(y) &= 0 \\ \sum_{i=1}^{n} G_i(x) K_i(\alpha) D_i(y) &= 0 \\ \sum_{i=1}^{n} D_i (G_i(x) K_i(\alpha) D_i(y)) &= 0 \\ \sum_{i=1}^{n} D_i \left(G_i(\sigma^{n-i}(x)) \right) K_i(\alpha) d_i \left(D_i(\tau^{n-i}(y)) \right) &= 0 \\ \sum_{i=1}^{n} D_i \left(G_i(\sigma^{n-i}(x)) \right) K_i(\alpha) D_i \left(d_i(\tau^{n-i}(y)) \right) &= 0 \\ \text{Replace } d_i(\tau^{n-i}(y)) \text{ by } G_i(\sigma^{n-i}(x)) \\ \sum_{i=1}^{n} D_i \left(G_i(\sigma^{n-i}(x)) \right) K_i(\alpha) D_i \left(G_i(\sigma^{n-i}(x)) \right) &= 0 \\ \text{Replace } K_i(\alpha) \text{ by } K_i(\alpha) m K_i(\alpha) \\ \sum_{i=1}^{n} D_i \left(G_i(\sigma^{n-i}(x)) \right) K_i(\alpha) m K_i(\alpha) D_i \left(G_i(\sigma^{n-i}(x)) \right) &= 0 \end{split}$$

Since M is semiprime

$$\sum_{i=1}^{n} D_i \left(G_i (\sigma^{n-i}(x)) \right) = 0$$
$$D_n G_n = 0$$

61 Orthogonal Generalized Higher (σ, τ)

Theorem 2.4

Let M be 2-torsion free semiprime Γ -ring, $D = (D_n)_{i \in N}$ and $G = (G_n)_{i \in N}$ generalized higher (σ, τ) -K-derivation with associated higher (σ, τ) -K-derivation $d = (d_i)_{i \in N}$ and $g = (g_i)_{i \in N}$ respectively then D_n and G_n are orthogonal if and only if for all x, y \in M

(1)
$$D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0$$

(2)
$$d_n(x)K_n(\Gamma)G_n(y) + g_n(y)K_n(\Gamma)D_n(x) = 0$$

Where D_n and G_n are commutative mappings

Proof

Suppose $D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0$

Replace x by $x\alpha y$

$$\begin{split} \sum_{i=1}^{n} D_{i}(x\alpha y)K_{i}(\alpha)G_{i}(y) + G_{i}(y)K_{i}(\alpha)D_{i}(x\alpha y) &= 0 \\ \sum_{i=1}^{n} D_{i}(\sigma^{n-i}(x))K_{i}(\alpha)d_{i}(\tau^{n-i}(y))K_{i}(\alpha)G_{i}(y) + G_{i}(y)K_{i}(\alpha)D_{i}(\sigma^{n-i}(x))K_{i}(\alpha)d_{i}(\tau^{n-i}(y)) &= 0 \\ \sum_{i=1}^{n} D_{i}(\sigma^{n-i}(x))K_{i}(\alpha)d_{i}(\tau^{n-i}(y))K_{i}(\alpha)G_{i}(y) + G_{i}(y)K_{i}(\alpha)d_{i}(\tau^{n-i}(y))K_{i}(\alpha)D_{i}(\sigma^{n-i}(x)) &= 0 \end{split}$$

By lemma (1.1) we get

$$\sum_{i=1}^{n} D_i (\sigma^{n-i}(x)) K_i(\alpha) d_i(\tau^{n-i}(y)) K_i(\alpha) G_i(y) = 0$$

$$\sum_{i=1}^{n} G_i(y) K_i(\alpha) d_i(\tau^{n-i}(y)) K_i(\alpha) D_i(\sigma^{n-i}(x)) = 0$$

Hence D_n and G_n are orthogonal

Conversely:-

Let D_n and G_n are orthogonal

$$D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y) = 0$$

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) M K_i(\alpha) G_i(y) = 0$

By lemma (1.1) we get $D_n(x)K_n(\Gamma)G_n(y) = 0$ and $G_n(y)K_n(\Gamma)D_n(x) = 0$

Hence
$$D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0$$

Also $D_n(x)K_n(\Gamma)G_n(y) = 0$

$$\sum_{i=1}^{n} D_i(x) K_i(\alpha) G_i(y) = 0$$

$$\begin{split} \sum_{i=1}^{n} d_i(D_i(x)K_i(\alpha)G_i(y)) &= 0 \\ \sum_{i=1}^{n} d_i\left(D_i(\sigma^{n-i}(x))\right)K_i(\alpha)d_i\left(G_i(\tau^{n-i}(y))\right) &= 0 \\ \sum_{i=1}^{n} d_i\left(D_i(\sigma^{n-i}(x))\right)K_i(\alpha)G_i\left(d_i(\tau^{n-i}(y))\right) &= 0 \\ \text{Replace } D_i(\sigma^{n-i}(x))\text{ by } \sigma^{n-i}(x) \text{ and } d_i(y) \text{ by } \tau^{n-i}(y) \\ \sum_{i=1}^{n} d_i(\sigma^{n-i}(x))K_i(\alpha)G_i(\tau^{n-i}(y)) &= 0 \\ d_n(x)K_n(\Gamma)G_n(y) &= 0 \\ \Delta nd \\ G_n(x)K_n(\Gamma)D_n(y) &= 0 \\ \sum_{i=1}^{n} G_i(x)K_i(\alpha)D_i(y) &= 0 \\ \sum_{i=1}^{n} g_i\left(G_i(x)K_i(\alpha)D_i(y)\right) &= 0 \\ \sum_{i=1}^{n} g_i\left(G_i(\sigma^{n-i}(x))\right)K_i(\alpha)g_i\left(D_i(\tau^{n-i}(y))\right) &= 0 \\ \sum_{i=1}^{n} g_i\left(G_i(\sigma^{n-i}(x))\right)K_i(\alpha)D_i\left(g_i(\tau^{n-i}(y))\right) &= 0 \\ \text{Replace } G_i(\sigma^{n-i}(x)) \text{ by } \tau^{n-i}(y) \text{ and } g_i(\tau^{n-i}(y)) \text{ by } \sigma^{n-i}(x) \\ \sum_{i=1}^{n} g_i(\tau^{n-i}(y))K_i(\alpha)D_i(\sigma^{n-i}(x)) &= 0 \\ g_n(y)K_n(\Gamma)D_n(x) &= 0 \\ d_n(x)K_n(\Gamma)G_n(y) + g_n(y)K_n(\Gamma)D_n(x) &= 0 \end{split}$$

Theorem 2.5

Let M be 2-torsion free semiprime Γ -ring, $D = (D_n)_{i \in N}$ and $G = (G_n)_{i \in N}$ generalized higher (σ, τ) -K-derivation with associated higher (σ, τ) -K-derivation $d = (d_i)_{i \in N}$ and $g = (g_i)_{i \in N}$ respectively then D_n and G_n are orthogonal if and only if for all x, y \in M

 $D_n(x)K_n(\Gamma)G_n(y) = d_n(x)K_n(\Gamma)G_n(y) = 0$

Where D_n and G_n are commutative

Proof

Suppose $D_n(x)K_n(\Gamma)G_n(y) = 0$

Replace x by $x\alpha y$

 $\sum_{i=1}^{n} D_i(x\alpha y) K_i(\alpha) G_i(y) = 0$

$$\sum_{i=1}^{n} D_i \left(\sigma^{n-i}(x) \right) K_i(\alpha) d_i(\tau^{n-i}(y)) K_i(\alpha) G_i(y) = 0$$

By lemma (1.1) we get

$$\sum_{i=1}^{n} G_i(y) K_i(\alpha) d_i(\tau^{n-i}(y)) K_i(\alpha) D_i(\sigma^{n-i}(x)) = 0$$

Hence D_n and G_n are orthogonal

Conversely:-

Suppose D_n and G_n are orthogonal

$$D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y) = 0$$

$$D_{n}(x)K_{n}(\Gamma)G_{n}(y) = 0 \qquad \text{By lemma (1.1) we get}$$

$$\sum_{i=1}^{n} D_{i}(x)K_{i}(\alpha)G_{i}(y) = 0$$

$$\sum_{i=1}^{n} d_{i}(D_{i}(x)K_{i}(\alpha)G_{i}(y)) = 0$$

$$\sum_{i=1}^{n} d_{i}\left(D_{i}(\sigma^{n-i}(x))\right)K_{i}(\alpha)d_{i}\left(G_{i}(\tau^{n-i}(y))\right) = 0$$

$$\sum_{i=1}^{n} d_{i}\left(D_{i}(\sigma^{n-i}(x))\right)K_{i}(\alpha)G_{i}\left(d_{i}(\tau^{n-i}(y))\right) = 0$$
Replace $D_{i}(\sigma^{n-i}(x))$ by $\sigma^{n-i}(x)$ and $d_{i}(\tau^{n-i}(y))$ by $\tau^{n-i}(y)$

$$\sum_{i=1}^{n} d_{i}(\sigma^{n-i}(x))K_{i}(\alpha)G_{i}(\tau^{n-i}(y)) = 0$$

$$d_{n}(x)K_{n}(\Gamma)G_{n}(y) = 0$$

Theorem 2.6

Let M be 2-torsion free semiprime Γ -ring, $D = (D_n)_{i \in N}$ and $G = (G_n)_{i \in N}$ generalized higher (σ, τ) -K-derivation with associated higher (σ, τ) -K-derivation $d = (d_i)_{i \in N}$ and $g = (g_i)_{i \in N}$ respectively then D_n and G_n are orthogonal if and only if for all x, y \in M

 $D_n(x)K_n(\Gamma)G_n(y) = 0$ and $d_nG_n = d_ng_n = 0$

Proof

Suppose D_n and G_n are orthogonal

$$D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y) = 0$$

$$D_n(x)K_n(\Gamma)G_n(y) = 0$$
 By lemma (1.1) we get

$$\sum_{i=1}^n D_i(x)K_i(\alpha)G_i(y) = 0$$

$$\sum_{i=1}^n d_i(D_i(x)K_i(\alpha)G_i(y)) = 0$$

$$\sum_{i=1}^{n} d_i \left(D_i (\sigma^{n-i}(x)) \right) K_i(\alpha) d_i \left(G_i (\tau^{n-i}(y)) \right) = 0$$

Replace $D_i (\sigma^{n-i}(x))$ by $G_i (\sigma^{n-i}(y))$

$$\sum_{i=1}^{n} d_i \left(G_i (\sigma^{n-i}(y)) \right) K_i(\alpha) d_i \left(G_i (\sigma^{n-i}(y)) \right) = 0$$

Replace $K_i(\alpha)$ by $K_i(\alpha) m K_i(\alpha)$

$$\sum_{i=1}^{n} d_i \left(G_i (\sigma^{n-i}(y)) \right) K_i(\alpha) m K_i(\alpha) d_i \left(G_i (\sigma^{n-i}(y)) \right) = 0$$

Since M is semiprime

$$\sum_{i=1}^{n} d_i \left(G_i (\sigma^{n-i}(y)) \right) = 0$$
$$d_n G_n = 0$$
And by ([8] theorem 3 (i))

$$d_n g_n = 0$$

Conversely:-

 $D_n(x)K_n(\Gamma)G_n(y) = 0$ $\sum_{i=1}^n D_i(x)K_i(\alpha)G_i(y) = 0$

Replace $K_i(\alpha)$ by $K_i(\alpha)mK_i(\alpha)$

$$\sum_{i=1}^{n} D_i(x) K_i(\alpha) m K_i(\alpha) G_i(y) = 0$$

By lemma (1.1) we get

 $\sum_{i=1}^{n} G_i(x) K_i(\alpha) m K_i(\alpha) D_i(y) = 0$

Hence D_n and G_n are orthogonal

Theorem 2.7

Let M be 2-torsion free semiprime Γ -ring, $D = (D_n)_{i \in N}$ and $G = (G_n)_{i \in N}$ generalized higher (σ, τ) -K-derivation with associated higher (σ, τ) -K-derivation $d = (d_i)_{i \in N}$ and $g = (g_i)_{i \in N}$ respectively then if $D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(y) = G_n(y)K_n(\Gamma)MK_n(\Gamma)G_n(x)$

Then $(D_n - G_n)$ and $(D_n + G_n)$ are orthogonal

Proof

$$(D_n + G_n)(x)K_n(\Gamma)MK_n(\Gamma)(D_n - G_n)(x) + (D_n - G_n)(x)K_n(\Gamma)MK_n(\Gamma)(D_n + G_n)(x)$$

$$\begin{aligned} &(D_{n}(x) + G_{n}(x))K_{n}(\Gamma)MK_{n}(\Gamma)(D_{n}(x) - G_{n}(x)) \\ &+ (D_{n}(x) - G_{n}(x))K_{n}(\Gamma)MK_{n}(\Gamma)(D_{n}(x) + G_{n}(x)) \\ &= (D_{n}(x)K_{n}(\Gamma)MK_{n}(\Gamma)D_{n}(x)) - (D_{n}(x)K_{n}(\Gamma)MK_{n}(\Gamma)G_{n}(x)) \\ &+ (G_{n}(x)K_{n}(\Gamma)MK_{n}(\Gamma)D_{n}(x)) \\ &- (G_{n}(x)K_{n}(\Gamma)MK_{n}(\Gamma)G_{n}(x)) + (D_{n}(x)K_{n}(\Gamma)MK_{n}(\Gamma)D_{n}(x)) \\ &+ (D_{n}(x)K_{n}(\Gamma)MK_{n}(\Gamma)G_{n}(x)) \\ &- (G_{n}(x)K_{n}(\Gamma)MK_{n}(\Gamma)D_{n}(x)) - (G_{n}(x)K_{n}(\Gamma)MK_{n}(\Gamma)G_{n}(x)) \\ &= 0 \end{aligned}$$

By lemma (1.1) we get

 $(D_n + G_n)K_n(\Gamma)MK_n(\Gamma)(D_n - G_n)(x) = 0$

And $(D_n - G_n)K_n(\Gamma)MK_n(\Gamma)(D_n + G_n)(x) = 0$

Hence $(D_n - G_n)$ and $(D_n + G_n)$ are orthogonal

Corollary 2.8

Let M be 2-torsion free semiprime Γ -ring, $D = (D_n)_{i \in N}$ and $G = (G_n)_{i \in N}$ generalized higher (σ, τ) -K-derivation with associated higher (σ, τ) -K-derivation $d = (d_i)_{i \in N}$ and $g = (g_i)_{i \in N}$ respectively then if $D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(y) = g_n(y)K_n(\Gamma)MK_n(\Gamma)g_n(x)$

Then $(D_n - g_n)$ and $(D_n + g_n)$ are orthogonal

Proof

$$\begin{aligned} &(D_n + g_n)(x)K_n(\Gamma)MK_n(\Gamma)(D_n - g_n)(x) + (D_n - g_n)(x)K_n(\Gamma)MK_n(\Gamma)(D_n + g_n)(x) \\ &= (D_n(x) + g_n(x))K_n(\Gamma)MK_n(\Gamma)(D_n(x) - g_n(x)) \\ &+ (D_n(x) - g_n(x))K_n(\Gamma)MK_n(\Gamma)(D_n(x) + g_n(x)) \\ &= (D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x)) - (D_n(x)K_n(\Gamma)MK_n(\Gamma)g_n(x)) \\ &+ (g_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x)) \\ &- (g_n(x)K_n(\Gamma)MK_n(\Gamma)g_n(x)) + (D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x)) \\ &+ (D_n(x)K_n(\Gamma)MK_n(\Gamma)g_n(x)) \\ &- (g_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x)) - (g_n(x)K_n(\Gamma)MK_n(\Gamma)g_n(x)) \\ &= 0 \end{aligned}$$

By lemma (1.1) we get

 $(D_n + g_n)K_n(\Gamma)MK_n(\Gamma)(D_n - g_n)(x) = 0$

And $(D_n - g_n)K_n(\Gamma)MK_n(\Gamma)(D_n + g_n)(x) = 0$

Hence $(D_n - g_n)$ and $(D_n + g_n)$ are orthogonal

Corollary 2.9

Let M be 2-torsion free semiprime Γ -ring, $D = (D_n)_{i \in N}$ and $G = (G_n)_{i \in N}$ generalized higher (σ, τ) -K-derivation with associated higher (σ, τ) -K-derivation $d = (d_i)_{i \in N}$ and $g = (g_i)_{i \in N}$ respectively then if $d_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(y) = G_n(y)K_n(\Gamma)MK_n(\Gamma)G_n(x)$

Then $(d_n - G_n)$ and $(d_n + G_n)$ are orthogonal

Proof

$$(d_n + G_n)(x)K_n(\Gamma)MK_n(\Gamma)(d_n - G_n)(x) + (d_n - G_n)(x)K_n(\Gamma)MK_n(\Gamma)(d_n + G_n)(x)$$

$$(d_n(x) + G_n(x))K_n(\Gamma)MK_n(\Gamma)(d_n(x) - G_n(x)) + (d_n(x) - G_n(x))K_n(\Gamma)MK_n(\Gamma)(d_n(x) + G_n(x)) =$$

$$= (d_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(x)) - (d_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x)) + (G_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(x))$$

$$-(G_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x)) + (d_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(x)) + (d_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x))$$

$$-(G_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(x)) - (G_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x))$$

=0

By lemma (1.1) we get

 $(d_n + G_n)K_n(\Gamma)MK_n(\Gamma)(d_n - G_n)(x) = 0$ And $(d_n - G_n)K_n(\Gamma)MK_n(\Gamma)(d_n + G_n)(x) = 0$

Hence $(d_n - G_n)$ and $(d_n + G_n)$ are orthogonal

3. References

- [1] M. Ashraf and M. Rashid Jamal, (2010). Orthogonal DerivatiOn in –rings. Advance in Algebra. 3(1),1-6.
- [2] Ashraf, M., Khan, A., & Haetinger, C. (2010). On (σ, τ) -higher derivations in prime rings. International Electronic Journal of Algebra, 8(8), 65-79.
- [3] W.E. Barnes (1966). On the Gamma Rings of Nobusawa. pacific J. Math., 18, 411-422,
- [4] H. Kandamar (2000), The k-derivation of a gamma ring, Turk. J. Math., 24, 221-231.
- [5] N. Nobusawa (1964). On a generalization of the ring theory. Osaka J. Math. 1, 81-89.
- [6] S. M. Salih (2010). *On Prime -Rings with Derivations*. Ph.D. Thesis dep. of mathematics college of education Al-Mustansirya University.

- [7] S. M. Salih, S. J. Shaker (2018). Orthogonal generalized Symmetric Higher bi-Derivations on semiprime Γ-Rings. *Iraqi Journal of science*, *59*(2), 711-723.
- [8] S. M. Salih, H.H. Abd-Ali. Orthogonal Higher K-Derivations on semiprime Γ-Rings. to appear, (2023).
- [9] Shaker Ali and Mohammed Salahuddin Khan (2013). on orthogonal (σ,τ) -derivations in semiprime Γ -ring. *International electronic journal of algebra*, *3*, 23-39.
- [10] M. Soyt^{*}urk (1994). *Some Generalizations in prime ring with derivation*. Ph.D. Thesis, Cumhuriyet Univ. Graduate School of Natural and Applied Sci. Dep. of Mat.

⁶⁷ Orthogonal Generalized Higher (σ, τ)