
 71 

 

Received 28/April/2023; Accepted 17/July/2023 

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 23, No. 4, December 2023            

DOI: https://doi.org/10.33103/uot.ijccce.23.4.7 

 

A Hybrid Fault Detection and Fault Tolerant 

Control Based on kNN and NN Approaches for ABS 

Speed Sensors  

Ayad Q. Abdulkareem1, Abdulrahim Th. Humod2, Oday A. Ahmed3 
1Department of Electronic Engineering, University of Diyala, Diyala, Iraq 

2,3Department of Electrical Engineering, University of Technology, Baghdad, Iraq 
1eee.19.04@grad.uotechnology.edu.iq, 230040@uotechnology.edu.iq, 330205@uotechnology.edu.iq 

Abstract— To perform fault tolerance for Anti-lock Braking System (ABS), This paper 

proposes a hybrid Fault Detection and Fault Tolerant Control (FD-FTC) for ABS speed 

sensors. It utilizes a Fault Detection (FD) unit and a Data Construction (DC) unit. The 

first one, the FD unit, is based on a kNN classifier model with 99.9% fault detection 

accuracy to perform three tasks: early fault detection, fault location diagnosis, and 

excluding faulty signals from being utilized in further processes. On the other hand, the 

second one, the DC Unit, is based on two separate neural network models. These models 

have an MSE of 2.01139e-1 and a R2 of 999880 for the first model and an MSE of 

1.12486e-0 and 0.999586 for the second model. They are employed to provide an estimated 

alternative signal for the ABS speed sensors. These estimated signals are employed to 

perform two tasks: confirming fault detection declared by the FD model and compensating 

for the excluded faulty signal to fulfill fault accommodation. Both methods are trained and 

tested with MATLAB and Simulink. Results demonstrate that the proposed hybrid method 

has the ability to accurately detect and tolerate sensor faults and fulfill its design purpose, 

especially during emergency braking. 

Index Terms— Anti-lock Braking System, Fault Tolerant Control, k-Nearest Neighbour, Neural 

Networks, Speed Sensor Fault. 

I. INTRODUCTION 

Anti-lock Braking System has the ability to greatly improve vehicle safety. It is designed to 

maximize longitudinal friction force and maintain vehicle maneuverability while preventing the wheels 

from locking up during hard braking [1]. Relative slip computation accuracy is a key control for ABS, 

and it is based on the measurements of two speed sensors: vehicle speed and wheel speed sensors [2]. 

The application of the ABS fault detection and fault-tolerant control (FD-FTC) tool is beneficial to 

ensure normal braking operation under sensor malfunction or failure. 

In recent years, data-driven approaches have been increasingly used for the failure detection of 

industrial equipment and have had a lot of good results [3], [4], [5], [6], and [7]. Data-driven approaches 

do not rely on the building of exact or simplified physical models, and they can provide more accurate 

diagnostic results than traditional methods, which rely on a considerable amount of expert knowledge. 

Researchers have proposed several data-driven approaches based on machine learning and deep 

learning to solve fault detection and isolation problems. The development of the ABS speed sensor fault 

detection method has been presented by [8], where a two-separated model based on neural networks 

serves analytical redundancy purposes by being utilized to construct an alternative signal for each of 

the ABS speed sensors. These constructed signals are then utilized in FD-FTC operation. Although all 

the benefits of the implemented method are effective, a particular drawback arises during fault 

occurrence; that is, when one of the speed sensor signals is faulty, it will be exposed by examining the 

residual signal, and a fault occurrence will be stated. At the same time, this faulty signal is also being 
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utilized by one of the neural network models to construct an alternative signal for the other sensor; this 

constructed signal will certainly be inaccurate and lead to the declaration of a false fault occurrence. 

To overcome this problem, a pre-diagnosis operation is required for the faulty signal to be isolated 

before being employed in further processes. Such a diagnosis method was presented in [9], where a 

kNN-based classifier was employed to classify the ABS speed sensor state between a healthy and faulty 

state. A kNN classifier is a learning-based approach that uses past or historical input and output 

information acquired from the system to learn about the process model and then utilizes this knowledge 

for fault detection in real-time system operation [10][11]. From [9], a kNN classifier presents a good 

performance among other classifiers. A comparison was carried out among three different classifiers 

(kNN, SVM, and Decision Tree). These classifiers were trained with the same database. The accuracy 

presented by each classifier was 61.5, 75, and 99.9 percent for the DT, SVM, and kNN, respectively. 

However, in spite of that, the kNN presents an excellent advantage over the two other classifiers in 

detecting the fault within the sensor signals; it's still just performing fault detection without fault effect 

accommodation mechanisms, which is considered an essential task to fulfill tolerance operation and to 

maintain safe ABS operation during a faulty state. 

This paper presents a hybrid FD-FTC that works to detect and tolerate faults in the ABS speed 

sensors. It demonstrates the cooperation between two different methods to perform hybrid FD-FTC and 

increase the safety and reliability of the ABS utilized in most modern ground vehicles. The proposed 

hybrid FD-FTC utilizes two approaches: The first method is the kNN method, which is employed for 

early fault detection and isolating faulty signals. The second method aims to confirm the fault detection 

process and accommodate its effect by providing an alternative signal to compensate for the isolated 

signal in order to keep system behavior at an accepted normal level. 

In the sequel, Section II introduces the proposed system methodology. Section III describes the 

suggested hybrid FD-FTC method and Section IV presents the conclusion. 

II. ABS MODELLING 

A straightforward and effective method is utilized to drive the ABS model. This method is called 

the Quarter Car Model (QCM). Fig. 1 below describes the QCM-based vehicle dynamics during braking 

[12]. 

 

FIG. 1. QCM MODEL [12]. 
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During braking, the dynamic equation of the deacceleration rotating wheel is [13]: 

Ι × 𝜔̇ = 𝑅𝑟 × 𝐹𝑓𝑟 − 𝑇𝑏     (1) 

𝜔̇ =
(𝑅𝑟 × 𝐹𝑓𝑟)−𝑇𝑏 

𝛪
                                 (2) 

𝜔 = ∫
(𝑅𝑟 × 𝐹𝑓𝑟)−𝑇𝑏 

𝛪
                             (3) 

I is the wheel moment inertia, 𝜔 rotational wheel speed, 𝑅𝑟 is the wheel radius, 𝐹𝑓𝑟 is 

the friction force, 𝑇𝑏 is the brake torque. 

And by Newton's second law of motion, the linear velocity of the vehicle 𝑉𝑠 is given 

by: 

              𝑚 × 𝑉𝑠̇ =  − 𝐹𝑓𝑟        (4) 

𝑉𝑠̇ =  
− 𝐹𝑥

𝑚
       (5) 

𝑉𝑠 =  ∫
− 𝐹𝑥

𝑚
      (6) 

And the calculations of the wheel slip denoted by (𝜆) performed by [14]: 

𝜆 =  
𝑉𝑠 −𝜔 × 𝑅𝑟  

𝑉𝑠
      (7) 

Substitute the equations (3) and (6): 

𝜆 =  
∫

− 𝐹𝑥
𝑚

 −∫((𝑅 ×𝐹𝑥−𝑇𝑏)/𝐼)∗𝑅

∫
− 𝐹𝑥

𝑚

     (8) 

 The friction force 𝐹𝑓𝑟 is calculated by [14]: 

𝐹𝑥 = 𝑚 × 𝑔 ×  𝜇(𝜆)     (9) 

Here, the μ is determined by utilizing an empirical model called the Burkhardt model [15]. 

Burkhardt’s model provides an equation that illustrates the nonlinear relation between the friction 

coefficient and the wheel slip rate for the six standard roads, and it’s given below [2]: 

𝜇 = 𝐶1(1 −  𝑒𝐶2𝜆) − 𝐶3 𝜆     (10) 

𝐶1, 𝐶2, 𝑎𝑛𝑑 𝐶3 are the parameters values for the standard roads [15]. 

Fig. 2 shows a typical wheel slip - friction coefficient characteristic curve of a tire. It illustrates the 

variation of the friction coefficient (𝜇)versus the wheel slip (s) for different road conditions [16]. 

 

FIG. 2. FRICTION COEFFICIENT (Μ) VERSUS WHEEL SLIP (S) [16]. 

https://doi.org/10.33103/uot.ijccce.23.4.7


 74 

 

Received 28/April/2023; Accepted 17/July/2023 

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 23, No. 4, December 2023            

DOI: https://doi.org/10.33103/uot.ijccce.23.4.7 

 
From Fig. 2, the value of the wheel slip at which a maximum braking force can be verified is 

around S = 0.2. So, the ABS has to adjust the applied braking force to keep the slip value at the desired 

value that leads to efficient braking. 

III. PROPOSED HYBRID FD-FTC METHOD 

The proposed hybrid FD-FTC method is designed for fault detection and fault tolerant control that 

may occur in one of the ABS speed sensors in order to maintain safe operation of the ABS, especially 

during emergency or hard braking. 

A.  Fault Detection and Diagnosis Unit 

This unit employs the kNN, k set equal to 4, classifier algorithm to perform sensor Fault Detection 

and Diagnosis (FDD) tasks by means of early fault detection, fault location diagnosis and contributes 

to excluding faulty signals from being utilized in further processes. As illustrated in Fig. 3, it receives 

four input signals: the actual vehicle speed data (𝑉𝑠_𝑎𝑐𝑡𝑢), the vehicle speed rate (D_𝑉𝑠), the actual 

wheel speed data (𝜔𝑠_𝑎𝑐𝑡𝑢), and the wheel speed rate (D_𝜔𝑠). These four signals are evaluated by the 

kNN algorithm, and based on its training, the algorithm generates an output (kNN decision) that 

indicates whether a fault is detected on one of the two sensor signals or not. 

 

FIG. 3. FAULT DETECTION UNIT PROPOSED IN THIS WORK. 

During offline, the training process for the kNN classifier is performed with the MATLAB 

environment and by adopting the k-neighbors based on distance Euclidean function given by the 

following equation [17]: 

𝑑(𝑥, 𝑦) =  √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1       (11) 

where x and y are two points with n dimensions. Fig. 4 illustrates the trained model's testing results. 

The trained model is evaluated by two terms, which are sensitivity for each category and overall 

accuracy. These two terms are calculated using the following equations [9]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
      (12) 

                                𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (13) 

Where: 

 True positives (TP): the number of samples that the trained model predicted belonged to a specific 

class and which actually do belong to that class. 

 True negatives (TN) are the number of samples that the trained model predicted do not belong to 

a specific class but do not actually belong to that class. 

https://doi.org/10.33103/uot.ijccce.23.4.7
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 False positives (FP): the number of samples that the trained model predicted did belong to a 

specific class but which actually do not belong to that class. 

 False negatives (FN) are the number of samples that the trained model predicted did not belong to 

a specific class but actually did. 

Using equation (12), the sensitivities are calculated for the first, second, and third categories, and 

they are 99.5%, 100.0%, and 98.9%, respectively. This resulted, using equation (13), in an excellent 

overall accuracy of 99.5%. 

A more general dependent classifier test evaluation is performed with two Plots, which are the 

Confusion Matrix (CM) illustrated in Fig. 4-A and the plot of True Positive Rates (TPR) and False 

Negative Rates (FNR) illustrated in Fig. 4-B. From both figures, the trained model showed almost 

perfect classification ability for the input data samples, with a slight misclassification with respect to 

the present categories. From the test evaluation, the trained model was considered to have a very good 

response in distinguishing among different operational conditions and represents a very good choice to 

serve as an FD method. 

   
                      (A)                 (B) 
 

FIG. 4. KNN MODEL TRAINING RESULTS: (A) CM PLOT., (B) TPR- FNR PLOT. 

B.  Data Construction Unit 

From the perspective of active fault tolerance, a healthy standby signal is required to compensate 

for the isolated faulty one. These healthy signals can be provided with either hardware or analytical 

redundancy. In this paper, a MLP-based Neural Network (MLP-NN) aims for fast curve fitting and is  

utilized to provide an estimated signal for both of the ABS speed sensors to serve as healthy standby 

signals. The output of MLP-NN first performs the fault detection task by residual signal threshold that 

confirms the kNN fault detection, and then performs fault effect accommodation by using a 

compensating the excluded faulty signal. 

The MLP-NN receives two signals from the two speed sensors and employs them based on the 

principle of curve fitting to produce two estimated signals. However, when one of the two speed sensors 

signals is classified as faulty by the kNN classifier, the estimation operation based on that faulty signal 

is disabled. 

Two MLP network models have been created and trained separately. The Vehicle Speed Estimator 

(VSE) and Wheel Speed Estimator (WSE) models. The first model is the VSE model, which is utilized 

to construct or estimate the vehicle speed. Its input layer is formed by the actual wheel speed signal 

(𝜔𝑠) and its rate (𝜔𝑠̇ ), while the output is considered to be the constructed vehicle speed signal (𝑉𝑠̂). The 

second model is the WSE model, which is utilized to construct or estimate wheel speed. Its input layer 

is formed by the actual vehicle speed signal (𝑉𝑠) and its rate (𝑉𝑠̇). While the output is considered to be 

the constructed wheel speed signal (𝜔𝑠̂). These two models are identical in their topology, and they 

differ only in input-output terms. Fig. 5 shows the topology of the proposed MLP-NN model. 

https://doi.org/10.33103/uot.ijccce.23.4.7
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FIG. 5. MLP – NN MODEL TOPOLOGY. 

The evaluation operations of both models were evaluated using the MATLAB environment, as 

their structures are shown in Fig. 6 and Fig. 7, respectively. 

 

FIG. 6. VSE DATA CONSTRUCTION MODEL STRUCTURE. 

 

FIG. 7. WSE DATA CONSTRUCTION MODEL STRUCTURE. 

The training process was performed with two separate datasets prepared for each model, and each 

dataset has a total of 17,436 samples. Furthermore, Each dataset has been divided into the following 

three groups: The first group is 70% (12206 samples) of the dataset and is employed to train the model. 

The second group is 15% (2615 samples) of the dataset and is employed to train the model validation. 

The third group is 15% (2615 samples) of the dataset and is employed to train the model for testing 

purposes. During training, The training data patterns are fed to the network, and the biases and weights 

values are changed until the error of the training data samples is close to the lowest accepted limit.  

Tables I and II demonstrate the performance results for the two models. They display the values of 

Mean Squared Error (MSE) and the regression coefficient R2 as related to the three utilized datasets 

(training, testing, and validation datasets), and it can be seen that both trained models will perform 

extremely well. as the MSE approaches zero and R2 approaches unity. 
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TABLE I.  PERFORMANCE RESULTS OF VSC MODEL 

Data Sets NO. of Samples MSE R2 

Training 12206 6.71313e-1 0.999751 

Validation 2615 6.36787e-1 0.999759 

Testing 2615 1.12486e-0 0.999586 

TABLE II. PERFORMANCE RESULTS OF WSC MODEL 

Data Sets NO. of Samples MSE R2 

Training 12206 1.90927e-1 0.999894 

Validation 2615 2.35444e-1 0.999874 

Testing 2615 2.01139e-1 0.999880 

C.  Reconfiguration Mechanism Unit 

This unit is designed to apply certain conditions using the outputs of both the kNN classifier unit 

output (kNN decision) and the data construction unit output (constructed signals), then perform the 

required reconfigurations in order to maintain normal operation in a faulty state. 

Fig. 8 illustrates the flowchart of the proposed method. The operation procedure performed by it 

can be described as follows: The acquired data signals from both sensors (𝑉𝑠 and 𝜔𝑠) are fed to the FDD 

unit, DC unit, and the reconfiguration unit. 

At the FDD unit, these (𝑉𝑠 and 𝜔𝑠) signals and the corresponding rates of change were examined 

by the kNN classifier model, and a related classification output signal was generated. This output signal 

was informed by the kNN decision and was considered a pre-fault detection and diagnosis. The kNN 

decision signal was fed to the DC unit and reconfiguration unit. 

At the DC unit, after receiving data signals (𝑉𝑠 and 𝜔𝑠) and the kNN decision signal, the kNN 

decision signal was examined. If this kNN decision indicates a healthy state, then both VSC and VSC 

models will operate normally and generate the corresponding constructed signals. If the kNN decision 

belongs to one of the predefined faulty classes, then the DC unit disables one of the developed models 

that accepts the detected faulty signal as an input signal. In other words, if the faulty signal is the 𝜔𝑠, 

then the VSE model will be disabled; if the faulty signal is the 𝑉𝑠, then the WSE model will be disabled. 

The disable operation performed by the DC unit is an essential operation because it prevents VSC 

or WSC models from generating a constructed signal based on a faulty signal. It reveals the important 

role performed by the kNN classifier. Furthermore, disabled operation is the main reason behind 

employing the kNN classifier as a fault detection model. 

At the reconfiguration unit, after receiving data signals (𝑉𝑠 and 𝜔𝑠), kNN decision signal, and 

constructed data signals, the kNN decision signal was examined. If this kNN decision indicates a healthy 

state, then the actual sensor signals (𝑉𝑠 and 𝜔𝑠) are passed as output and no modifications are applied. 

If the kNN decision belongs to one of the predefined faulty classes, then the reconfiguration unit extracts 

a residual signal by subtracting the constructed signal from the corresponding actual faulty signal. Then, 

this residual signal is compared to a specified threshold value to confirm the faulty state declared by the 

FD unit. 

After fault occurrence is confirmed, the reconfiguration mechanism performs fault-tolerant 

operation by adopting the constructed signal provided by the DC unit as a replacement for the faulty 

detected signal and to be utilized in further system processes, including slip rate calculation. 

It’s important to mention that, in this thesis, the fault was assumed to occur only on one of the two 

sensors at a time and not both. 
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FIG. 8. FLOW CHART OF THE PROPOSED HYBRID METHOD. 
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Fig. 9 below shows the ABS model based on quarter-car model implementation in addition to both 

the proposed models, kNN and data construction models, for online fault detection. 

 

FIG. 9. IMPLEMENTATION OF ABS MODEL WITH THE PROPOSED METHOD. 

After the system was implemented, an online performance test was conducted. In the 

test, the fault was assumed to be in the vehicle speed sensor only; furthermore, the injected 

faults (𝑓1(𝑡) 𝑎𝑛𝑑 𝑓2(𝑡)) were assumed to be repeated in different periods of time. 

Moreover, these (𝑓1(𝑡) 𝑎𝑛𝑑 𝑓2(𝑡)) are linear and given by the equations below: 

𝑓1(𝑡) = {
10𝑡 − 20 2 ≤ 𝑡 ≤ 3
40 − 10𝑡 3 ≤ 𝑡 ≤ 4

                                                       (14) 

𝑓2(𝑡) = {
10𝑡 − 60 6 ≤ 𝑡 ≤ 7
80 − 10𝑡 7 ≤ 𝑡 ≤ 8

                           (15) 

Fig. 10 shows the applied faulty signal and the corresponding hybrid FD-FTC response: 

 

 

FIG. 10. ACTUAL VEHICLE AND WHEEL SPEED SIGNALS WITH INJECTED FAULTS. 

https://doi.org/10.33103/uot.ijccce.23.4.7
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Regarding the flowchart of the implemented FD-FTC, firstly, the two faulty speed sensor signals 

with corresponding rates of change were examined by the FD unit that performs a pre-fault detection 

task. The FDD unit performed examination tasks and generates an output signal called kNN-Decision. 

And the output signal of the FDD unit displayed in Fig. 11. 

 

FIG. 11. FDD UNIT OUTPUT (KNN DECISION SIGNAL). 

As illustrated in Fig. 11. The FDD unit detected and diagnosed two faulty states within the 

examined two speed signals, and both states fall into category (2), indicating that the fault existed and 

it was in the vehicle speed sensor. 

The FDD unit's output signal and the actual speed sensor signal were received by the DC unit. Then, 

based on the kNN decision signal, DC unit enabled only the VSC model and employed the wheel speed 

sensor signal (𝜔𝑠_Act.) to construct an alternative signal (𝑉𝑠_Const.) that corresponds to the faulty detected 

vehicle speed sensor signal. Fig. 12 compares the constructed vehicle speed signal (𝑉𝑠_Const.) with the 

actual vehicle speed sensor signal (𝑉𝑠_Act.). 

 

 

FIG. 12.  𝑉𝑠_CONST. WITH 𝑉𝑠_ACT SIGNALS. 

The reconfiguration unit received the actual and constructed signals as well as the kNN decision 

signal. Based on the kNN decision signal, the reconfiguration unit worked to extract a residual signal, 

which is the difference between the actual vehicle speed sensor signal and the constructed vehicle speed 

signal received from the DC unit. Fig. 13 displays the generated residual signal resulted from 

subtraction between the actual signal and constructed signals. 

https://doi.org/10.33103/uot.ijccce.23.4.7
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FIG. 13. GENERATED RESIDUAL SIGNAL AT THE RECONFIGURATION UNIT. 

 

FIG. 14. GENERATED RESIDUAL SIGNAL AT THE RECONFIGURATION UNIT. 

The reconfiguration operation was performed for the interval from point (A) to point (B) and from 

point (C) to point (D). As shown in Fig. 14, the faulty part of the signal is isolated and replaced by 

equavelent healthy part from constructed signal. The output signals of the reconfiguration mechanism unit 

were used for wheel slip computation. Fig. 15 displays two wheel slip curve responses: one was calculated 

using healthy signals, while the other was calculated based on reconfigured signals. 

 

 

FIG. 15. WHEEL SLIP CURVES - FAULTY STATE AND IDEAL STATE. 

As displayed in Fig. 15, both signals were similar to each other except that there was a slight trip 

in the reconfigured slip signal at points L, M, N, and O. This slight trip occurred due to the decision 

https://doi.org/10.33103/uot.ijccce.23.4.7
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time taken by the reconfiguration unit to shift from employing the detected faulty signal to employing 

the responding constructed signal in wheel slip calculation. 

From the test results, the implemented method presented stable performance against the injected 

faults, and the slip wheel was not affected by these faults due to the fault management applied by the 

implemented hybrid FDD-FTC. Compared to [9], the proposed method presents two advantages. The 

first one is a higher fault detection accuracy since, beside kNN fault detection, it performs fault detection 

confirmation through residual signal generation, and the second one is fault effect accommodation or 

fault tolerance. While, compared to [8], based on the kNN decision signal, it avoids false detection 

alarms. It utilizes the kNN decision signal to stop signal construction that employs faulty signals. 

IV. CONCLUSIONS 

To attain a high level of fault detection and fault tolerance, FD-FTC was implemented for ABS 

speed sensors. The implemented hybrid FD-FTC is based on the cooperation of two models: a kNN 

classifier with 99.9% fault detection ability and Neural Network models trained to perform fast curve 

fitting with MSE of 2.01139e-1 and R2 of 999880 for the WSC model and MSE of 1.12486e-0 and 

0.999586 for the VSC model. The proposed FD-FTC manages to overcome the previous work's 

limitations by providing fault tolerance for the detected faults in ABS speed sensors.  

Both models were trained and tested in the MATLAB environment, and the result shows that the 

implemented hybrid method successfully tolerates the occurring sensor faults, fulfilling its design 

purpose. As a next step for increasing ABS reliability, a hydraulic unit fault tolerance is planned to be 

implemented. 
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