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A B S T R A C T 

            In this paper, two doubly truncated semicircular distributions, doubly truncated Semicircular 

Exponentiated Weibull (    ) and doubly truncated Semicircular Generalized Gompertz          

are presented. The most important statistical properties, including moments, characteristic function, 

trigonometric moments, quantile function, simulated data, reliability stress strength model, Shannon 
entropy, and relative entropy, are obtained. 

 

Keywords: Semicircular distributions; Exponentiated Weibull; Generalized Gompertz; Entropy; 

Stress-Strength reliability  
: 

1. Introduction  

In most cases in real life, the study and analysis of truncated probabilistic models makes more 

sense. This issue takes on a greater dimension when studying the angular and circular data. 

Below are some studies on both topics.  

   Moments of doubly truncated Logistic distribution are considered by Balakrishnan and 

Kocherlakota (1986). Mittal and Dahiya (1987)  discussed some methods of estimation for 

doubly truncated normal distribution. Khurana and Jha (1987)  derived an expression for rth 

moment function of order statistic of doubly truncated Pareto distribution. Wingo (1988)  

presented the doubly truncated Weibull distribution with some estimation issues. Mohie El-

Din et al. (1997) studied the moments of order statistics from doubly truncated linear 

exponential distribution. Ismail and Abu-Youssef (2014) studied the recurrence relations 

between single and product moments of order statistics from doubly truncated modified 

Makeham distribution. Xin et al. (2020) presented an accelerated Life Test Method for the 

Doubly Truncated Burr Type XII Distribution. Abid and Jani (2021) presented two doubly 

truncated generalized distributions, doubly truncated generalized Gompertz distribution and 

doubly truncated Marshal-Olkin extended Uniform distribution.   Toshihiro Abe et al (2010) 

applied Inverse Stereographic Projection to develop symmetric circular models. Dattatreya 

Rao et al (2011) generated Cauchy type models by inducing Stereographic Projection. Phani 

et al. (2013) constructed some semicircular distributions by applying Inverse Stereographic 
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projection. Girija et al (2013) presented a new circular model called Stereographic 

Lognormal distribution on the lines of Minh and Farnum (2003). Dattatreya Rao et al. (2016) 

developed a circular logistic distribution by applying inverse stereographic projection. 

Goodness of fit is conducted for a real data. Yedlapalli et al (2017) derived the trigonometric 

Moments of the Stereographic Semicircular Gamma Distribution.  Yedlapalli et al (2020) 

presented an arc tan-Exponential Type Distributions.  

Suppose that      and      are the cdf and pdf of a semicircular distribution on the 

interval      , then the truncated cdf and pdf of that distribution on the interval     ] are 

given respectively by 
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Where           The following two subsections are interested in using the cdf and pdf 

mentioned above to introduce new truncated semicircular distributions that are useful for 

studying truncated semicircular data. 

 

2. Truncated Semicircular Exponentiated Weibull (    ) Distribution 

Suppose      and      in      and      represent the cdf and pdf of the 

semicircular exponentiated Weibull distribution that are given respectively,  
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The      distribution reliability measures include reliability function          , hazard 

function          , cumulative hazard function          , and reverse hazard function 

          can easily be written respectively as 
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The     non-central moment of the      distribution,          , can be obtained as 

follows, where,     (
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Thus, the     non-central moment of the      distribution is given by 
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So, the characteristic function of the      distribution can be obtained as  
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Furthermore, from          , the                     non-central trigonometric 

moments can be obtained as 
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where              and            as in      respectively with        and     .  
 

2.1 Stress Strength Model of      Distribution  

Consider two independent random variables, say          and            , that 

follow      distribution with different parameters. The reliability stress strength model of 

the      distribution can be obtained by  
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2.2 Shannon Entropy of      Distribution 

The Shannon entropy        can be obtained as                  Since 
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Therefore, the Shannon entropy of the      distribution can be obtained as 
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 where   ̈,   ̈,   ̈ and   ̈ are respectively given in                and     . 
  

2.3  Relative Entropy of      Distribution 

The relative entropy of the      distribution can be obtained through the following formula 
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Now, the relative entropy of the      distribution can be obtained as 
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The     non-central moment of the       distribution,             can be obtained as 

follows 

           ∫              
 

 
                                                                                       

                  ∫      

  ̇ 
     (

 

 
) 

 
 

 
( 

    (
 
 
*  

  +

*   
 

 

 
( 

    (
 
 
*  

  +

+

   

 

 

                                                                       (      (
 

 
))                                  

  

Using the transformation       (
 

 
)          (

 

 
), and    

 

  
  

 

   where   

      ],        (
 

 
) and        (

 

 
)   then  

                

 ̇  
∫ (     (

 

 
))

 

  (
 

 
) 

 
 

 
( 

 (
 
 
) 
  *

*   
 

 

 
( 

 (
 
 
) 
  *

+

   
  

      

      

 ̇  
∫ (∑

     

              
(

(
 

 
)
 

(
 

 
)
 
  

)

  
 

 

 
   )

 

  

                                

                                                      (
 

 
) 

 
 

 
( 

 (
 
 
) 
  *

*   
 

 

 
( 

 (
 
 
) 
  *

+

   

  

  



177         Two Doubly Truncated Semicircular 

Let    
(
 

 
)
 

(
 

 
)
 
  

     (
 

 
  )

    

    
 

   (
 

 
  )

    

   , where           ] 

with     
(
  

 
)
 

(
  

 
)
 
  

, and     
(
  

 
)
 

(
  

 
)
 
  

 . Now  

                

 ̇  
∫ (∑

     

              
   

 

  
   )

 

  (
 

 
  )

   ⁄
   

                          

                
 

 

 
( 

 (
 
 

  )
   ⁄

 
  +

[   
 

 

 
( 

 (
 
 

  )
   ⁄

 
  +

]

   

 

   (
 

 
  )

   ⁄

  

  

Since,  [   
 

 

 
( 

 (
 
 

  )
   ⁄

 
  +

]

   

 ∑      (   
 

) 
 

  

 
( 

 (
 
 

  )
   ⁄

 
  + 

 
    . Now 

                  

 ̇ 
∑      (   

 
) 

   ∫ (∑
     

              
   

 

  
   )

 
   

   

                        

                       (
 

 
  )

   ⁄

      
 

         
 

 
 

 (
 
 

  )
   ⁄

  

  (
 

 
  )

   ⁄

  

         

By using        
 

 
 

 (
 
 

  )
   ⁄

 

 ∑
           

  
(

 

 
)

 

   (
 

 
  )

   ⁄
  

   , we have 

                  

 ̇ 
∑ ∑

             

  
(

 

 
)

 

(   
 

)      
 

  
   

 
                             

     ∫ (∑
     

              
   

 

  
   )

 
   

    
      (

 

 
  )

   ⁄
 

  (
 

 
  )

   ⁄

  

  

By using  
      (

 

 
  )

   ⁄

 ∑
      

  
  (

 

 
  )

   ⁄
 
   , then 

                  

 ̇ 
∑ ∑ ∑

                   

    

 
   

 
   

 
     (

 

 
)

 

                 

         (   
 

)      
 

 ∫ (∑
     

              
   

   )
    

    
 

 
  (

 

 
  )

 
 

 
     

  

  

By using   , (
 

 
  )

 
 

 
     

 ∑ (
 

 

 
     

 
*      (

 

 
)

 
 

 
       

 
   . We have  

                  

 ̇ 
∑

                     

     
  (

 

 
)

 
 
                              

                     (   
 

) (
 

 

 
     

 
*       

 

 ∫ (∑
     

              
   

   )
    

        
 

 
  (

 

 
)
 

 

 
       

   
                                                                                       

              

 ̇ 
∑

                     

     
  (

 

 
)

 
 
             

                     (   
 

) (
 

 

 
     

 
*       

 

 ∫ (∑
     

              
   

   )
 

  
 

 
            

   

   

                                                                                      

  

According to  ∑      
      ∑         

   is a natural number,      
  and    

 

   
∑          

               the            with    
     

              
  we get 



                                                                                                         Salah H. Abid et al. /MJPAS 1(1) (2023) 164-174         178 

 

                  

 ̇ 
∑

                       

     
  (

 

 
)

 
 
                

                              (   
 

) (
 

 

 
     

 
*  

     
 

 ∫    
 

 
           

   

   

   

                      

 ̇ 
∑

                       

     
  (

 

 
)

 
 
           

              (   
 

) (
 

 

 
     

 
*       

 

  
     

 
 
         

      
 
 
         

  
 

 
         

  

Thus, the     non-central moment of the       distribution is given by 
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So, the characteristic function of the       distribution can be obtained as  
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The reliability stress strength model of the       distribution can be obtained by  
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By inserting  (    (
 

 
) ) in        , the stress strength of the       distribution can be 

obtained as follows 
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3.2  Shannon Entropy of       Distribution 
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 Therefore, the Shannon entropy of the       distribution can be obtained as 
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where    ̈   ̈   ̈ and   ̈ are respectively given in                and     .  

 

3.3 Relative Entropy of       Distribution 
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Now, the relative entropy of the       distribution is given by 
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