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A B S T R A C T 

The hydraulic system plays an important role in the design of many mechanical devices due to its high 

power to weight ratio. In this work, a theoretical study of a hydraulic stimulator was performed to conduct 

suspension tests in a quarter car in the laboratory. Due to high nonlinearity in the hydraulic systems, a 

robust controller based upon integral sliding mode (ISMC) with nonstandard backstepping was used to 

perform the tracking process of the hydraulic actuator to the required road profiles. The controller design 

divided into two parts: the first part deals with the generation of the ideal control force which satisfied all 

the tracking requirements by using ISMC. The second part of the controller is the replacing of the ideal 

control force with the actual hydraulic force with all parameters by using nonstandard backstepping 

control. The effectiveness of the exciter control system was performed by using two road profiles i.e. 

Bump road profile and random road profile. 

 

© 2020 University of Al-Qadisiyah. All rights reserved.    

1. Introduction

Active vibration control is one of the most advanced technologies to 

improve functionality and safety of mechanical structures [1], [2]. 

Hydraulic systems have been widely used in a large number of fields 

applications to perform the activity of these vibration systems due to their 

small size to power ratios and their ability to apply very large force and 

torque. Hydraulic systems play an important role in transportation, earth 

moving equipment, aircraft and industry machinery with heavy duty 

applications [3], [4] . The hydraulic system is highly nonlinear system due 

to different parameters such pressure flow characteristic, variations of 

control volumes and associated stiffness, etc. Merritt [5]. From the control 

point of view, the hydraulic actuator have two main functions: the first 

one is the force tracking control Niksefat et al. [6] and the second one was 

the position control Ali et al. [7]. In this work, the hydraulic system 

designed as an exciter for testing the quarter car suspension system model 

in the laboratory i.e. for generation road profiles for the system. 

Therefore, the literature focused on the positioning control of the 

hydraulic system . There are many researches used the linearized dynamic 

equation of the hydraulic servo-system such as Eong L. et al.  [8], Dean 

H. et al. [9] and others. This linear system is not suitable to give real 

results when applying control methods because of physical of the 

hydraulic system which is highly nonlinear.  Another trends of studies 

used linear control methods such as G. P. Liu et al. [10], Bobrow et al. 

[11] etc.  G. P. Liu et al. [10] performed analytical and experimental study 

for two hydraulic actuators to track the position of the system by using  an 
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optimal-tuning nonlinear PID control strategy of two hydraulic actuators 

to track the position of the system. In the same context,  Bobrow et al. 

[11] adopted the optimal linear quadratic control to solve the problem of a 

servo single rod hydraulic cylinder system. These linear control methods 

such as PID controller, pole placement, optimal controls etc. which are 

not sensitive for disturbances and nonlinearities of the hydraulic system. 

On the other hand, Xiuping Yuan et al.[12]  performed an analytical study 

of the single rod hydraulic actuator and made certain the structure of the 

Fuzzy controller, input or output variable, the quantitative variable, the 

proportional variable and fuzzy reasoning theorem based on the 

manipulative experiment. Backstepping control method is one of the 

robust control methods and used by many researchers such as  Prut 

Nakkarat et al. [13] and others. They employed an experimental and 

theoretical study of the electrohydraulic actuator. The researchers derived 

directly the dynamic equation based upon force variables instead of 

position variables. They used proportional integral observer to estimate 

the force rate and pressure. Sliding mode controller is the one of the well 

algorithms used in hydraulic systems since it has its outstanding 

characteristics in compensating for the nonlinearities and disturbances of 

electromechanical systems, therefore many of researchers applied these 

methods on electrohydraulic systems, for example Y Liu et al. [14], Kai 

Guo et al. [15] and others.  Y Liu et al. [14]  designed a standard sliding 

mode controller for the electrohydulic system connected to the flexible 

load, i.e. spring and mass. They introduced first-order weighted error 

function as sliding surface. the experimental results presented the 

effectiveness of the position control of this system. While,  Kai Guo et al. 

[15] performed a theoretical and experimental study for force tracking of 

the electrohydraulic actuator. They used cascade controller based on an 

extended disturbance observer to track desired position trajectory for 

electro-hydraulic single-rod actuators in the presence of both external 

disturbances and parameter uncertainties. The researchers used sliding 

mode controller to compensate the disturbance estimation error estimated. 

In the same context, they used the backstepping techniques with Lapenove 

stability for tracking the actuator pressure. they presented that the 

proposed controller gives excellent tracking performance in the presence 

of the disturbances and nonlinearities.  

The main objective of the present work is to design and implement an 

ISMC with non-standard backstepping for the exciter system with 

hydraulic actuator.  The first step in this controller is to design an ideal 

control force to perform the required single using ISMC. The current 

ISMC is an update to the conventional sliding mode, on which the 

reaching phase was eliminated by initiating the system state at sliding 

surface, therefore, the robustness is per formed from the first instant. The 

feature of the ISMC is that it keeps the order of the system where the 

uncertainties and perturbations rejected from the system model and make 

the system as an ideal model with known nominal parameters. In addition, 

ISMC can also be used as a perturbation’s estimator, which solves one of 

the main drawbacks of the sliding mode control, which is the chattering 

problem Utkin et al. [16]. The second step is the inclusion of the nonlinear 

single- rod hydraulic actuator as controller force by using the non-

standard backstepping which based on the sliding mode control to 

perform stability. Also, the observer sliding mode control was used as a 

differentiator of the ideal control force in the backstepping step due to the 

nonlinearities and the uncertainties appears in the derivative of the ideal 

control force.  

2. Mathmatical Modelling 

Mathematical model is defined as a set of equations which describe 

the dynamic characteristic of the system there are differed way to 

represent the model depending on the application of the system and 

circumstances, one mathematical model may be better suited than the 

other models for specific.  The exciter model system used in this paper 

consists of mass (m) which tracked the required path generated by the 

actuator, Fig. (1). Therefore, the mathematic model presented as: 

𝑚𝑧̈ = 𝑢 − 𝑚𝑔 − 𝑐𝑧̇ (1) 

Where 𝑧 is the displacement of the mass and u is the ideal control 

force, g is the acceleration of gravity and c is the damping coefficient of 

the actuator. 

Figure 1.  schematic of the model 

The force which be used to generate path of the system is produced by 

hydraulic actuator. Therefore, it is necessary to explain the dynamics 

equation of the actuator and servo valve, firstly the actuator dynamics 

equation is: 

𝐹ℎ = 𝑃1𝐴1 + 𝑃2𝐴2     (2) 

Where 𝐹ℎis the actuator hydraulic force, 𝑃1 is pressure at the chamber 

(1) of the cylinder, 𝑃2is pressure at the second chamber of the cylinder, 𝐴1 

is the cross sectional area of the chamber (1) while 𝐴2 the cross sectional 

area of the chamber (2). The derivation of P1 & P2 will be started from 

the continuity equation through the cylinder which be written as in [5], 

[17] 
𝑉1

𝛽
 𝑃1̇ = −𝐴(𝑧̇) + 𝑄1 − 𝑄𝐿1 − 𝑄𝐿𝐸1 

 
𝑉2

𝛽
 𝑃2̇ = 𝐴(𝑧̇) − 𝑄2 + 𝑄𝐿1 − 𝑄𝐿𝐸2 

(3) 

 

 

Where  𝑉1 = 𝑉𝑂1 + 𝐴 𝑧 , 𝑉2 = 𝑉𝑂2 + 𝐴 𝑧 are the total volume of the 

chambers, 𝑉𝑂1 and 𝑉𝑂2  are the extended and retract chamber volumes 

when (𝑧) equal to zero, 𝛽 is the effective bulk modules of the hydraulic 

oil, 𝑄𝐿1is the internal flow leakage of the cylinder, 𝑄𝐿𝐸1 and 𝑄𝐿𝐸2 are the 

external flow leakage of the chambers, 𝑄1  is the supply flow rate to the 

forward chambers and 𝑄2 is the return flow rate from the return chamber. 

The forward and return flow rates can be described as [7]: 

𝑄1 = 𝑘𝑣  𝑥𝑣{𝑠𝑔(𝑥𝑣)(𝑃𝑆 − 𝑃1) + 𝑠𝑔(− 𝑥𝑣)(𝑃1 − 𝑃𝑡)} 

𝑄2 = 𝑘𝑣 𝑥𝑣{𝑠𝑔(𝑥𝑣)(𝑃2 − 𝑃𝑎) + 𝑠𝑔(− 𝑥𝑣)(𝑃𝑠 − 𝑃2)} 

(4) 

Define function  
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𝑆𝑔(∗) = {
1 𝑖𝑓 ∗ ≥ 0
0 𝑖𝑓 ∗ < 0

 (5) 

Where 𝑘𝑣 is the servo valve flow coefficient, 𝑥𝑣 is the displacement of 

the servo valve, 𝑃𝑆  is the supply pressure and 𝑃𝑡  is the pressure of the 

tank.  

Practically while the hydraulic actuator is running, the servo valve 

displacement 𝑥𝑣   can be handled using the input voltage  𝑢ℎ  that 

corresponds to the different required forces. The servo valve dynamic 

equation can be approximate as Fialho et al. [18] 

𝑥𝑣̇ =
1

𝜏
 (−𝑥𝑣 + 𝑢ℎ) 

(6) 

Where 𝜏  is the time constant of the servo-valve. It is being showed 

that the dynamic of the servo-valve is much faster than the actuator 

dynamic when the time constant value is very small. Thus, the equation 

(5) can be simplified as an algebraic equation −𝑥𝑣 + 𝑢ℎ = 0   Deshpande 

et al. [19]. Therefore, the equation (3) can be rewritten as: 

𝑄1 = 𝑢ℎ 𝐻1 

𝑄2 = 𝑢ℎ 𝐻2 (7) 

𝐻1 = 𝑘𝑣 {𝑠𝑔(𝑢ℎ)(𝑃𝑆 − 𝑃1) + 𝑠𝑔(− 𝑢ℎ)(𝑃1 − 𝑃𝑡)}  and   𝐻2 =

𝑘𝑣  {𝑠𝑔(𝑢ℎ)(𝑃2 − 𝑃𝑎) + 𝑠𝑔(− 𝑢ℎ)(𝑃𝑠 − 𝑃2)}. 

The hydraulic force of the actuator simplified as: 

𝐹ℎ̇ = 𝑃1 ̇ 𝐴1 − 𝑃2 ̇ 𝐴2 

𝐹ℎ̇ =
𝛽

𝑉1 
 (−𝐴1(𝑧̇) + 𝑢ℎ 𝐻1) 𝐴1 −

𝛽

𝑉2 
 (𝐴2 (𝑧̇) − 𝑢ℎ 𝐻1) 𝐴2 

 

𝐹ℎ̇ =

−(𝑧̇) {
𝛽 𝐴1

2

𝑉1 
+

𝛽 𝐴2
2

𝑉2 
} +

𝑢ℎ {
𝛽 𝐻1 𝐴1 

𝑉1 
+

𝛽 𝐻2 𝐴2 

𝑉2
}                                 (8) 

The states variable of the dynamic system are written as: 

𝑥1̇= 𝑧 

𝑥̇2 = ( 𝑎1 𝑥3 − 𝑔 +  𝑎1 𝑥2) 

𝑥̇3 = −(𝑥2) 𝑎3 + 𝑢ℎ𝑎4 (9) 

Where 𝑎1 =
1

𝑚
 , 𝑎2 =

𝑐

𝑚
 , 𝑎3 = {

𝛽 𝐴1
2

𝑉1 
+

𝛽 𝐴2
2

𝑉2 
} and 𝑎4 = {

𝛽 𝐻1 𝐴1 

𝑉1 
+

𝛽 𝐻2 𝐴2 

𝑉2
} 

Where 𝑥1, 𝑥2 represents the displacements and velocity of the moving 

mass and 𝑥3 represents the dynamic equation of the pressure difference of 

the single rod hydraulic actuator. 

3. Controller Design 

3.1. ISMC of the ideal control force  

The main objective of the control system in this work is tracking 

process i.e. the mass follows of the required path which is supplied to 

control system as an input signal. Therefore, the first step in the control 

design is to drive an error function between the required path and the 

input required signal as follows: 

𝑒(𝑡) = 𝑥1 − 𝑥𝑟 (10) 

Where the 𝑥1 required displacement and the 𝑥𝑟 is the ideal signal supplied 

to the system. Now let the state variables of the equation (12) as: 

𝑒(𝑡) = 𝑥1 − 𝑥𝑟 = 𝑒1(𝑡) 

𝑒1̇(𝑡) = 𝑥1̇ − 𝑥̇𝑟 = 𝑒2(𝑡) 

𝑒̇2(𝑡) = 𝑥̇2 − 𝑥̈𝑟 
(11) 

Therefore, the equation (13) presents as: 

𝑒1̇(𝑡) = 𝑥2 − 𝑥̇𝑟  

𝑒̇2(𝑡) = ( 𝑎1 𝑢 − 𝑔 +  𝑎2 𝑥2) − 𝑥̈𝑟 
(12) 

The electrohydraulic system includes several types of uncertainties 

and perturbations arise from variations of the system parameters such as 

variation of mass dynamics and the variations of hydraulic system, 

therefore the dynamic system of the electrohydraulic is rewritten as: 

𝑒1̇(𝑡) = 𝑥2 − 𝑥̇𝑟  

𝑒̇2(𝑡) = ( 𝑎1 𝑢 − 𝑔 +  𝑎2 𝑥2) − 𝑥̈𝑟 + 𝑑(𝑒, 𝑡) + ∆𝑎1 𝑢 + ∆𝑎2 𝑥2 (13) 

Where 𝑒𝑖  , ( 𝑖 = 1 𝑡𝑜  )  ∈  𝑅2 , 𝑎1 ∈  𝑅1 , 𝑢 ∈ 𝑅,  𝑑(𝑒, 𝑡) ∈ 𝑅 , 𝑑(𝑒, 𝑡) 

unmodeled dynamics and the nonsmoothed nonlinearities in the system 

and ∆𝑎1 𝑢,   𝑎𝑛𝑑 ∆𝑎2 𝑥2  represents uncertain parameters of the system 

dynamic. In the same context, let the design control law is:  

𝑢 = 𝑢𝑛 + 𝑢𝑠 (16) 

Where the 𝑢𝑛 𝑎𝑛𝑑 𝑢𝑠  represented the nominal and discontinuous 

controls of the system respectively. The nominal control used to stabilize 

the nominal system dynamics with the desired characteristics Such as the 

dynamics of the nominal system become as: 

𝑒1̇(𝑡) = 𝑥2 − 𝑥̇𝑟  

𝑒̇2(𝑡) = ( 𝑎1 𝑢𝑛 − 𝑔 + 𝑎2 𝑥2) − 𝑥̈𝑟 (14) 

 

While the discontinuous control 𝑢𝑠 worked to rejected the perturbation 

terms and the nonlinearities of the dynamic system in equation (15). After 

that, the design of the integral sliding mode and the perturbation terms can 

be formulating as follows: 

𝑒1̇(𝑡) = 𝑥2 − 𝑥̇𝑟  

𝑒̇2(𝑡) = ( 𝑎1 𝑢𝑛 + 𝑎1 𝑢𝑛 − 𝑔 +  𝑎2 𝑥2) − 𝑥̈𝑟 + 𝛿(𝑒, 𝑢) (15) 

Where 𝛿(𝑒, 𝑢) =  𝑑(𝑒, 𝑡) + ∆𝑎1 𝑢 + ∆𝑎2 𝑥2  is the perturbation term 

and represented the parameters variations, unmodeled dynamics, non-

smooth nonlinearities and external disturbances and it assumed to be 

obtain matching condition of the dynamic system Kim et al. [20]. 

𝛿(𝑒, 𝑢) = 𝑎3 𝛿̂(𝑒, 𝑢) (16) 

The design procedure of the ISMC begins with the definition of the 

sliding variable𝑠(𝑥): 

𝑠(𝑥) = 𝑠𝑜(𝑒) + 𝑧 (17) 

Where  𝑠(𝑒), 𝑠𝑜(𝑒) 𝑎𝑛𝑑 𝑧 ∈  𝑅1. In the same context, the sliding 

variable contains two parts. The first one 𝑠𝑜(𝑒) will be designed similar to 

the conventional sliding mode i.e. as a linear combination of the system 

states. The term of the 𝑧 represented the integral term and determined as 

below. From the sliding mode control theory [20], the derivation from the 

switching surfaces 𝑠 and its time derivative should be having an opposite 

sign in the nearby area of the switching surface 𝑠 = 0, i.e. 

lim
𝑠→0

+𝑠̇ < 0 𝑎𝑛𝑑 lim
𝑠→0

−𝑠̇ < 0  

Or     s 𝑠̇ < 0 (18) 

Elimination of the reaching phase which is distinguishing property of 

the ISMC achieved by choosing the initial condition 𝑧 same that the initial 

condition of the sliding mode control 𝑠 which is zero. This mean that the 

dynamic of the system is in sliding surface from first instantaneity by 

selecting 𝑧(0) = −𝑠𝑜(0).  

In this design the 𝑠𝑜(𝑒) is equal to the state variable 𝑒2, therefore, 𝑠̇ is 

differentiated as below: 

𝑠̇ =  𝑒2̇  + 𝑧̇  = ( 𝑎1 𝑢𝑠 + 𝑎1 𝑢𝑛 − 𝑔 +  𝑎2 𝑥2) − 𝑥̈𝑟 + (19) 
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𝛿(𝑒, 𝑢) + 𝑧̇ 

The integral term will be chosen similar to the derivative of the ISMC in 

[1] i.e. 

𝑧̇ = ( 𝑎1 𝑢𝑛 − 𝑔 + 𝑎2 𝑥2) − 𝑥̈𝑟 (20) 

Thus 𝑠̇ becomes: 

𝑠̇ = 𝑎1 𝑢𝑠 +  𝛿(𝑒, 𝑢) (21) 

And accordingly, the sliding condition becomes: 

𝑠 ̇𝑠 = 𝑠 (𝑎1 𝑢𝑠 +  𝛿(𝑒, 𝑢)) (22) 

By selecting the conventional sliding mode control  

𝑢𝑠 = −𝜌(𝑥) 𝑠𝑖𝑔𝑛(𝑠) (23) 

Then the equation (24) becomes: 

𝑠 ̇𝑠 = 𝑠 (𝑎1 (−𝜌(𝑒) 𝑠𝑖𝑔𝑛(𝑠)) +  𝛿(𝑒, 𝑢)) 

Since s*𝑠𝑖𝑔𝑛(𝑠)=|𝑠| then  

𝑠 ̇𝑠 = − 𝑎1 𝜌(𝑒) |𝑠|  +  𝑠 𝛿(𝑒, 𝑢)) 

𝑠 ̇𝑠 ≤ − 𝑎1 𝜌(𝑒) |𝑠|  +  |𝑠|  |𝛿(𝑒, 𝑢)| 

𝑠 ̇𝑠 ≤ |𝑠|  {− 𝑎1 𝜌(𝑒)   + |𝛿(𝑒, 𝑢)|} 

𝑠 ̇𝑠 ≤ −|𝑠|  {𝑎1 𝜌(𝑒) − |𝛿(𝑒, 𝑢)|} 

𝑠 ̇𝑠 ≤ −𝑎1 |𝑠|   { 𝜌(𝑒) −
|𝛿(𝑒, 𝑢)|

𝑎1
} 

(24) 

It was assumed that 𝑎1 > 0  . The discontinue gain 𝜌(𝑥)  that will 

perform the inequality in the equation (27) to ensure the right-hand side of 

this equation to be negative value i.e.: 

𝜌𝑜 (𝑥)  >
| 𝛿(𝑥, 𝑢)|

𝑔2
 

 

Or   𝜌𝑜 (𝑥) =  𝑘𝑜 +
| 𝛿(𝑥,𝑢)|

𝑎4
,    where the 𝑘𝑜  > 0 

(25) 

by referring to the equation (24), the discontinuity in the right-hand 

side due to the 𝑢𝑠 will needed the finite time T to reach to the origin and 

then the system dynamic become in the sliding motion. Based on the the 

dynamic system will be achieved by using the equivalent control which 

performed as follows: when 𝑠(𝑡) = 0, ∀ 𝑡 ≤ 𝑇, [21]also the 𝑠̇(𝑡) = 0 and 

with 𝛿(𝑥, 𝑢)  satisfied the matching condition in equation (19), the 

equivalent control can be calculated from the equation (24) as shown: 

0 =  𝑢𝑠 +  𝛿(𝑥, 𝑢) 

⇒  [𝑏 𝑢𝑠 ]𝑒𝑞= - 𝛿(𝑥, 𝑢) (26) 

By substituting the equivalent control of the equation (29) in to the 

control law of the ISMC with perturbations i.e. equation (18), the system 

is reduced to the nominal form as in equation (17) with the dimension 

equal to n. For this reason, the ISMC is considered as full order sliding 

mode control because of the dimension of equations (15) & (17) are equal.  

Since the remaining system is only the nominal system as in equation 

(10) the next step in the design of this control method is the determination 

of the nominal part of the system: 

𝑒1̇(𝑡) = 𝑥2 − 𝑥̇𝑟  

𝑒̇2(𝑡) = ( 𝑎1 𝑢𝑛 − 𝑔 + 𝑎2 𝑥2) − 𝑥̈𝑟 (27) 

Therefore, the control design of the nominal system is: 

𝑢𝑛 =
1

𝑎1
(−𝑛1𝑒1 − 𝑛2 𝑒2 + 𝑔 +  𝑎2 𝑥2 − 𝑥̈𝑟) 

(28) 

As the result the nominal system dynamic is: 

𝑒2̇ = −𝑛1𝑒1 − 𝑛2 𝑒2 ,       (29) 

Where 𝑛1 & 𝑛2 are assigned based on the required system characteristic. 

 

3.2.  Backstepping of the hydraulic force 

Backstepping control is a well method to the control problems 

nonlinear systems such as active suspension system. A virtual control 

assumed to follow the intermediate variable, which performed to achieve 

the objectives of the control design. The hydraulic actuator force 

𝐹ℎ considered virtual control force to track the ideal control  𝑢  that 

designed by ISMC to perform the position tracking of the mass by the 

electrohydraulic system. The error between the virtual variable 𝐹ℎ and the 

active control element 𝑢 will be approach gradually to zero, thus: 

𝑒𝑒(𝑡) = 𝐹ℎ − 𝑢    (30) 

Where 𝑒𝑒(𝑡)  is the error function between the ideal and virtual 

function. To derive the control law that will make the value  s(𝑡) goes to 

zero, a nonstandard Backstepping [22] is utilized here. First we have 

needed to derive the error function dynamics error function by 

differentiating equation (32) 

𝑒𝑒̇(𝑡) = 𝐹ℎ̇ − 𝑢̇  

   = 𝑥̇3 − 𝑢̇  

   = −(𝑥2) 𝑎3 + 𝑢ℎ𝑎4 − 𝑢̇ (31) 

The hydraulic system has many unmodelled parameters, no smoothed 

nonlinearities and uncertain parameters, therefore the equation (34) is 

rewritten as:    

𝑒𝑒̇(𝑡) = −(𝑥2) 𝑎3 + 𝑢ℎ𝑎4 − 𝑢̇ + 𝑑(𝑥, 𝑡) (32) 

Where 𝑑(𝑥, 𝑡) unmodeled dynamics the nonsmoothed nonlinearities 

system and represents uncertain parameters of the system dynamic.  

Let the design control law is: 

𝑢ℎ = 𝑢ℎ𝑛 + 𝑢ℎ𝑑  (33) 

Where the 𝑢ℎ𝑛
𝑎𝑛𝑑 𝑢ℎ𝑑

 represented the nominal and discontinuous 

controls of the system respectively. The nominal control used to stabilize 

the nominal system dynamics with the desired characteristics Such as the 

dynamics of the nominal system becomes as: 

𝑒𝑒̇(𝑡) = −(𝑥2) 𝑎3 + 𝑢ℎ𝑛𝑎4 − 𝑢̇ (34) 

In the other hand, the discontinuous part used to reject the 

uncertainties in the system model i.e. the discontinuous control is 

performed as: 

𝑒̇(𝑡) = 𝑢ℎ𝑑𝑎4 + 𝑑(𝑥, 𝑡) (35) 

Let the 𝑢ℎ𝑑
=  −𝜌𝑜 (𝑥) 𝑠𝑖𝑔𝑛(𝑒𝑒(𝑡)) 

𝑒(𝑡) 𝑒̇(𝑡) = 𝑒𝑒(𝑡) (−𝜌𝑜 𝑠𝑖𝑔𝑛(𝑒𝑒(𝑡))  𝑎4

+ 𝑑(𝑥, 𝑡)) 

 

                =  −𝜌𝑜 (𝑥)|𝑒𝑒(𝑡)| 𝑎4+ |𝑑(𝑥, 𝑡)| 𝑒𝑒(𝑡)  

                ≤  −𝜌𝑜 (𝑥)|𝑒𝑒(𝑡)| 𝑎4+ |𝑑(𝑥, 𝑡)| |𝑒𝑒(𝑡)|  

                ≤  |𝑒(𝑡) |𝑎4  {−𝜌𝑜 (𝑥)  + 
|𝑑(𝑥,𝑡)|

𝑎4
} (36) 

 

It was assumed that  𝑔2  > 0 . The discontinue gain 𝜌𝑜 (𝑥) that will 

perform the inequality in the equation (19) to ensure the right-hand side of 

this equation to be negative value i.e.: 

𝜌𝑜 (𝑥)  >
| 𝛿(𝑥, 𝑢)|

𝑔2
 

 

Or   𝜌𝑜 (𝑥) =  𝑘𝑜 +
| 𝛿(𝑥,𝑢)|

𝑎4
,    where the 𝑘𝑜  > 0 

(37) 

3.3.  State Differentiator Design 
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In Eq. (31), the proposed control law assumes ideal control force 𝑢 

and its derivative are available. The first state u is available since it 

determined from the first step of the control design, i.e. ISMC. The 

second state 𝑢̇ is the time derivative of u. Hence, we need to obtain it 

using an observer.  A  robust  sliding  mode  differentiator (SMD)  is  

proposed  here  to  get  𝑢̇ by  knowing u only. Kokotović et al. [23] give 

the sliding mode differentiator;  𝜎 = 𝑢 − 𝜂

𝜂̇ = 𝛼 ∗ 𝑡𝑎𝑛−1(𝛾 𝑢)

𝜏𝑣̇ + 𝑣 = 𝛼 ∗ 𝑡𝑎𝑛−1(𝛾 𝑢)
} (38) 

Where 𝜎 is the SMD variable, 𝛼  and  𝜌  are differentiator parameters. 

The third equation in (39) 𝜏𝑣̇ + 𝑣 = 𝛼 ∗ 𝑡𝑎𝑛−1(𝛾 𝑢) is a low pass filter 

(LPF) with time constant 𝜏, where the output of the LPF, 𝑣, is the 

estimated derivative 𝑢. According to Deshpande et al. [19], the bound on 

the steady state estimation error is given by: 

|𝑣(𝑡) −  𝑢̇ | ≤ 2 𝜏 𝜌 𝑡𝑎𝑛 ( 
𝜋 

2𝛼
ℎ) (39) 

Where ℎ = sup𝑡 |𝑢| 

4. Result and discussion  

As mentioned above, the hydraulic system exciter in this work used to 

simulate the road disturbances on the quarter car suspension system. 

Therefore, two cases of road profiles studied to perform this purpose 

Mishary [24]  Fig. (2): 

Case 1: Bump Road Profile 

The mathematical model of this profile is Fig. (2 a), [18] 

 

𝑥𝑟 = {
𝑑𝑜(1 − cos(𝜔𝑟𝑡)),            𝑡 ≤ 1
0                                ,            𝑡 > 1

 

Where  𝑑𝑜 represents the peak amplitude and  𝜔𝑟 a constant frequency 

in the disturbance model which depends on the car velocity and on the 

width of the disturbance on the road, which are set as. 𝑑𝑜 = 0.1 𝑚   and 

𝜔𝑟 = 2𝜋 𝑟𝑎𝑑. 

Case 2: Random Road Profile 

The mathematical model of this profile is Fig.  (2 b), [19]  

𝑥𝑟 = 0.05 cos(2𝜋𝑡) sin (0.06 𝜋 𝑡) 
 

Table 1.  the model parameters of the active suspension 

Parameter Value parameter value 

𝑚 290 kg 𝑐 1000 N m/sec 

𝑘𝑣 1e-9 𝛽 1.4e9 

           A 0.001311 𝑚2 𝑃𝑠 10342502 𝑁/𝑚2 

𝑉0 0.01311 𝑚3   

 

 

 

(a) 

 

(b) 

Figure 2. the simulated road disturbance (m) 

Fig. (2) presents the vertical displacement of the quarter car mass and 

the required profile for two cases. It shows the effectiveness of the 

proposed control method of the single rod hydraulic actuator to track the 

required profile with high accuracy. Since the proposed control method in 

this work is divided into two steps, it is necessary to show the features of 

the ISMC and nonstandard backsteeping to perform tracking process. For 

ISMC, i.e. generation of the ideal control force, the sliding variable is the 

main parameter should be discussed. Fig. (3) shows that the sliding 

variable (𝑠) equals to zero from the first instant i.e. 𝑠 = 0 for  𝑡 ≥ 0. This 

behavior of sliding surface (𝑠)  which begins and continues with zero 

along simulations time presented the effectiveness of the of ISMC over 

the conventional sliding mode control which reaches the stability over 

reaching phase not from the first instant. 

 

 

 (a) 

 

(b) 

Figure  2. Vertical displacement of the hydraulic actuator vs required 

displacement 
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(a) 

 

(b) 

Figure 3. sliding surfaces  

 

As mentioned in the mathematical modeling, the hydraulic model is 

added to the system by nonstandard backstepping with sliding mode. Fig. 

(5) presented the ideal control force which was designed to satisfy the 

suspension system requirements with actual control force i.e. hydraulic 

force. This Figure shows the high convergence between them over all 

simulation time which indicated the powerful of the nonstandard 

backstepping for the inclusion of the hydraulic force in the overall system 

model. The controller design ends with determination of the voltage 

which used as input to the servovalve. The servovalve adjusts the flow 

rate and pressure to the actuator chamber. Fig. (6) shows the voltage 

curve of the two cases of the road profiles.   

 

 

(a) 

 

(b) 

Figure 4. hydraulic force vs. ideal control force  

 

 

(a) 

 

(b) 

Figure 5.  input voltage of the hydraulic actuator 

5. Conclusions  

This work, represents a design of simulator for testing the quarter car 

active suspension system with generation different road profiles to 

simulate the actual road. The following conclusion have been drawn: 

The robust ISMC gives better results in the design of virtual control 

force which performs all simulator requirements. The ISMC performs the 

stability from the first instant which considered the main feature as 

compared with the conventional sliding mode control. The second step of 

the controller design which non-standard backstepping control has good 

convergence between the virtual control force and the actual hydraulic 

control force. 
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