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A B S T R A C T 

Numerical investigate of double-diffusive natural convection in an inclined porous square. Two opposing 
walls of the square cavity are adiabatic; while the other walls are, kept at constant concentrations and 

temperatures. The Darcy–Forchheimer–Brinkman model is used to solve the governing equations with the 

Boussinesq approximation. A code written in FORTRAN language developed to solve the governing 

equations in dimensionless forms using a finite volume approach with SIMPLER algorithm. The results 
presented in U-velocity and V-velocity, isotherms, iso-concentration, streamline, the average Nusselt 

number, and the average Sherwood number for different values of the dimensionless parameters. A wide 

range of these parameters have been used including; Darcy Number, modified Rayleigh number, Lewis 

number, buoyancy ratio, and inclination angle.  The results show that for opposite buoyancy ratio (N≤-1), 

the Nu decreases when the Le increases and the Sh increase when the Le increases. For an (N>0), the Nu 

increases when the Le increases until Le is equal to 1 and then it decreases, also Sh increases when the Le 

increases  

 

© 2019 University of Al-Qadisiyah. All rights reserved. 

 

1. Introduction

     There are several important engineering applications for the convective 

heat and mass transfer on surfaces and rectangular porous cavities. Many 

studies presented in terms of uniform/non-uniform surface temperatures 

and/or heat flux Nield and Bejan [1].  

A numerical and analytical investigation made by Vasseur et al. [2] on thin  

inclined porous layer to presented the effect of natural convective heat 

transfer by using a constant heat flux on two opposing walls. The buoyancy 

has driven the flow by using the Boussinesq approximation in a Darcy 

porous medium subjected to constant heat flux conditions. The successive 

over-relaxation method was used to solve the momentum equations and the 

energy equation was solved by using the alternating direction implicit 

method. The analytical solution was tested numerically in the range; 

20 50R  , 0     and 2 10A  . Later, the Vasseur et 

al.’s works have been extended by Sen et al. [3] to cover the flows which 

presented the unicellular convective motions only. Sen et al. studied a 

multiplicity of solutions for inclined porous enclosures. Their results 

presented in terms of small inclination angles and small range of Rayleigh 

number . Moya et al. [4], Caltagirone and Bories [5], and Báez and Nicolás 

[6] also studied the same cases. An experimental study of natural 

convective heat transfer in inclined porous layer by Inaba et al. [7]. In their 

studies, a tall rectangular cavity has been used. Two opposing walls were 

kept at different constant temperatures while the other walls were insulated. 

The experimental work covered a wide range of modified Prandtl 

number 3.1 * 499Pr  , the modified Rayleigh number  

http://qu.edu.iq/
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4 4
34*10 * 3.8*10Ra  , the geometrical aspect ratio 

5 32.7H W  , inclination angles 0 180   and 

0.074 1.0d W  . Four correlation equations for the natural heat 

transfer have been presented. Their results showed that; the maximum  

Nusselt number occurs when the angle of inclination equal to 0°, for high 

Rayleigh numbers. Furthermore, the maximum Nusselt number occurs also, 

at low Rayleigh numbers when the angle of inclination equal to 60°. 

Another numerical study made by Hsiao [8] to presented the effects of the 

variable porosity on the natural heat transfer in an inclined porous 

enclosure. An important study of double-diffusive natural heat and mass 

transfer in an inclined porous enclosure, with the presence of temperature-

difference dependent heat generation made by Chamkha and Al-Mudhaf 

[9]. The results were presented for (A=2, Pr=7.6, and Le=10). In general, 

the results showed that; the Nusselt and Sherwood numbers decreases when 

the angle of inclination increases. However, there was an exception at a 

critical angle where the Nusselt and Sherwood numbers achieved the 

maximum magnitude. Wang et al. [10] studied the effect of time-periodic 

boundary conditions on inclined porous enclosure by using Darcy- 

Brinkman model. Later, three-dimensional unsteady state natural 

convective heat transfer in an inclined porous cavity with time oscillating 

boundary conditions investigated numerically by Wang et al. [11]. The 

Darcy–Forchheimer–Brinkman model has been used in there study. Their 

results showed that, for a small inclination angle (0°75°),  the natural 

convection inside the cavity almost stable and could being two-

dimensional. On the other hand, for large inclination angle (75°90°), 

the flow patterns inside are much more complicated and three-dimensional 

multiple roll-cells with different intercrossing angles are established. Many 

studies presented in Nield and Bejan [1], Ingham and Pop [12, 13], and 

Mojtabi and Charrier-Mojtabi [14] books in terms of double diffusion heat 

and mass transfer in saturated porous medium. Nithiarasu et al. [15, 16] 

studied numerically the double-diffusion natural convection by using Non-

Darcian models for opposing equal Buoyancy forces due to concentration 

and temperature. Many cases have been studied in terms of unsteady flow 

[17-21]. Also there are many studies of double diffusive natural convective 

in rectangular porous enclosure using Darcy model, effect of magnetic 

field, and source and sink heat for example [22]. Kefayati [23], [24] studied 

numerically the double diffusive natural convection flow in an inclined 

porous cavity for non-Newtonian power-law fluids flow. The Finite 
Difference Lattice Boltzmann Method has been used in this simulation. It 

was obtained that the Soret and Dufour parameters effect on the heat and 

mass and the entropy generation transfer considerably. Zhuang [25] studied 

numerically the double diffusive natural convective heat and mass transfer 

of power-law fluids in a cubic porous cavity with chemical reaction under 

the local thermal non-equilibrium. The generalized non-Darcy model has 

been used and the chemical reaction submitted to horizontal concentration 

and temperature gradients using the compact high order finite volume 
method. 

To the authors’ knowledge, double-diffusive natural convective heat and 

mass transfer in an inclined square porous medium, using the generalized 

model, has not been studied deeply. In this paper, the steady Double-

Diffusive Natural Convection in an Inclined Porous Square Domain 

Generalized Model are investigated. Two opposing walls of the square 

cavity are adiabatic, while the other walls are at constant concentrations and 

temperatures. AL-FARHANY code (written in FORTRAN language) have 

been used to solve the governing equations in dimensionless forms using 

finite volume approach with SIMPLER algorithm. The results are presented 

in term of Nusselt number and Sherwood number profiles as well as 

streamlines, isotherms and iso-concentration. 

2. Mathematical Modelling 

The geometrical model of the two-dimensional inclined square cavity filled 

with a homogeneous porous medium has been presented in Fig. 1. The 

walls assumed to be impervious. Two opposing walls of the square 

enclosure are adiabatic; while the other walls are, have constant 

concentrations and temperatures. The medium is assumed to be 

incompressible, isotropic, and homogeneous.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Scheme of the model 

 

The governing equations in terms of non-dimensional form are: [1]: 

  1 ( ) 1 ( )
T o C o

T T C C                            (1) 

Nomenclature 
 

 

C non-dimensional concentration,  P non-dimensional pressure  

cp specific heat at constant pressure  Pr Prandtl number 

Da Darcy number,  Ra* modified Rayleigh number 

g gravitational acceleration Sh average Sherwood numbers  

K permeability of the porous medium T  non-dimensional temperature 

k thermal conductivity Greek symbols 

L length of the cavity  effective thermal diffusivity  

Le Lewis number   porosity 

N buoyancy ratio  ratio of specific heats 

Nu average Nusselt number  inclination angle 
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Dimensionless continuity equation: 
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Dimensionless momentum equation in X-axis:  
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Dimensionless momentum equation in Y-axis: 
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Dimensionless energy equation: 
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                          (5) 

Dimensionless  species equation: 
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                 (6) 

The average Nusselt number ( Nu ) and Sherwood number ( Sh ) at the 

walls can be calculated as: 
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The Non-dimensional parameters are:  
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The Non-dimensional initial boundary conditions are: 

0, ; 10;
h h
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  
 

   (10-c) 

3. Solution Procedure  

In this study, the non-dimensional governing equations solved by using the 

finite volume methods. The SIMPLER algorithm has been chosen for the 

pressure velocity coupling. A second order central discretization scheme is 

used for the energy, species and momentum equations. The mesh 

independent approach has been used to choose the optimum grid size, 

which was 120X120. Al-FARHANY code has been used in this study and 

it was validated using previous studies (Al-Farhany and Turan [26-28]).   

4. Results 

The results presented in terms of streamlines, isotherms, and iso-

concentration, U-velocity, V-velocity, as well as the average Sherwood 

number and Nusselt number profiles. The Prandtl number is taken as unity.  

Fig. 2 shows the stream functions, isotherms and iso-concentration lines for 

Da=10-6, Ra*=100, and Le=10.0 where N= -1.0, with different inclination 

angles (). Where there is no inclination angle (=0o), the secondary 

circulations appear and the counter clockwise flow is homogenised and 

symmetric on the main diagonal of the porous cavity. This happens because 

the buoyancy ratio, which is a ratio of fluid density contributions by the 

concentration to the temperature variations, is equal to -1. The maximum 

positive stream functions are about 1.20 and the maximum negative stream 

functions were about -0.7. It is observed that the variations of isotherms 

near the insulated walls are higher than in the middle of the cavity. For the 

left half of the cavity (0 < X < 0.5), and near the left bottom corner, it is 

observed that the isotherms are increased in the isotherms up to that are 

near the middle of the cavity height and then decreased until the left top 

corner. This behaviour occurred as a result of the fluid rising due to the 

influence of the buoyancy force and the effect of the secondary circulations. 

It is clear that the maximum isotherms are not in the middle of the cavity 

length but they are almost near places where there is no movement in the 

fluid flow (when the stream functions are equal to zero). The same 

behaviour could be seen in the left half of the cavity but in the opposite 

direction. Also, for the iso-concentration, it could be seen that the iso-

concentration field is more sensitive than the isotherms and that occurred 

due to the considered Lewis number (Le=10). The maximum (minimum) 

iso-concentration appeared near the left (right) wall and around the 

maximum positive stream functions and most of the iso-concentration 

variations were near the maximum negative stream functions which are 

around the main diagonal of the cavity. By increasing the angle of 

inclination ( > 0o), it is observed that the positive vortex strength increased 

when () is increased until =60o and after that the positive vortex strength 

decreased with increasing of (). Also, the left positive secondary 

circulations decreased until they disappeared. For =45o, the maximum 

positive stream functions and the maximum negative stream functions were 

about 3.85 and -0.29 respectively. Furthermore, the negative vortex 

strength is decreased when  is increased to around 45o and then it increased 

with the increasing of (). As noted above, the maximum iso-concentration 

variations are near the maximum negative stream functions and the iso-



154   KHALED AL-FARHAN AND A. TURAN /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES   12 (2019) 151–160

concentration lines are almost parallel close to the left high concentration 

wall and then increased in the iso-concentration fields near the insulated top 

wall. 

This behaviour is clearly observed with an increase of the angle of 

inclination for both isotherm and iso-concentrations’ fields.  For cases of 

=90o, different behaviours appeared. It is observed that no vortex appeared 

and that happened because of low flow intensity. The heat was transfer 

through the porous cavity by conduction instead of natural convection.  

For a low Lewis number, Fig. 3 shows the stream functions, isotherms and 

iso-concentration lines for Da=10-6, Ra*=100, Pr=1, and Le=0.1 with 

different inclination angles () where N= -1.0. For a low Lewis number, the 

flow has almost been driven due to mass transfer rather than heat transfer. 

When the buoyancy ratio is equal to -1, Fig. 3 shows that no significant 

heat and mass transfer appears for a low inclination angle especially when 

the inclination angle is equal to zero (=0o). From the stream function lines, 

it is clear that the vortex strength of the fluid is very small. Furthermore, 

the concentration boundary layer is nearly equal to the isotherms’ boundary 
layer and it clearly can be seen that the isotherm and iso-concentration lines 

are parallel and both the Nusselt and Sherwood numbers are equal to 1. For 

 > 0o, it can be observed that the positive vortex strength increases when 

the angle of the inclination is increased until =60o and subsequently the 

positive vortex strength decreases when the angle of the inclination is 

increased. Also, the negative secondary circulations decrease until they 

disappear. For =45o, the maximum positive stream functions and the 

maximum negative stream functions are about 2.0 and -0.04 respectively. 

The maximum isotherms’ boundary layer can be seen at =60o; therefore 

the Nusselt number is also at its maximum at =60o, as shown in Table 1. 

For the cases of heated and concentrated from below (=90o), a multiplicity 

of solutions happened (monocellular and bicellular flows), most of these 

solution results are in bicellular flow as shown in the Fig. 3.  For Le=0.1, 

the bicellular flow solution was chosen for all the cases of =90o. In the 

case of the isotherms, it is observed that the isotherms’ boundary layers 
near the insulated walls are thinner than the isotherms’ boundary layers near 
the middle of the bottom wall. Because of this, the fluid flows in the porous 

cavity rise up from the middle of the hot bottom wall towards the cold top 

wall. As a result of the effects of the thick cold boundary layer near the top 

wall, the vertical fluid flow velocities decreased until they are at a minimum 

near the cold wall, subsequently, the fluid flow was driven in two different 

horizontal directions to achieve the bicellular flows. For a high buoyancy 

ratio, Fig. 4 shown the stream functions, iso-concentration and isotherms 

for Da=10-6, Ra*=100, Pr=1, and Le=0.1with different inclination angles 

() where N= +5.0. A high positive buoyancy ratio means that the fluid rises 

up due to the influence of the temperature and mass variations which is 

more than the effect of the temperature variations in the buoyancy force. 

The results clearly show that when the angle of the inclination increases, 

the vortex strength of the fluid increases until =45o that subsequently the 

vortex strength decreases when the () increases. It can also be observed 

that there is only a main clockwise flow (no secondary flow) at a maximum 

positive stream function of about 34.65 at =45o. Moreover, the isotherms’ 

boundary layer is too thin near the hot wall and it increases near the left 

upper corner. Also, it is very clear that the isotherms are more sensitive than 

the iso-concentrations and this happens due to the considered Lewis number 

(Le=0.1). In the case of a low Lewis number the effect of the inclination 

angles are not significant in either the isotherm or the iso-concentrations’ 
field.  As mentioned previously, when =90o bicellular flows occur. Also, 

it is observed that the isotherms’ boundary layers near the insulated walls 
are thicker than the isotherms’ boundary layers near the middle of the 
bottom wall. This is because the fluid flows in the porous cavity rise up 

near the insulated walls from the hot bottom wall towards the cold top wall. 

As a result of the effects of the thick cold boundary layer near the top wall, 

the vertical fluid flow velocities decrease until they are at a minimum near 

the cold wall; on the other hand, the horizontal velocity increases and then 

decreases to achieve minimum velocity near the middle of the cavity in 

order to achieve the bicellular flows. Fig. 5 shows the vertical/horizontal 

velocity variations on the middle of the vertical/horizontal planes of the 

cavity at Ra*=500, Da=10-6, N= 2.0, Le=0.1, and at different inclination 

angles. The U and V velocities increasing when the ( ) increasing until 

=60o and then it decreases when ( ) increases. For the opposed flow, Fig. 

6 presented the variation of the U and V velocity at the mid of the 

horizontal/vertical planes of the enclosure at Ra*=500, Da=10-6, N= -5.0, 

Le=1 and different inclination angles. The U-velocity profiles show that for 

=0o, the U-velocity profile is very sharp and it smoothly decreases when 

( ) increases. In the case of the V-velocity profile, the V-velocity decreases 

when the angles of inclination increase. Also, it can be clearly observed that 

most of the high negative V-velocities are near the hot wall, the high 

positive V-velocities are near the cold wall (counter clockwise flow) and 

the minimum V-velocities are in the middle of the porous cavity. 

The effect of the Rayleigh number on the average of Nussselt and Sherwood 

numbers is presented in Figs 7 (a) and 8 (b) respectively for  Da=10-4 and 

=30o with a different Lewis and buoyancy ratio. These graphs show that, 

when the Ra increases when Nu increases. Additionally, for a positive 

buoyancy ratio, the Nu increases with increasing of Lewis number until 

Le=1 and then its decreases. Moreover, it decreases with increasing of 

Lewis number for a negative buoyancy ratio as shown in Table 1. At a 

constant Ra, the reduction of the Lewis number naturally implies a 

relatively high mass diffusivity value. When the Le is decreased, the 

thickness of the thermal boundary layers near the hot and cold walls 

becomes thinner than the concentration boundary layers. Therefore, when 

the Lewis number decreases, the heat transfer increases and the mass 

transfer is decreased. Table 1 presents the effect of inclination angles on 

the Sherwood and Nusselt numbers for Ra*= 10-2, Da =10-6, at different Le 

and N. It shows that for a positive buoyancy ratio, the maximum average of 

Sh and Nu occur when the inclination angle is between 30o and 45o. This 

means both of them increases when the () increases until around =45o, 

then they decreasing with increasing of () . For the opposing flow 

(negative buoyancy ratio), both of the Nu and Sh decrease when () 

decrease.
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Figure 2. Stream functions (left), isotherms (middle) and iso-concentration (right) lines for Da=10-6, Ra*=100, Pr=1.0, =0.36, Le=10.0 

and N= -1.0 with different inclination angles. 
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Figure 3. Stream functions (left), isotherms (middle) and iso-concentration (right) lines for Da=10-6, Ra*=100, Pr=1.0, =0.36, Le=0.1 

and N= -1.0 with different inclination angles. 
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Figure 4. Stream functions (left), isotherms (middle) and iso-concentration (right) lines for Da=10-6, Ra*=100, Pr=1.0, =0.36, Le=0.1 

and N= 5.0 with different inclination angles. 
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Figure  5 U-velocity at X=0.5 and V-velocity at Y=0.5 for Da=10-6, Ra*=500,  Le=0.1, N= 2.0 for different inclination angles. 

 

  

Figure 6 U-velocity at X=0.5 and V-velocity at Y=0.5 for Da=10-6, Ra*=500,  Le=1.0, N= -5.0 for different inclination angles. 

 

 
a 

 
b 

 

Figure 7 Variation of (a) average Nusselt numbers (Nu) and (b) average Sherwood (Sh) numbers with Ra* for Da=10-4,  =30o with different 

Le and N. 
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5. Conclusions  

In this study, a generalized model used in a numerical investigation on 

double-diffusive natural convection in an inclined square cavity filled with 

porous medium. Two opposing walls of the square cavity are adiabatic, 

while the other walls are at constant concentrations and temperatures. AL-

FARHANY code has been used to solve the governing equations in 

dimensionless forms using finite volume approach with SIMPLER 

algorithm. The results are presented in terms of Sh and Nu profiles, and also 

for the streamline, iso-concentration, and isothermal. The predictions 

included different values in the dimensionless parameters, specifically, 

cavity inclination angle (0o ≤≤90o), buoyancy ratio (-5 ≤ N ≤ 5 ), Lewis 
number (0.1 ≤ Le ≤10), Darcy number (10-6 ≤ Da ≤ 10-2( and Rayleigh 

number (100 ≤ Ra* ≤ 1000), while the Prandtl number is taken as Pr=1.0. 

The results show that, when opposite buoyancy forces are considered (N≤-

1), the convection in the porous cavity is always a multiplicity of steady 

solutions with flow fields of two, three and four flow cells. Also, it can be 

observed that the positive vortex strength increases when the angle of the 

inclination is increased until =45o and subsequently the positive vortex 

strength decreases when the angle of the inclination is increased. Also, the 

same behaviour can be seen for the positive buoyancy forces. Furthermore, 

the negative vortex strength decreases when the angle of the inclination is 

increased. For cases of =90o, it can be observed that no vortex appears and 

this occurs because of the low flow intensity. On the other hand, when a 

positive buoyancy ratio is considered the convection in the porous cavity is 

always in a single cell and it occurs in a clockwise flow. Moreover, at =90o 

the bicellular flows occur.  

In general, the results show that for a positive buoyancy ratio (N>0), the Nu 

and Sh increase when the angle of inclination increases until around =45o, 

and then they decrease when  is increased. For an opposing flow (negative 

buoyancy ratio), both the Nu and Sh decrease when the angle of inclination 

is decreased. Also, the average Sherwood and Nusselt numbers increase 

when the Rayleigh number increases, while they decrease when the Darcy 

number increases. For an (N>0), the Nu increases when the Le increases 

until Le is equal to 1 and then the Nu decreases when the Le increases. On 

the other hand, the Nu decreases when the Le increases for a negative 

buoyancy ratio. Moreover, the Sherwood number increases when the Lewis 

number increases. It was also observed that the Nu and Sh numbers increase 

when the 1N    increases.   
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