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A B S T R A C T 

This paper presents an optimization model for the layout of a branching water distribution system. The goal 

is to minimize construction costs while meeting the system's demands. The study utilizes the general 

algebraic modeling system (GAMS) to optimize a non-looping water distribution system. The methodology 

involves determining the existence and diameter of connections between demand nodes. The optimization 

problem is formulated as a mixed-integer non-linear programming (MINLP) problem. A simplified layout 

is used to illustrate the constraints and validate the model. The explicit model implemented in GAMS yields 

optimal solutions and demonstrates the effectiveness of the approach. The results highlight the decisions on 

connection existence, flow, and pipe diameter, contributing to cost minimization. The findings from this 

study provide insights for optimizing the design of branching water distribution systems and reducing 

construction costs. 

 

 

© 2023 University of Al-Qadisiyah. All rights reserved. 

    

1. Introduction

         Branching water distribution systems can be found in small systems 

like irrigation to large-scale deliverance of water supply to different cities. 

The cost of constructing these systems is related to both the size of the 

connecting pieces and the length of those connections between delivery 

points.  In order to minimize construction costs, these parameters must be 

optimized in a way that still meets the required demands of the system.  The 

objective of this project is to use the general algebraic modeling system 

(GAMS) to optimize the layout of a non-looping water distribution system 

such that cost is minimized. This project will look at a dendritic water 

supply pipe system consisting of multiple nodes, m, on a variety of Isonodal 

lines, n, as shown in Fig. 1.   

The dotted lines running between the Isonodal lines represent possible 

connections between the upstream nodes mn and downstream nodes mn+1. 

The objective of this project is to determine whether those connections 

should exist and, if so, what the diameter should be so that demands are met 

while capital costs are minimized. 

2. Methodology 

The unique aspect of this project is determining whether a connection, in 

this case pipe, exists between two demand nodes. A variable 𝒂𝒏,𝒎𝒏,𝒎𝒏+𝟏
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will be set at “0” or “1” to show if the connection (from mn online n to 

mn+1 on line n+1) is not allowed or allowed, respectively.  A zero value 

may indicate that the connections are too far apart or that some physical 

impediment exists to construction in the field.  A related decision variable 

𝒙𝒏,𝒎𝒏,𝒎𝒏+𝟏
 will be sought to determine if it is optimal for the connection to 

exist or not. These will, respectively, be represented by a “1” or “0”.  As 

the nodes are all at fixed locations, the lengths 𝑳𝒏,𝒎𝒏,𝒎𝒏+𝟏
 of candidate pipes 

can be determined. Each node will have a required flow 𝑸𝒏,𝒎𝒏  and 

minimum pressure head 𝑯𝒏,𝒎𝒏 .  The flows through the pipes 𝑸𝑷𝒏,𝒎𝒏,𝒎𝒏+𝟏
 

will be the sum of all the demands downstream of the starting node of the 

pipe. A Darcy-Weisbach friction factor will be used to find losses due to 

pressurized flow. These variables will be used to determine another 

decision variable, the diameter 𝑫𝒏,𝒎𝒏,𝒎𝒏+𝟏
 of that pipe, which in turn 

determines the pipe cost per unit length 𝑪(𝑫𝒏,𝒎𝒏,𝒎𝒏+𝟏
). Headlosses through 

the pipe are non-linear while both 𝒂𝒏,𝒎𝒏,𝒎𝒏+𝟏
 and 𝒙𝒏,𝒎𝒏,𝒎𝒏+𝟏

 are integer 

values.  

 

 

This makes the optimization a mixed-integer non-linear programming 

(MINLP) problem. 

Defined Variables: 

𝑎𝑛,𝑚𝑛,𝑚𝑛+1
: Allowance of connection between nodes mn and mn+1 (0 or 1) 

𝐿𝑛,𝑚𝑛,𝑚𝑛+1
: The length of pipe between nodes mn and mn+1  

𝐽𝑛,𝑚𝑛,𝑚𝑛+1
: Headless per unit length of pipe connecting nodes mn and mn+1  

𝐻𝑛,𝑚𝑛       : Required head at node mn  

𝑄𝑛,𝑚𝑛       : Required flow at node mn 

Ps             : Starting pressure head (elevation) of the system 

 

Decision Variables: 

𝑥𝑛,𝑚𝑛,𝑚𝑛+1
: Existence of connection between nodes mn and mn+1 (binary 

variable: 0 or 1) 

𝑄𝑃𝑛,𝑚𝑛,𝑚𝑛+1
 : Flow through pipe between nodes nodes mn and mn+1  

𝐷𝑛,𝑚𝑛,𝑚𝑛+1
  : Pipe diameter for a given link between nodes mn and mn+1 

 

 

 

 

The objective function is given as: 

Minimize 

 𝑍 =  ∑ ∑ ∑ 𝑥𝑛,𝑚𝑛,𝑚𝑛+1
𝐿𝑛,𝑚𝑛,𝑚𝑛+1

𝐶(𝐷𝑛,𝑚𝑛,𝑚𝑛+1
)𝑚𝑛+1𝑚𝑛𝑛         (1) 

 

Where: 

𝐶 = 11.7 + 0.51𝐷𝑛,𝑚𝑛,𝑚𝑛+1

1.38 

 

Given for 12-54 in concrete piping material costs from Clark et al. Subject 

to: 

 

Connectivity: 

 

∑ 𝑎𝑛,𝑚𝑛,𝑚𝑛+1
𝑥𝑛,𝑚𝑛,𝑚𝑛+1

= 1 𝑚𝑛
         ∀ 𝑛 + 1 and ∀ 𝑚𝑛+1         (2) 

 

Conservation of flow: 

 

𝑄𝑃𝑛,𝑚𝑛,𝑚𝑛+1
= [∑ 𝑄𝑃𝑛+1,𝑚𝑛+1,𝑚𝑛+2

𝑋𝑛+1,𝑚𝑛+1,𝑚𝑛+2𝑚𝑛+1
+

𝑄𝑛+1,𝑚𝑛+1 ]𝑥𝑛,𝑚𝑛,𝑚𝑛+1
                                                                                (3) 

 

  

Conservation of energy: 

 

𝐻𝑛+1,𝑚𝑛+1
≤ 𝐻1,1 − ∑ ∑ ∑ 𝐿𝑛,𝑚𝑛,𝑚𝑛+1𝑚𝑛+1

𝐽𝑛,𝑚𝑛,𝑚𝑛+1
𝑋𝑛,𝑚𝑛,𝑚𝑛+1𝑚𝑛𝑛    (4) 

 

Where,  

𝐽𝑛,𝑚𝑛,𝑚𝑛+1
=  

8𝑓𝑄𝑃𝑛,𝑚𝑛,𝑚𝑛+1

2

𝜋2𝑔𝐷𝑛,𝑚𝑛,𝑚𝑛+1

5 

 

Non-negativity: 

 

𝑄𝑃𝑛,𝑚𝑛,𝑚𝑛+1  , 𝐷𝑛,𝑚𝑛,𝑚𝑛+1
 ≥ 0 

 

2.1 Simple layout 

A simplified version of the layout is used to illustrate the constraints which 

will be automatically delineated by GAMS in the final model. The layout 

is the first three Isonodal lines with possible connections varying by order 

of magnitude as shown in Fig. 2. 

 

 

Subject to: 

Connectivity: 

Node m1 on n = 2  𝑎1,1,1𝑥1,1,1 = 1 

Node m2 on n = 2  𝑎1,1,2𝑥1,1,2 = 1 

Node m1 on n = 3  𝑎2,1,1𝑥2,1,1 + 𝑎2,2,1𝑥2,2,1 = 1 

Node m2 on n = 3  𝑎2,1,2𝑥2,1,2 + 𝑎2,2,2𝑥2,2,2 = 1 

Node m3 on n = 3  𝑎2,1,3𝑥2,1,3 + 𝑎2,2,3𝑥2,2,3 = 1 

Figure 1. General system layout 

Figure 2. Simplified layout 
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Conservation of flow: 

𝑄𝑃1,1,1 = [𝑄𝑃2,1,1𝑋2,1,1 + 𝑄𝑃2,1,2𝑋2,1,2 + 𝑄𝑃2,1,3𝑋2,1,3 + 𝑄2,1 ]𝑥1,1,1 

𝑄𝑃1,1,2 = [𝑄𝑃2,2,1𝑋2,2,1 + 𝑄𝑃2,2,2𝑋2,2,2 + 𝑄𝑃2,2,3𝑋2,2,3 + 𝑄2,2 ]𝑥1,1,2 

𝑄𝑃2,1,1 = [0 + 𝑄3,1 ]𝑥2,1,1 

𝑄𝑃2,1,2 = [0 + 𝑄3,2 ]𝑥2,1,2 

𝑄𝑃2,1,3 = [0 + 𝑄3,3 ]𝑥2,1,3 

𝑄𝑃2,2,1 = [0 + 𝑄3,1 ]𝑥2,2,1 

𝑄𝑃2,2,2 = [0 + 𝑄3,2 ]𝑥2,2,2 

𝑄𝑃2,2,3 = [0 + 𝑄3,3 ]𝑥2,2,3 

 

Hydraulic Constraints: 

𝐻2,1 ≤ 𝐻1,1 − (𝐿1,1,1𝐽1,1,1𝑋1,1,1) 

𝐻2,2 ≤ 𝐻1,1 − (𝐿1,1,2𝐽1,1,2𝑋1,1,2) 

𝐻3,1 ≤ 𝐻1,1 − (𝐿1,1,1𝐽1,1,1𝑋1,1,1 + 𝐿2,1,1𝐽2,1,1𝑋2,1,1)  

or  𝐻3,1 ≤ 𝐻1,1 − (𝐿1,1,2𝐽1,1,2𝑋1,1,2 + 𝐿2,2,1𝐽2,2,1𝑋2,2,1) 

𝐻3,2 ≤ 𝐻1,1 − (𝐿1,1,1𝐽1,1,1𝑋1,1,1 + 𝐿2,1,2𝐽2,1,2𝑋2,1,2) 

 or 𝐻3,2 ≤ 𝐻1,1 − (𝐿1,1,2𝐽1,1,2𝑋1,1,2 + 𝐿2,2,2𝐽2,2,2𝑋2,2,2) 

𝐻3,3 ≤ 𝐻1,1 − (𝐿1,1,1𝐽1,1,1𝑋1,1,1 + 𝐿2,1,3𝐽2,1,3𝑋2,1,3) 

or 𝐻3,3 ≤ 𝐻1,1 − (𝐿1,1,2𝐽1,1,2𝑋1,1,2 + 𝐿2,2,3𝐽2,2,3𝑋2,2,3) 

 

The source node, m1 on n = 1, was given a total head of 550 ft.  All other 

nodes were given a required head of 500 ft and a demand of 5 cfs.  The 

friction factor f was set at 0.02.  These values will be the same set-up in the 

larger scenario as well. 

 

2.2 Explicit model of simple layout 

 

The above equations were entered explicitly, or directly as-is, into GAMS 

to both ensure that the engineering is correct and to ascertain correct values 

to check the more generalized model against.  The resulting values for the 

decisions variables are shown in Table 1, and an objective value of $65,897 

was determined. 

It should be noted that GAMS specifies diameters for pipes that do not exist.  

Since d is in the denominator of the headloss equation, a “division by zero” 

error occurs if they are set to zero.  However, this does not affect the value 

of the objective function since they are multiplied by x = 0.  The diameters 

are also not commercial sizes or even rounded up to the next inch. Setting 

D as an integer variable in GAMS returned an error of “no integer solution 

found” and gave the resulting values. The flows and existence were easily 

predicted based on the simple setup of the problem.  However, the 

diameters were more difficult to verify, so the hydraulics were checked 

using EPANET.  The heads at each node are shown in Figure 3. 

Table 1. Explicit GAMS output for simple layout 

Pipe 
x qp d 

1,1,1 1 10 08.473 

1,1,2 1 15 15.619 

2,1,1 1 05 06.818 

2,1,2 0 00 01.000 

2,1,3 0 00 01.830 

2,2,1 0 00 00.814 

2,2,2 1 05 10.980 

2,2,3 1 05 06.928 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All heads are above the required 500ft in addition to the flows and 

connections being what was expected.  This shows that the equations are 

properly reflecting the engineering. 

2.3 Generalized Model of Simple Layout 

With validated equations and verified values, the next step was to 

generalize the GAMS model so that GAMS creates the constraints for each 

node and pipe from the general constraints instead of having to explicitly 

write them all out. The original idea was to use n, mn, and mn+1 for the sets 

as below: 

 

n 5 Isonodal lines /n1, n2, n3/ 

mn 4 nodes on n /mn1, mn2, mn3/ 

mn1 4 nodes on n+1 /mn11, mn12, mn13/ 

 

This created problems with switching between Isonodal lines. Sets that 

needed to be summed over also needed to be controlled, causing errors in 

GAMS.  Because of this, a new constraint equation or condition would be 

required for each Isonodal line or node position on the line.  The flow 

equation, for example, would require a conditional constraint for each pipe 

flow and each node demand for each node position, or six conditions in all. 

This limited the amount of generalization that could be done and also meant 

more work for larger layouts. To circumvent this problem, the approach 

taken by Kurt Mahoney and Joshua Steele for their storm sewer layout 

model was adapted.  This reduces the sets to one for Isonodal lines and one 

for nodes.  Aliases are then used to help the equations sum over nodes on 

different Isonodal lines below: 

 

n 3 Isonodal lines      /n1, n2, n3/ 

mn 3 possible node on n /1, 2, 3/ 

alias (mn, mn1, mnm1, mnm2) 

 

The connectivity constraint is relatively straightforward, though Mahoney 

and Steele added a condition to state that there are no connections if all  

𝑎𝑛,𝑚𝑛,𝑚𝑛+1
 equal 0, and the code does not work properly without it. 

 

Connectivity (n, mn1). sum (mn, x(n,mn,mn1)*a(n,mn,mn1)) =e=1$(sum 

(mn, a (n, mn, mn1))>0) 

 

Their approach also looked at QP in relation to the node where flow is 

exiting, or in this case entering, rather than the specific pipe itself.  This 

allows GAMS to sum over the downstream pipes since QP is defined by 

(n, mn) instead of (n,mn,mn1) .  Equation 3 then becomes: 

 

Figure 3. EPANET pressure heads of explicit simple system 
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𝑄𝑃𝑛,𝑚𝑛
= [ ∑ 𝑄𝑃𝑛+1,𝑚𝑛+1

𝑋𝑛+1,𝑚𝑛+1,𝑚𝑛+2

𝑚𝑛+1

+ 𝑄𝑛+1,𝑚𝑛+1 ] 𝑥𝑛,𝑚𝑛,𝑚𝑛+1
 

 

 

or in GAMS flow: 

 

(n,mn)..qp(n,mn)=e=q(n,mn)+sum(mn1,qp(n+1,mn1)*x(n,mn,mn1))$(ord

(n)>1); 

 

This can cause a bit of confusion as 𝑄𝑃𝑛,𝑚𝑛
 could apply to multiple cases 

of 𝑄𝑃𝑛,𝑚𝑛,𝑚𝑛+1
.   

 

However, this is easily handled by multiplying by 𝑥𝑛,𝑚𝑛,𝑚𝑛+1
. Extra 

equations are included in the simple layout GAMS model for illustration 

purposes. In addition to the sets and flow equation, the model from 

Mahoney and Steele had to be expanded to account for pressurized flow 

and cost.  As with QP, D was converted to a nodal designation instead of a 

specific pipe so that: 

 

𝐽𝑛,𝑚𝑛,𝑚𝑛+1
=  

8𝑓𝑄𝑃𝑛,𝑚𝑛

2

𝜋2𝑔𝐷𝑛,𝑚𝑛

5 

 

 

The hydraulic constraint is the most challenging because it crosses more 

than one pair of Isonodal lines as it traces headless from the source.  This 

means that pathways must be considered backward from (n, mn) through 

(n-1,mn-1, mn) and (n-2,mn-2,mn-1).  For example, Eq 4 becomes: 

 

𝐻3,1 ≤ 𝐻1,1 − ∑ 𝐿𝑛−1,𝑚𝑛−1,𝑚1

𝑚𝑛−1

𝐽𝑛−1,𝑚𝑛−1,𝑚1
𝑋𝑛−1,𝑚𝑛−1,𝑚1

− ∑ 𝐿𝑛−2,𝑚𝑛−2,𝑚𝑛−1

𝑚𝑛−2

𝐽𝑛−2,𝑚𝑛−2,𝑚𝑛−1
𝑋𝑛−2,𝑚𝑛−2,𝑚𝑛−1

 

 

Under this method, each summation must be entered separately into 

GAMS.  

  

hydraulic(n,mn)..h(n,mn)=l=h('n1','1')-coeffj* (sum(mnm1,(l(n-1,mnm1,mn)*x(n 

1,mnm1,mn)*qp(n,mn)**2/((d(n,mn)/12)**5) )$(ord(n)>1) +sum(mnm2, (l(n-

2,mnm2,mnm1)*x(n-2,mnm2,mnm1)*qp(n-1,mnm1)**2/((d(n-1,mnm1)/12)**5) 

)$(ord(n)>2)))); 

 

It is possible to look at headless between only two adjacent Isonodal lines.  

In this case, the head of the upstream node would be used instead of the 

head of the source and there would only be one connecting pipe.  However, 

this requires an additional decision variable and constraint to account for 

the actual head at each node. (The main layout was already reaching GAMS 

demo limitations, though, so this would have been impractical in that 

regard). Finally, the objective function was added using the modified 

designation for D. 

 

mincost. sum(n, sum(mn, sum(mn1,x(n,mn,mn1)*l(n,mn,mn1) 

*(11.7+0.51*d(n+1,mn1)**1.38))))=e=cost; 

 

The model was run and resulted in the pipe properties seen in Table 2 with 

an objective value of $67,388. QP and D are listed by pipe for ease of 

comparison and are zero when x = 0 due to that conversion.  

 

 

 

Table 2. General GAMS output for Simple Layout 

Pipe x qp d 

1,1,1 1 10 13.93 

1,1,2 1 15 15.82 

2,1,1 1 05 06.96 

2,1,2 0 00 00.00 

2,1,3 0 00 00.00 

2,2,1 0 00 00.00 

2,2,2 1 05 11.04 

2,2,3 1 05 06.90 

 

There is a difference between this generalized model and the explicit model 

in the results of D.  Despite the differing values, GAMS seems to be 

constructing the constraints the same in each case.  For example, both the 

explicit and general models give: 

 

hydraulic(n3,1)..  (0)*x(n1,1,1) + (0)*x(n1,1,2) + (0)*x(n2,1,1) + 

(0)*x(n2,2,1) + (0)*qp(n2,1) + (0)*qp(n2,2) + (0)*qp(n3,1) + (0)*d(n2,1) 

+ (0)*d(n2,2)+ (0)*d(n3,1) =L= 50 ; (LHS = 0) 

 

Once again, the diameters were verified using EPANET.  As seen in Figure 

4, the constraints are still met, though the pressure heads are unnecessarily 

high; this results in larger diameters and a more expensive system. The full 

GAMS model and readout for the simple layout can provide up on request. 
 

 

 

 

 

 

 

2.4 Main Layout 

 

The main scenario that this report is attempting to evaluate has five isonodal 

lines with up to four nodes on each line.  While the demands and friction 

factors are the same as in the simple scenario, the spatial distribution is 

shown in Fig. 5. 

 

 

Figure 4. EPANET Pressure heads of a general simple system 
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Figure 5. Main layout 

 

The GAMS model follows the same setup as that used for the simple model.  

The sets and alias are adjusted to fit the larger number of isonodal lines and 

nodes. 

 

n  5 isonodal lines /n1, n2, n3, n4, n5/ 

mn 4 possible nodes on n /1, 2, 3, 4/; 

alias (mn, mn1, mnm1, mnm2, mnm3, mnm4); 

 

The connectivity, flow, and cost equations require no adjustments.  The 

hydraulic constraints, due to the additional number of isonodal lines to trace 

back across, must be expanded to include these new summations. 

 

hydraulic(n,mn)..h(n,mn)=l=h('n1','1')-coeffj* 

(sum(mnm1,(l(n-1,mnm1,mn)*x(n 

1,mnm1,mn)*qp(n,mn)**2/((d(n,mn)/12)**5) )$(ord(n)>1) 

+(sum(mnm2, 

(l(n-2,mnm2,mnm1)*x(n-2,mnm2,mnm1)*qp(n-1,mnm1)**2/((d(n-

1,mnm1)/12)**5) )$(ord(n)>2) +(sum(mnm3, 

(l(n-3,mnm3,mnm2)*x(n-3,mnm3,mnm2)*qp(n-2,mnm2)**2/((d(n-

2,mnm2)/12)**5))$(ord(n)>3)+sum(mnm4, 

(l(n-4,mnm4,mnm3)*x(n-4,mnm4,mnm3)*qp(n-3,mnm3)**2/((d(n-

3,mnm3)/12)**5))$(ord(n)>4)))))))); 

 

 

While not covered in the bulk of this report, the GAMS model for the simple 

layout included a conversion from nodal notation of QP and D to a pipe 

identification.  However, the GAMS demo limit was exceeded, so these 

purely clarifying equations were removed for the main layout. The existing 

pipes are listed in the Table 3.  The objective value was $379,511. The 

values were entered into EPANET to check the hydraulics as seen in Figure 

6.  Unfortunately, the model is once again producing heads that are 

unnecessarily high and, hence, expensive. The full GAMS model and 

readout for the main layout can be provided up on requested. 

Explicitly writing out the equations for the simple layout shows that the 

constraints are correct based on the engineering of the problem.  EPANET 

was used to validate that the determined values were all acceptable. 

The generalized models worked correctly in terms of flow and connectivity.  

However, the output diameters are locally optimized as needed.  While the 

demand flows and pressures are still met, this results in a optimum capital 

cost.  GAMS appears to be constructing the hydraulics constraints correctly 

as they are identical to those constructed in the written-out version. In 

addition, the model would be improved by putting constraints on pipe 

diameters to match what is commercially available in the area of 

application. 

Table 3.General GAMS output for Main Layout 

Pipe x qp d 

1,1,1 1 10 29.28 

1,1,2 1 55 49.97 

2,1,1 1 5 18.96 

2,2,2 1 25 31.40 

2,2,3 1 25 31.40 

3,2,1 1 15 21.53 

3,2,2 1 5 15.26 

3,3,3 1 15 21.53 

3,3,4 1 5 15.26 

4,1,1 1 5 11.81 

4,1,2 1 5 12.40 

4,3,3 1 5 11.81 

4,3,4 1 5 12.91 

 

 

 

Figure 6. EPANET pressure heads of general main layout (to scale) 
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