Mustansiriyah Journal for Sciences and Education

www.MJSE.com

On Some New Types of Partitions Associated with e^s - Abacus E.F. Mohommed

Department of Mathematics, College of Education, Mustansiriyah University Iraq (emanfatel@uomustansiriyah.edu.iq)

A B S T R A C T

In this work a new method called Sequences method used to establish new diagram which called e^s -abacus with four different movements, namely (1,1,...,1). Then, a new rule constrict to find e^s -abacus diagram constrict in case $\ell_2, \ell_3, ..., \ell_e$ from e^s -abacus diagram in case ℓ_1 . Further, several examples are given to illustrate the new method.

Keywords: β-numbers, e-abacus, Partition, Sequences method, abacus configuration.

1. Introduction

A new convenient way to represented any partition of positive integer number using β -numbers which defined from Littlewod, 1951 was founded. The idea of *e*-abacus has been used to solve many problem which related with Iwahori-Hecke algebras and q-Schur algebras [1,2,3,4,5]. Mathas, James and Sinead (2005), introduced the idea of *e*-abacus configuration with *k* beads (ℓ_1) (with k + 1 beads), (ℓ_2), (with k + 2 beads),..., (ℓ_e) (with k + e beads) [5]. Numerous diagrams have been generated based on different methods [7-11]. The idea of intersection of *e*-abacus configuration was intrudes in [6]. In this paper we introduced new method called Sequences method to find e-abacus configuration (in case $\ell_2, \ell_3, ..., \ell_e$) from *e*-abacus (case ℓ_1), this new abacus denoted e^s -abacus diagram, and research for relation between the intersection of the new and normal diagram.

1. BACKGROUND AND NOTATION

Let $\gamma = (\gamma_1, \gamma_2, \gamma_3, ..., \gamma_n)$ be a partition of k, where γ_i is a sequence of integers such that $|\gamma| = \sum_{i=1}^n \gamma_i = k, \forall i \ge 1$. Let be integer greater than or equal the number of non-zero parts γ . Now consider a graphical representation of partition called *e*-abacus configuration with *e* columns, labeled from 0 ... *e* - 1 as (0,1,2,...,e-1) from left to right, and label the bead position as well as empty bead position on column *j* as j, j + e, j + 2e, ... begin from top. There is a bijection between partitions γ with at most ℓ position and sequence of integer numbers $\beta_1 > \beta_2 > \cdots > \beta_j$ called beta number where $\beta_j = \gamma_i + \ell - j$ as shown in Figure 1.

run.0	run.1		run.e-1
0	1		<i>e</i> – 1
е	<i>e</i> + 1		2 <i>e</i> – 1
2 <i>e</i>	2 <i>e</i> + 1		3e – 1
•	•	•	•

e-abacus configuration

Let $\mu = (8^2, 6, 3, 2, 1^4), d = 31$,

- 1. if e = 2 then there are two *e*-abacus configuration,
 - if $\ell_1 = 9 = 9$ then $\beta = \{1, 2, 3, 4, 6, 8, 12, 15, 16\}$
 - if $\ell_2 = 10 = 10$ then $\beta = \{0, 2, 3, 4, 5, 7, 9, 13, 16, 17\}.$
- 2. if e = 3 then there are the *e*-abacus configuration,
- if $\ell_1 = 9$ then $\beta = \{1, 2, 3, 4, 6, 8, 12, 15, 16\}.$
- if $\ell_2 = 10$ then $\beta = \{0, 2, 3, 4, 5, 7, 9, 13, 16, 17\}.$
- If $\ell_3 = 11$ then $\beta = \{0, 1, 3, 4, 5, 6, 8, 10, 1, 17, 18\}.$

Theorem [7]: Let $m.d_{\ell_s}$ be an abacus configuration in case $\ell_1 = \gamma_1 - 1 + k$, $\ell_2 = \gamma_2 - 2 + k, ..., \ell_e = \gamma_k$

With k beads

1. for $\tau_{\kappa} = 1$, then $\# \bigcap_{s=1}^{e} m_{\ell_s} = 1 = \phi$

2. For $\tau_{\kappa} \ge e$ for some κ , then: $\# \cap_{s=1}^{e} m_{\ell_s} = [\sum_{t=1}^{R} \tau_t - R (e - 1)]$ where r the number of parts of γ .

Consider $\gamma = (8^2, 6, 3, 2, 1^4)$ then $\# \cap_{s=1}^e m_{\ell_s} = [\sum_{t=1}^R \tau_t - R \ (e - 1)] = [4 - 2] = 2$

Remark 1[13]: Let $\alpha_{mn}^{A\ell s}$ be a position in e-abacus configuration located in column *n* and rows *m* where s number of beads, $n=1,2,\ldots,e$ and $m=1, 2, \ldots, (\operatorname{fix}\left(\frac{\beta_i}{2}\right)+1)+(e-1)=r$.

Sequences movement β -numbers:

In this section, e^s -abacus configuration was interfused by application the Sequences movement on e-abacus configuration.

Role 2: Let $\alpha_{mn}^{\ell_s}$ be a position in *e*-abacus, if x = 1 then

$$\left\{ \begin{array}{ll} \alpha_{(m-1)n}^{e^{s}\ell_{s}} & \text{if} \qquad (e-n+1) < m \le (r-e+n), \begin{cases} \frac{2+e}{2} \le n \le e & \text{if} \quad n \text{ is even} \\ \frac{3+e}{2} \le n \le e & \text{if} \quad n \text{ is odd} \\ \\ \alpha_{(1+m)n}^{e^{s}\ell_{s}} & \text{if} \qquad n \le m < (r-n+1), \end{cases} \begin{cases} 1 \le n \le \frac{e}{2} & \text{if} \quad n \text{ is even} \\ 1 \le n < \frac{e}{2} & \text{if} \quad n \text{ is odd} \\ \\ 1 \le n < \frac{e-1}{2} & \text{if} \quad n \text{ is odd} \end{cases} \\ \alpha_{m(n-1)}^{e^{s}\ell_{s}} & \text{if} \qquad m = u, u < n \le e-u+1, \begin{cases} 1 \le u \le \frac{e}{2} & \text{if} \quad n \text{ is even} \\ 1 \le u < \frac{e}{2} & \text{if} \quad n \text{ is odd} \end{cases} \\ \alpha_{m(1+n)}^{e^{s}\ell_{s}} & \text{if} \qquad m = (r-u+1), u \le n < e-u+1, \begin{cases} 1 \le u \le \frac{e}{2} & \text{if} \quad n \text{ is even} \\ 1 \le u < \frac{e-1}{2} & \text{if} \quad n \text{ is even} \end{cases} \\ 1 \le u < \frac{e}{2} & \text{if} \quad n \text{ is odd} \end{cases} \\ \alpha_{m(1+n)}^{e^{s}\ell_{s}} & \text{if} \qquad m = (r-u+1), u \le n < e-u+1, \begin{cases} 1 \le u \le \frac{e}{2} & \text{if} \quad n \text{ is even} \\ 1 \le u < \frac{e-1}{2} & \text{if} \quad n \text{ is odd} \end{cases} \\ \alpha_{(1+m)n}^{e^{s}\ell_{s}} & \text{if} \qquad n = \frac{e-1}{2}, \frac{1+e}{2} \le m < \frac{2r-e-1}{2} \\ \alpha_{(\frac{3+e}{2})(\frac{1+e}{2})}^{e^{s}\ell_{s}} & \text{if} \qquad n = \frac{1+e}{2}, m = \frac{2r-e-1}{2} \end{cases} \end{cases}$$

Where s is the number of beads, n=1,2,...,e and m=1, 2, ..., r, for $r = \left(\operatorname{fix}\left(\frac{\beta_1}{2}\right) + 1\right) + e - 1.$

5.1 Sequences movement β -numbers in case (1, 1, 1,...)

To find e^s -abacus configuration in case $\ell_2, \ell_3, ..., \ell_e$ from *e*-abacus configuration we need to division *e*-abacus in case ℓ_1 into several parts:

A- If *e* is even

Remark 3: *e*-abacus configuration in case b_1 will be divided in to three parts:

$$= \begin{cases} \left\{ \alpha_{31}^{e^{s}\ell_{s}}, \alpha_{41}^{e^{s}\ell_{s}}, \dots, \alpha_{(r-1)1}^{e^{s}\ell_{s}} \right\} & \text{if} & k = 1 \\ \left\{ \alpha_{(k+1)k}^{e^{s}\ell_{s}}, \alpha_{(k+2)k}^{e^{s}\ell_{s}}, \dots, \alpha_{(r-k+1)k}^{e^{s}\ell_{s}} \right\} & \text{if} & k = 2, 3, \dots, \frac{e}{2} \\ \left\{ \alpha_{\left(\frac{e^{-2u}}{2}\right)\left(\frac{e+2u+2}{2}\right)}^{e^{s}\ell_{s}}, \alpha_{(\frac{e^{-2u+2}}{2})}^{e^{s}\ell_{s}}, \dots, \alpha_{(r-k)e}^{e^{s}\ell_{s}} \right\} & \text{if} & k = \frac{e+2u+2}{2}, u = 0, 1, \dots, \frac{e-4}{2} . \\ \left\{ \alpha_{2e}^{e^{s}\ell_{s}}, \alpha_{3e}^{e^{s}\ell_{s}}, \dots, \alpha_{(r-4)e}^{e^{s}\ell_{s}} \right\} & \text{if} & k = e \end{cases}$$

Rule 4: The *e*-abacus configuration in case ℓ_1 plays a main role to find the *e*^s-abacus configuration in case $\ell_1, \ell_2, \ell_3, ..., \ell_e$ as follows:

1.
$$H_1$$
 in e^s -abacus configuration in case $\ell_1 \to H_2$ in case ℓ_2 then
 $H_2 \cup \left\{ \alpha_{32}^{e^s \ell_s} \right\} \to H_3$ in case ℓ_3 then $H_3 \cup \left\{ \alpha_{43}^{e^s \ell_s} \right\} \to \cdots \to H_{\left(\frac{e+2}{2}\right)}$ in
case $\ell_{\left(\frac{e+2}{2}\right)}$ then $H_{\left(\frac{e+2}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e}{2}\right)\left(\frac{e}{2}\right)}^{e^s \ell_s} \right\} \to H_{\left(\frac{e+4}{2}\right)}$ in case $\ell_{\left(\frac{e+4}{2}\right)}$ then $H_{\left(\frac{e+4}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e^s \ell_s}{2}\right)\left(\frac{e^s}{2}\right)\left(\frac{e^s \ell_s}{2}\right)} \right\} \to \cdots \to H_e$ in case ℓ_e .

Rule 4: The *e*-abacus configuration in case ℓ_1 plays a main role to find the *e*^s-abacus configuration in case $\ell_1, \ell_2, \ell_3, ..., \ell_e$ as follows:

$$\begin{aligned} 1.H_1 & \text{ in } e^{s} \text{-abacus configuration in case} \quad \ell_1 \to H_2 & \text{ in case } \ell_2 & \text{ then} \\ H_2 \cup \left\{ \alpha_{32}^{e^s \ell_s} \right\} \to H_3 & \text{ in case } \ell_3 & \text{ then } H_3 \cup \left\{ \alpha_{43}^{e^s \ell_s} \right\} \to \cdots \to H_{\left(\frac{e+2}{2}\right)} & \text{ in} \\ & \text{ case } \ell_{\left(\frac{e+2}{2}\right)} & \text{ then } H_{\left(\frac{e+2}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e}{2}\right)\left(\frac{e}{2}\right)}^{e^s \ell_s} \right\} \to H_{\left(\frac{e+4}{2}\right)} & \text{ in case } \ell_{\left(\frac{e+4}{2}\right)} & \text{ then } H_{\left(\frac{e+4}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e+2}{2}\right)\left(\frac{e+2}{2}\right)}^{e^s \ell_s} \right\} \to \cdots \to H_e & \text{ in case } \ell_e. \\ & 2.H_k & \text{ in } e^s \text{-abacus configuration in case } \ell_1 & \text{ then } H_k \cup \left\{ \alpha_{\left(k+1\right)k}^{e^s \ell_1} \right\} \to \\ & H_{k+1} & \text{ in case } \ell_2 & \text{ then } H_{k+1} \cup \left\{ \alpha_{\left(k+2\right)\left(k+1\right)}^{e^s \ell_s} \right\} \to H_{k+2} & \text{ in case } \ell_3 & \text{ then } \\ & H_{k+2} \cup \left\{ \alpha_{\left(k+3\right)\left(k+2\right)}^{e^s \ell_s} \right\} \to \cdots \to H_{\left(\frac{e}{2}+1\right)} & \text{ in case } \ell_{\left(\frac{e-2k}{2}+2\right)} & \text{ then } H_{\left(\frac{e+2}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e^s \ell_s}{2}\right)}^{e^s \ell_s} \right\} \to \\ & \left\{ \alpha_{\left(\frac{e^s \ell_s}{2}\right)\left(\frac{e^s \ell_s}{2}\right)}^{e^s \ell_s} \to H_{\left(\frac{e}{2}+2\right)} & \text{ in case } \ell_{\left(\frac{e-2k}{2}+3\right)} & \text{ then } H_{\left(\frac{e}{2}+2\right)} \setminus \left\{ \alpha_{\left(\frac{e^s \ell_s}{2}-1\right)\left(\frac{e^s \ell_s}{2}\right)}^{e^s \ell_s} \right\} \to \\ & \to H_{\left(\frac{e}{2}+3\right)} & \text{ in case } \ell_{\left(\frac{e-2k}{2}+4\right)} & \text{ then } H_{\left(\frac{e}{2}+3\right)} \setminus \left\{ \alpha_{\left(\frac{e^s \ell_s}{2}-1\right)\left(\frac{e^s \ell_s}{2}\right)}^{e^s \ell_s} \right\} \to \cdots \to H_{\left(\frac{e}{2}+n\right)} \end{aligned}$$

 H'_k

in case
$$\ell_{\left(\frac{e-2k}{2}+(n+1)\right)}$$
 then $H_{\left(\frac{e}{2}+n\right)} \setminus \left\{ \alpha_{\left(\frac{e}{2}-n+1\right)\left(\frac{e}{2}+n_{-}1\right)}^{e^{s}\ell_{1}} \right\}$ in case ℓ_{e-k+1}
 $\rightarrow H_{1} = \{o\}$ in case $\ell_{e-k+2} \rightarrow H_{2}$ in case $\ell_{e-k+3} \rightarrow H_{3}$ in case ℓ_{e-k+4}
then $H_{3} \cup \left\{ \alpha_{32}^{e^{s}\ell_{1}} \right\} \rightarrow \cdots \rightarrow H_{(k-1)}$ in case ℓ_{e} where $\kappa = 2, 3, \dots, e - 1, n = 1, 2, \dots, \frac{e-2}{2}$.

3. H_e in e^s -abacus configuration in case ℓ_1 then $H_e \cup H'_e \to H'_1$ in case $\ell_2 \to H_2$ in case $\ell_3 \dots$

 $\begin{aligned} 4.H'_{1} \text{ in } e^{s} \text{-abacus configuration in case } b_{1} \to H'_{2} \text{ in case } \ell_{2} \text{ then} \\ H'_{2} \setminus \left\{ \alpha_{32}^{e^{s}\ell_{1}}, \alpha_{(r-1)2}^{e^{s}\ell_{1}} \right\} \to H'_{3} \text{ in case } \ell_{3} \text{ then } H'_{3} \setminus \left\{ \alpha_{43}^{e^{s}\ell_{1}}, \alpha_{(r-2)3}^{e^{s}\ell_{1}} \right\} \to \\ \cdots H'_{\left(\frac{e}{2}\right)} \text{ in case } \ell_{\left(\frac{e}{2}\right)} \text{ then } \left\{ H'_{\left(\frac{e}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e^{s}\ell_{1}}{2}\right)\left(\frac{e}{2}\right)}^{e^{s}\ell_{1}} \right\} \right\} \cup \left\{ \alpha_{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+2}{2}\right)}^{e^{s}\ell_{1}} \right\} \to \\ H'_{\left(\frac{e+2}{2}\right)} \text{ in case } \ell_{\left(\frac{e+2}{2}\right)} \text{ then } \left\{ H'_{\left(\frac{e+2}{2}\right)} \cup \left\{ \alpha_{\left(\frac{e^{s}\ell_{1}}{2}\right)\left(\frac{e}{2}\right)}^{e^{s}\ell_{1}} \right\} \cup \left\{ \alpha_{\left(\frac{2r-e+4}{2}\right)\left(\frac{e+2}{2}\right)}^{e^{s}\ell_{1}} \right\} \right\} \to \\ H'_{e} \text{ in case } \ell_{e} . \end{aligned}$

5. H'_k in e^{s} -abacus configuration in case b_1 then $H'_k \setminus \left\{ \alpha_{\left(\frac{e}{2}\right)\left(\frac{e+2}{2}\right)}^{e^{s}\ell_1}, \alpha_{\left(\frac{2r-e}{2}\right)\left(\frac{e+2}{2}\right)}^{e^{s}\ell_1} \right\} \to H'_{k+1}$ in case ℓ_2 then $H'_{(k+2)} \setminus \left\{ \alpha_{\left(\frac{e-2k+2}{2}\right)\left(\frac{e+4}{2}\right)}^{e^{s}\ell_1}, \alpha_{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+4}{2}\right)}^{e^{s}\ell_1} \right\} \to \cdots \to H'_{\left(\frac{e}{2}\right)}$ in case $\ell_{\left(\frac{e-2k+2}{2}\right)}$ then $\left\{ H'_{\left(\frac{e}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e-2k+2}{2}\right)\left(\frac{e+2}{2}\right)\left(\frac{e+2}{2}\right)}^{e^{s}\ell_1} \right\} \cup \left\{ \alpha_{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+2}{2}\right)}^{e^{s}\ell_1} \right\} \to H'_{\left(\frac{e+2}{2}\right)}$ in case $\ell_{\left(\frac{e-2k+4}{2}\right)}$ then $H'_{\left(\frac{e+2}{2}\right)} \cup \left\{ \alpha_{\left(\frac{e}{2}\right)\left(\frac{e}{2}\right)}^{e^{s}\ell_1} \right\} \cup \left\{ \alpha_{\left(\frac{2r-e+4}{2}\right)\left(\frac{e+4}{2}\right)}^{e^{s}\ell_1} \right\} \to H'_{\left(\frac{e+4}{2}\right)}$ in case $\ell_{\left(\frac{e-2k+6}{2}\right)} \to H'_{\left(\frac{e-2k+6}{2}\right)} \to H'_{\left(\frac{k-2}{2}\right)}$ in case $\ell_{\left(\frac{e-2k+6}{2}\right)} \to H'_{\left(\frac{k-2}{2}\right)}$ in case $\ell_{\left(\frac{e-2k+6}{$

 $6.H'_e$ in e^s -abacus configuration in case ℓ_1 then $H_e \cup H'_e \to H'_1$ in e-abacus configuration in case $\ell_2 \dots$

7. H_1'' in e^s -abacus configuration in case $\ell_1 \to H_2''$ in case ℓ_2 then $H_2'' \cup \left\{a_{2(r-1)}^{e^s \ell_1}\right\} \to H_3''$ in case ℓ_3 then $H_3'' \cup \left\{a_{3(r-2)}^{e^s \ell_1}\right\} \to \cdots \to H_{\binom{e}{2}}''$ in

$$\operatorname{case} \ \ell_{\left(\frac{e}{2}\right)} \ \operatorname{then} \left\{ H_{\left(\frac{e}{2}\right)}^{\prime\prime} \setminus \left\{ \alpha_{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+2}{2}\right)}^{e^{s}\ell_{1}} \right\} \right\} \to H_{\left(\frac{e+2}{2}\right)}^{\prime\prime} \ \text{in case} \ \ell_{\left(\frac{e+2}{2}\right)} \ \text{then} \\ H_{\left(\frac{e+2}{2}\right)}^{\prime} \setminus \left\{ \alpha_{\left(\frac{2r-e+4}{2}\right)\left(\frac{e+4}{2}\right)}^{e^{s}\ell_{1}} \right\} \to \cdots \to H_{e}^{\prime\prime} \ \text{in case} \ \ell_{e}. \\ 8.H_{k}^{\prime\prime} \ \text{in} \ e^{s} \text{-abacus configuration in case} \ \ell_{1} \ \text{then} \ H_{k}^{\prime\prime} \cup \left\{ \alpha_{k(r-k+1)}^{A^{tc}b_{1}} \right\} \\ \to \ H_{k+1}^{\prime\prime} \ \text{in case} \ \ell_{2} \ \text{then} \ H_{k+1}^{\prime\prime} \cup \left\{ \alpha_{(k+1)(r-k)}^{A^{tc}b_{1}} \right\} \to \cdots \to H_{\left(\frac{e}{2}\right)}^{\prime\prime} \ \text{in case} \\ \ell_{\left(\frac{e-2k+2}{2}\right)} \ \text{then} \ \left\{ H_{\left(\frac{e}{2}\right)}^{\prime\prime} \setminus \left\{ \alpha_{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+2}{2}\right)}^{A^{tc}b_{1}} \right\} \right\} \to \ H_{e}^{\prime\prime} \ \text{in case} \ \ell_{e-k+1} \ \to \ H_{1}^{\prime\prime} \ \text{in case} \\ \ell_{e-k+2} \to \cdots \to H_{k-1}^{\prime\prime} \ \text{in case} \ \ell_{e} \ \text{where} \ k = 2, 3, ..., e-1. \\ \end{array}$$

9. $H_e^{"}$ in e^s -abacus configuration in case ℓ_1 then $\rightarrow H_1^{"}$ in e^s -abacus configuration in case $\ell_2 \dots$

for the above example, where $\gamma = (8^2, 6, 3, 2, 1^4)$ and e = 6.

On Some New Types of partition

b ₁						b ₂						b ₃							b 4						
0	0	-	0	0	-	-	0	0	-	0	0	0	-	0	0	-	-	0	0	-	0	0	-		
-	-	-	0	-	-	0	0	-	-	0	-	0	-	0	-	0	0	0	0	-	0	-	0		
-	0	0	0	0	0	0	-	0	-	0	0	0	0	-	0	-	0	-	0	0	-	0	-		
0	-	0	-	-	-	-	0	-	-	-	-	0	-	0	-	-	-	-	0	-	-	-	-		
-	0	-	-	-	-	-	-	0	-	-	-	-	-	-	-	-	-	0	-	-	-	-	-		
-	-	-	-	-	-	0	-	-	-	-	-	0	0	-	-	-	-	0	0	0	-	-	-		
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
		ł	05			b ₆																			
0	0	0	-	0	O	0	0	0	0	-	-														
0	0	0	-	0	-	0	-	0	0	-	0														
0	-	-	-	-	Q	0	0	0	-	-	-														
-	-	0	0	-	-	0	-	-	0	0	-														
0	0	-	-	-	-	-	0	0	-	-	-														
-	0	0	-	-	-	0	-	0	-	-	-														
-	-	-	-	-	-	-	-	-	-	-	-														
-	-	-	-	-	-	-	-	-	-	-	-														
-	-	-	-	-	-	-	-	-	-	-	-														

Figure 5. e^s -abacus configuration in case ℓ_1 .

Theorem 5: Let $\gamma = (\gamma_1^{t_1}, \gamma_2^{t_2}, ..., \gamma_m^{t_m})$ be a partition of k and Let $\# \bigcap_{s=1}^e m \cdot \ell_s$ be a numerical value in e^s -abacus configuration to the beads positions which located in common bead positions in abacus configuration. Then $\# \bigcap_{s=1}^e m \cdot \ell_s$ in e^s -abacus configuration = $\# \bigcap_{s=1}^e m \cdot \ell_s$ in e-abacus= $\# \bigcap_{s=1}^e m \ell_s = [\sum_{k=1}^{\sigma} \Gamma_k - \sigma(e-1)]$. Based on Rule 2 all beads position will be stay in common positions in e^s - abacus configuration, hence $\# \cap m \cdot \ell_s$ in e-abacus = $\# \cap m \ell_s$ in e^s - abacus configuration.

These results in theorem 5 is clear in diagram 11 comparing it with diagram 3 for e=3, for our example when $\gamma = (8^2, 6, 3, 2, 1^4)$ for e=3.

<i>l</i> ₄₌	<i>l</i> ₄ = 9				10	<i>l</i> ₄₌	: 11			<i>l</i> ₄₌	: 11			$\cap_{s=1}^{e} m_{\cdot \ell_s}$					
•	•	٠	_	-	•	•	•	•	-	•	_	•	•	-	•	_	_	_	-
-	٠	-	-	•	-	-	-	•	•	•	_	•	•	-	•	-	-	-	-
•	-	—	٠	•	٠	-	-	•	•	•	—	•	•	-	•	•	—	-	-
•	-	-	-	-	•	-	-	•	_	•	-	-	•	•	•	_	-	-	-
•	_	_	_	-	٠	_	-	-	_	_	_	-	_	_	_	_	_	_	_
•	-	-	_	•	•	_	_	_	•	_	_	-	_	_	_	_	_	_	_
_	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
_	-	_	_	-	_	_	_	-	_	_	_	-	-	_	_	-	-	_	_

E.F. Mohommed/IJRIE 1(2) (2023117-130 124

Figure 6. intersection e^s -abacus configuration in case b_1

Definition 6 [12]. Let $\lambda = (\lambda_1, \lambda_2, ...), \gamma = (\gamma_1, \gamma_2, ...)$ be a two partitions, and let $\beta_1^{\ \lambda} < \cdots < \beta_k^{\ \lambda}$, $\beta_1^{\ \gamma} < \cdots < \beta_k^{\ \gamma}$, be Beta numbers to partition λ and γ sequently, then $\lambda \succeq \mu$ if and only if $\sum_{s=1}^{k} \beta_s^{\lambda} \ge \sum_{s=1}^{k} \beta_s^{\gamma}$.

Remark 7: Let β_i^{e} be a set of Beta numbers for *e*-abacus and Let $\beta_i^{e^s}$ be a set of Beta numbers for e^s -abacus, since $\beta_i^e = n + me - e - 1$, where $i=1,2,...,\ell$.

Then
$$\beta_i^{e^s} = \begin{cases} \beta_i^{e^s} - e & \text{if} \quad (1+e-n) < m \le (r+n-e), \frac{2+e}{2} \le n \le e \\ \beta_i^{e^s} + e & \text{if} \quad n \le m < (1+r-n), 1 \le n \le \frac{e}{2} \\ \beta_i^{e^s} - 1 & \text{if} \quad m = u, u < n \le 1+e-u, 1 \le u \le \frac{e}{2} \\ \beta_i^{e^s} + 1 & \text{if} \quad m = (1+r-u), u \le n \le e-u, 1 \le u \le \frac{e}{2} \end{cases}$$

Not: Let N^{\downarrow} be numerical values of β_i^{e} where $(1 + e - n) < m \le (n + r - n)$ e), $\frac{2+e}{2} \le n \le e$ and N^{\uparrow} be numerical values of β_i^e where $n \le m < (r - n + e)$ 1), $1 \le n \le \frac{e}{2}$. Let N^{\leftarrow} be numerical values of β_i^{e} where $m = u, u < n \le e - u + e$ 1, $1 \le u \le \frac{e}{2}$ and N^{\rightarrow} be numerical values of β_i^{e} where $m = (r - u + 1), u \le n \le 1$ $e-u, 1 \leq u \leq \frac{e}{2}$.

Theorem 9: Let = $(\lambda_1, \lambda_2, ...)$, $\gamma = (\gamma_1, \gamma_2, ...)$ be two partitions and let $\beta_1^{\lambda} < \cdots < \beta_n$ β_k^{λ} , $\beta_1^{\gamma} < \cdots < \beta_k^{\gamma}$, be positions of beads on the *e*-abacus and *e*^s-abacus respectively, then $\lambda \succ \mu$ if and only if $N^{\downarrow} - (\operatorname{fix}\left(\frac{N^{\leftarrow}}{e}\right)) \ge N^{\uparrow}$.

Proof: Since $N^{\downarrow} - (\operatorname{fix}\left(\frac{N^{\leftarrow}}{e}\right)) \ge N^{\uparrow}$, then $eN^{\downarrow} - N^{\leftarrow} \ge eN^{\uparrow}$, then $eN^{\downarrow} - N^{\leftarrow} - N^{\leftarrow} = eN^{\uparrow}$. $eN^{\uparrow} \ge 0$. Then $\sum_{i=1}^{b} \beta_i^{e^s} = \sum_{i=1}^{b} \beta_i^{e^s} + eN^{\downarrow} - N^{\leftarrow} - eN^{\uparrow}$, then $\sum_{i=1}^{b} \beta_i^{e^s} \ge 0$. $\sum_{i=1}^{b} \beta_i^{e}$. Based on Definition 9 then $\lambda \ge \mu$.

Following e^s -abacus in case ℓ_4 will be divided in to three part:

$$\begin{split} 1 - \Gamma_{k} &= \\ \begin{cases} \{ a_{1(k-1)}^{e^{s}\ell_{s}}, a_{2(k-1)}^{e^{s}\ell_{s}}, \dots, a_{(k-1)(k-1)}^{e^{s}\ell_{s}} \} & \text{if} \qquad \kappa = 1. \\ \{ a_{1(k-1)}^{e^{s}\ell_{s}}, a_{2(k-1)}^{e^{s}\ell_{s}}, \dots, a_{(k-1)(k-1)}^{e^{s}\ell_{s}} \} & \text{if} \qquad \kappa = 2, 3, \dots, \frac{e-1}{2}. \\ \{ a_{1(k-1)}^{e^{s}\ell_{s}}, a_{2(k-1)}^{e^{s}\ell_{s}}, \dots, a_{(e^{s-2u-1})(e^{s-2u+1})}^{e^{s}\ell_{s}} \} & \text{if} \qquad \kappa = \frac{e+2u+3}{2}, u = 0, 1, \dots, \frac{e-5}{2}. \\ \{ a_{1(e^{s-1})}^{e^{s}\ell_{s}}, a_{2(e^{s-1})}^{e^{s}\ell_{s}}, \dots, a_{(e^{s-2u-1})(e^{s-1})}^{e^{s}\ell_{s}} \} & \text{if} \qquad \kappa = e. \\ 2 - \Gamma_{k}' \\ \end{cases} \\ \begin{cases} \left\{ a_{1(e^{s-1})}^{e^{s}\ell_{s}}, a_{1(e^{s-1})}^{e^{s}\ell_{s}}, a_{1(e^{s-1})}^{e^{s}\ell_{s}} \} & \text{if} \qquad \kappa = e. \\ 2 - \Gamma_{k}' \\ \begin{cases} \left\{ a_{1(e^{s-1})}^{e^{s}\ell_{s}}, a_{1(e^{s-1})}^{e^{s}\ell_{s}}, a_{1(e^{s-1})}^{e^{s}\ell_{s}} \} & \text{if} \qquad \kappa = e. \\ 2 - \Gamma_{k}' \\ \end{cases} \\ \begin{cases} \left\{ a_{1(e^{s+2u-1})}^{e^{s}\ell_{s}}, a_{1(e^{s-1})}^{e^{s}\ell_{s}}, a_{1(e^{s-1})}^{e^{s}\ell_{s}} \} & \text{if} \qquad \kappa = e. \\ 2 - \Gamma_{k}' \\ \end{cases} \\ \begin{cases} \left\{ a_{1(e^{s+2u-1})}^{e^{s}\ell_{s}}, a_{1(e^{s+2u})}^{e^{s}\ell_{s}}, a_{1(e^{s+2u+3})}^{e^{s}\ell_{s}}, \dots, a_{1(e^{s+2u+3})}^{e^{s}\ell_{s}}} \} & \text{if} \qquad \kappa = 2, 3, \dots, \frac{e-1}{2} \\ \end{cases} \\ \begin{cases} \left\{ a_{1(e^{s+2u-1})}^{e^{s}\ell_{s}}}, a_{1(e^{s+2u+1})}^{e^{s}\ell_{s}}, a_{1(e^{s+2u+3})}^{e^{s}\ell_{s}}, \dots, a_{1(e^{s+2u+3})}^{e^{s}\ell_{s}}} \} & \text{if} \qquad \kappa = 2, 3, \dots, \frac{e-1}{2} \\ \end{cases} \\ \end{cases} \\ \begin{cases} \left\{ a_{1(e^{s+2u+1})}^{e^{s}\ell_{s}}}, a_{1(e^{s+2u+1})}^{e^{s}\ell_{s}}}, \dots, a_{1(e^{s+2u+3})}^{e^{s}\ell_{s}}} \} & \text{if} \qquad \kappa = e. \\ 3 - \Gamma_{k}^{*} \\ \end{cases} \\ \end{cases} \\ \begin{cases} \left\{ a_{1(e^{s+2u+1})}^{e^{s}\ell_{s}}}, a_{1(e^{s+2u+1})}^{e^{s}\ell_{s}}}, \dots, a_{1(e^{s+2u+3})}^{e^{s}\ell_{s}}} \} & \text{if} \qquad \kappa = e. \\ 3 - \Gamma_{k}^{*} \\ \end{cases} \\ \end{cases} \\ \begin{cases} \left\{ a_{2(e^{s}, e^{s}, a_{3(e^{s}, e^{s}, e^{s})}, \dots, a_{1(e^{s+2u+3})}^{e^{s}\ell_{s}}} \} & \text{if} \qquad \kappa = 1, \\ \left\{ a_{2(e^{s}, e^{s}, e^{s}, a_{1(e^{s+2u+1})}, a_{1(e^{s+2u+2})}^{e^{s}\ell_{s}} \} & \text{if} \qquad \kappa = 1, \\ \left\{ a_{2(e^{s}, e^{s}, e^{s}, a_{1(e^{s+2u+1})}, a_{1(e^{s+2u+2})}^{e^{s}\ell_{s}} \} & \text{if} \qquad \kappa = 2, 3, \dots, \frac{e-1}{2}. \\ \left\{ a_{2(e^{s}, e^{s}, e^{s}, e^{s}, e^{s}, a_{1(e^{s+2u+2})}^{e^{s}\ell_{s}} \} & \frac{e^{e^{s}\ell_{s}}}}{(\frac{e^{e^{s}\ell_{s}}}(\frac{e^{e^{s}\ell_{s}}}{(\frac$$

Rule 10. The *e*-abacus configuration in case ℓ_1 Plays a essential role to find e^s -abacus configuration in case $\ell_2, \ell_3, ..., \ell_e$ as follows:

$$\begin{split} &\Gamma_{1} \text{ in } e^{s} \text{ - abacus configuration case } \ell_{1} \to \Gamma_{2} \text{ in case } \ell_{2} \text{ then } \Gamma_{2} \cup \left\{ \alpha_{32}^{e^{s}\ell_{1}} \right\} \to \Gamma_{3} \text{ in } \\ &\text{ case } \ell_{3} \quad \text{ then } \Gamma_{3} \cup \left\{ \alpha_{43}^{e^{s}\ell_{1}} \right\} \to \cdots \to \Gamma_{\left(\frac{e-1}{2}\right)} \quad \text{ in } \quad \text{ case } \ell_{\left(\frac{e-1}{2}\right)} \quad \text{ then } \\ &\Gamma_{\left(\frac{e-1}{2}\right)} \cup \left\{ \alpha_{\left(\frac{e+1}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}} \right\} \to \Gamma_{\left(\frac{e+1}{2}\right)} \quad \text{ in } \text{ case } \ell_{\left(\frac{e+3}{2}\right)} \to \Gamma_{\left(\frac{e+3}{2}\right)} \quad \text{ then } \Gamma_{\left(\frac{e+3}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e+3}{2}\right)\left(\frac{e+3}{2}\right)}^{e^{s}\ell_{1}} \right\} \to \Gamma_{\left(\frac{e+5}{2}\right)} \quad \text{ in } \text{ case } \ell_{\left(\frac{e+5}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e-3}{2}\right)\left(\frac{e+3}{2}\right)}^{e^{s}\ell_{1}} \right\} \to \cdots \to \Gamma_{e} \text{ In } \text{ case } \\ &\ell_{e}. \end{split}$$

$$\begin{split} &\Gamma_{k} \text{in } e^{s} \text{-abacus configuration case } \ell_{1} \text{ then } \Gamma_{k} \cup \left\{ \alpha_{(k+1)k}^{e^{s}\ell_{1}} \right\} \to \Gamma_{k+1} \text{ in case } \ell_{2} \text{ then } \\ &\Gamma_{k+1} \cup \left\{ \alpha_{(k+2)(k+1)}^{e^{s}\ell_{1}} \right\} \to \Gamma_{k+2} \text{ in case } \ell_{3} \text{ then } \Gamma_{k+2} \cup \left\{ \alpha_{(k+3)(k+2)}^{e^{s}\ell_{1}} \right\} \to \cdots \to \Gamma_{\left(\frac{e-1}{2}\right)} \text{ in } \\ &\text{case } \ell_{\left(\frac{e-2k+1}{2}\right)} \text{ then } \Gamma_{\left(\frac{e-1}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e+1}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}} \right\} \to \Gamma_{\left(\frac{e+1}{2}\right)} \text{ in case } \ell_{\left(\frac{e-2k+3}{2}\right)} \to \Gamma_{\left(\frac{e+3}{2}\right)} \text{ in case } \\ &\ell_{\left(\frac{e-2k+5}{2}\right)} \text{ then } \Gamma_{\left(\frac{e+3}{2}\right)} \setminus \left\{ \alpha_{\left(\frac{e-1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \right\} \to \cdots \to \Gamma_{e} \text{ in case } \ell_{e-k+1} \text{ then } \Gamma_{e} \cup \Gamma_{e}' \to \Gamma_{1}' \text{ in } \\ &\text{case } \ell_{e-k+2}. \\ &\text{ If } e=3 \end{split}$$

 Γ_1' in e^s - abacus configuration case b_1 before shift this case the order of all element set Γ_1' will be change and add $\alpha_{r_1}^{e^s}$ in up and be ={ $\alpha_{r_1}^{e^s}, \alpha_{21}^{e^s}, \alpha_{31}^{e^s}, \dots, \alpha_{(r-1)1}^{e^s}$ } $\rightarrow \Gamma_2'$ in e^s - abacus configuration case ℓ_2 .

 Γ'_1 in e^s - abacus configuration case $\ell_1 \to \Gamma'_3$ in e^s - abacus configuration case ℓ_3 .

 Γ'_{2} in e^{s} - abacus configuration case ℓ_{1} before shift this case the order of all element set Γ'_{2} will be change and add $a_{r1}^{e^{s}}$ in up and be ={ $\alpha_{11}^{e^{s}}, \alpha_{(r-1)2}^{e^{s}}, \alpha_{22}^{e^{s}}, \alpha_{32}^{e^{s}}, \dots, \alpha_{(r-2)2}^{e^{s}}, \alpha_{r3}^{e^{s}}$ } $\rightarrow H'_{3}$ in e^{s} - abacus configuration case $\ell_{2} \rightarrow \Gamma'_{1}$ in e^{s} abacus configuration case ℓ_{3} and add o above.

 Γ'_3 in e^s - abacus configuration case $b_1 \rightarrow \Gamma'_1$ in e^s - abacus configuration case b_2 and add o above before shift this case the order of all element set Γ'_3 will be change and be ={ o, $\alpha_{13}^{e^s}$, $\alpha_{23}^{e^s}$, $\alpha_{33}^{e^s}$, ..., $\alpha_{(r-3)3}^{e^s}$, $\alpha_{12}^{e^s}$, $\alpha_{(r-2)3}^{e^s}$ } $\rightarrow \Gamma'_2$ in e^s - abacus configuration case $\ell_2 \rightarrow \Gamma'_2$ in e^s - abacus configuration case ℓ_2 . If e > 3

 $\Gamma_{1}' \text{ in case } \ell_{1} \to \Gamma_{2}' \text{ in case } b_{2} \text{ then } \Gamma_{2}' \setminus \left\{ \alpha_{32}^{e^{s}\ell_{1}}, \alpha_{(r-1)2}^{e^{s}\ell_{1}} \right\} \to \Gamma_{3}' \text{ in case } \ell_{3} \text{ then}$ $\Gamma_{3}' \setminus \left\{ \alpha_{43}^{e^{s}\ell_{1}}, \alpha_{(r-2)3}^{e^{s}\ell_{1}} \right\} \to \cdots \to \Gamma_{\left(\frac{e-1}{2}\right)}' \text{ in case } \ell_{\left(\frac{e-1}{2}\right)}, \text{ before shift to next case the order}$ of all element set $\left\{ \Gamma_{\left(\frac{e-1}{2}\right)}' \setminus \left\{ \alpha_{\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \right\} \right\} \text{ will be change and be}$

$$\left\{\alpha_{\left(\frac{2r-e+3}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}}, \alpha_{\left(\frac{e+3}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}}, \alpha_{\left(\frac{e+5}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}}, \dots, \alpha_{\left(\frac{2r-e+1}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}}\right\} \rightarrow \Gamma_{\left(\frac{e+1}{2}\right)}^{\prime} \text{ in case } \ell_{\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}}$$

before shift to next case the order of all element set $\Gamma'_{\left(\frac{e+1}{2}\right)}$ will be change and be {

$$\begin{aligned} &\alpha_{\left(\frac{2r-e+1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}}, \alpha_{\left(\frac{e+1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}}, \alpha_{\left(\frac{e+3}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}}, \dots, \alpha_{\left(\frac{2r-e-1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \right\} \text{ and add } \alpha_{\left(\frac{2r-e+3}{2}\right)\left(\frac{e+3}{2}\right)}^{e^{s}\ell_{1}} \\ &\to \Gamma_{\left(\frac{e+3}{2}\right)}' \text{ in case } \ell_{\left(\frac{e+3}{2}\right)} \text{ then } \left\{\alpha_{\left(\frac{e-1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}}\right\} \cup \Gamma_{\left(\frac{e+3}{2}\right)}' \to \Gamma_{\left(\frac{e+5}{2}\right)}' \text{ in case } \ell_{\left(\frac{e+5}{2}\right)} \text{ then } \left\{\alpha_{\left(\frac{e-3}{2}\right)\left(\frac{e+3}{2}\right)}^{e^{s}\ell_{1}}\right\} \cup \Gamma_{\left(\frac{e+5}{2}\right)}' \to \dots \to \Gamma_{e}' \text{ in case } b_{e} \end{aligned}$$

 $\Gamma'_{k} \text{ in case } b_{1} \text{ then } \Gamma'_{k} \setminus \left\{ \alpha^{e^{s}\ell_{1}}_{\binom{e}{2}\binom{e+2}{2}}, \alpha^{e^{s}\ell_{1}}_{\binom{(2r-e)}{2}\binom{e+2}{2}} \right\} \to \Gamma'_{(k+1)} \text{ in case } \ell_{2} \text{ then } \Gamma'_{(k+2)} \setminus \left\{ \alpha^{e^{s}\ell_{1}}_{\binom{e-2}{2}\binom{e+4}{2}}, \alpha^{e^{s}\ell_{1}}_{\binom{(2r-e+2)}{2}\binom{e+4}{2}} \right\} \to \cdots \to \Gamma'_{\binom{e-1}{2}} \text{ in case } \ell_{\binom{e-2k+1}{2}}, \text{ before shift to next case the order of all element set}$

$$\begin{cases} \Gamma_{\left(\frac{e-1}{2}\right)}^{\prime} \setminus \left\{ \alpha_{\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \right\} \\ \text{will be change and be} \\ \left\{ \alpha_{\left(\frac{2r-e+3}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}} \alpha_{\left(\frac{e+3}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}} \alpha_{\left(\frac{e+5}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}} \cdots \alpha_{\left(\frac{2r-e+1}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_{1}} \right\} \\ \text{before shift to next case the order of all element set } \Gamma_{\left(\frac{e+1}{2}\right)}^{\prime} \text{ will be change and be } \left\{ \alpha_{\left(\frac{e^{s}\ell_{1}}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \alpha_{\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \alpha_{\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \alpha_{\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \alpha_{\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \cdots \alpha_{\left(\frac{2r-e-1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \right\} \\ \text{and add } \alpha_{\left(\frac{e^{s}\ell_{1}}{2}\right)\left(\frac{e+3}{2}\right)}^{e^{s}\ell_{1}} \left(\frac{e+3}{2}\right) \left(\frac{e+1}{2}\right)} \alpha_{\left(\frac{e+3}{2}\right)}^{e^{s}\ell_{1}} \left(\frac{e+1}{2}\right)} \dots \alpha_{\left(\frac{2r-e-1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_{1}} \right\} \\ \text{and add } \alpha_{\left(\frac{e^{s}\ell_{1}}{2}\right)\left(\frac{e+3}{2}\right)}^{e^{s}\ell_{1}} \left(\frac{e+3}{2}\right)} \alpha_{1}^{e^{s}\ell_{1}} \left(\frac{e+3}{2}\right)} \left(\frac{e+1}{2}\right)} \alpha_{1}^{e^{s}\ell_{1}} \left(\frac{e+3}{2}\right)} \left(\frac{e+1}{2}\right)} \alpha_{1}^{e^{s}\ell_{1}} \left(\frac{e+3}{2}\right)} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}\ell_{1}}} \left(\frac{e+3}{2}\right)} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}\ell_{1}}} \left(\frac{e+3}{2}\right)} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}\ell_{1}}} \alpha_{1}^{e^{s}$$

<u>Theorem</u> 11: Let $\lambda = (\lambda_1^{d_1}, \lambda_2^{d_2}, ..., \lambda_m^{d_m})$ be a partition of *t*. Then $\# \cap m. d_{\ell_s}$ in *e*-abacus configuration = $\# \cap m. d_{\ell_s}$ in *e*^s-abacus configuration.

e = 3			b = 9			b = 10				b=1	1	$\cap^3 m.d.$			
	0	1	2	•	•	_	I	•	•	•	_	•	I	_	_
	3	4	5	_	_	_	•	-	_	•	_	•	_	_	_
	6	7	8	•	•	•	•	•	_	•	•	_	•	•	_
	9	10	11	•	_	_	-	•	_	•	_	•	_	_	_
	12	13	14	_	_	_	•	-	•	_	•	•	_	_	_
	15	16	17	•	_	_	_	•	_	_	_	_	_	_	_
	18	19	20	•	•	_	_	•	_	•	_	_	_	_	_

These results in theorem (11) is clear in Figure 9 where $\mu = (8^2, 6, 3, 2, 1^4)$ and for e=3.

Figure 9. Intersection e^{s} - abacus configurations

Remark 12 : Let β_i^{e} be a set of beta-numbers for *e*-abacus configurations and let $\beta_i^{e^s}$ be a set of beta-numbers for e^s -abacus configurations.

Remark 13: Let β_i^{e} set of beta-numbers for *e*-abacus configurations and Let $\beta_i^{e^s}$ set of beta-numbers

$$\begin{split} \Gamma_k'' & \text{ in case } \ell_1 \to \Gamma_{k+1}'' \text{ in case } \ell_2 \text{ then } \Gamma_{k+1}'' \cup \left\{ \alpha_{(r-1)2}^{e^s \ell_1} \right\} \to \cdots \to \Gamma_{\left(\frac{e-1}{2}\right)}'' \text{ in case} \\ \ell_{\left(\frac{e-2k+1}{2}\right)} & \text{ then } \to \Gamma_{\left(\frac{e+1}{2}\right)}'' \text{ in case } \ell_{\left(\frac{e-2k+3}{2}\right)} \text{ then } \Gamma_{\left(\frac{e+1}{2}\right)}' \setminus \left\{ \alpha_{\left(\frac{2r-e+3}{2}\right)\left(\frac{e+3}{2}\right)}^{e^s \ell_1} \right\} \to \ldots \to \Gamma_e'' \text{ in case } \ell_{e-k+1} \to \Gamma_1'' \text{ in case } \ell_{e-k+2} \to \cdots \to \Gamma_{k-1}'' \text{ in case } \ell_e. \end{split}$$

for e^s -abacus, since $\beta_i^e = me + n - e - 1$, where $i = 1, 2, ..., \ell$.

Then

$$\beta_i^{\ e^s} = \begin{cases} \beta_i^{\ e} - e & \text{if} \quad (1 + e - n) < m \le (1 + r - e + n), \frac{e + 3}{2} \le n \le e \ .\\ \beta_i^{\ e} + e & \text{if} \quad n \le m < (1 + r - n), 1 \le n \le \frac{e - 1}{2} \ .\\ \beta_i^{\ e} - 1 & \text{if} \quad m = u, u \le n \le e - u, 1 \le u \le \frac{e - 1}{2} \ .\\ \beta_i^{\ e} + 1 & \text{if} \quad m = (1 + r - u), u \le n \le 1 + e - u, 1 \le u \le \frac{e - 1}{2} \ .\\ \beta_i^{\ e} - e(r - e) & \text{if} \quad n = \frac{e + 1}{2}, m = \frac{2r - e + 1}{2} \ .\\ \beta_i^{\ e} + e & \text{if} \quad n = \frac{e + 1}{2}, m = \frac{e + 1}{2} \ . \end{cases}$$

Remark 14. Let $N^{\downarrow\downarrow}$ is the number of β_i^e where $k = \frac{e+1}{2}, n = \frac{e+1}{2}, \dots, \frac{2r-e-1}{2}, N^{\uparrow\uparrow} = (r-e).$

Theorem 15. Let $\lambda = (\lambda_1, \lambda_2, ...)$ and $\gamma = (\gamma_1, \gamma_2, ...)$ be a partitions and let $\beta_1^{\lambda} < \cdots < \beta_k^{\lambda}$, $\beta_1^{\gamma} < \cdots < \beta_k^{\gamma}$ be the position of beta numbers for *e*-abacus and e^s -abacus respectively, then $\gamma \succ \lambda$ if and only if

$$N^{\downarrow} + fix(\frac{N^{\rightarrow}}{e}) \ge N^{\uparrow} + fix(\frac{N^{\leftarrow}}{e}).$$

Proof:

Since $N^{\downarrow} + fix(\frac{N^{\downarrow}}{e}) \ge N^{\uparrow} + fix(\frac{N^{\leftarrow}}{e})$, then $eN^{\downarrow} + N^{\rightarrow} \ge eN^{\uparrow} + N^{\leftarrow}$. Thus $eN^{\downarrow} - N^{\leftarrow} - eN^{\uparrow} + N^{\leftarrow} \ge 0$. By remark (13) $\sum_{i=1}^{b} \beta_{i}^{e^{s}} = \sum_{i=1}^{b} \beta_{i}^{e} + eN^{\downarrow} - N^{\leftarrow} - eN^{\uparrow} + eN^{\downarrow\downarrow} - e(r-e)$. Then $\sum_{i=1}^{b} \beta_{i}^{e^{s}} \ge \sum_{i=1}^{b} \beta_{i}^{e}$. By Definition 6 then $\lambda \ge \mu$.

CONCLUSION

In this work, a method is proposed to create an *e*-abacus that represents the sequence movement of betanumber in the *e*-abacus configurations. A special case when the length (1,1,...,1) was revealed to illustrate the rule for designing a new *e*-abacus, a rule to find the new diagram of $\ell_2, \ell_3, ..., \ell_e$, was presented where *e* integers number, $e \ge 2$.

ACKNOWLEDGMENT

The auther would like to thanks Mustansiriyah university (www. uomustansiriyah.edu.iq) Baghdad-Iraq foris support in the present work

REFERENCE

[1] James, G. (2002). Some combinatorial results involving Young diagrams.

Math. Proc. CambridgePhilos. Soc.,83,1-10.

[2] Fayers, M. (2007). Another runner removal theorem for *v*-decomposition

numbers of Iwahori–Heckealgebras and q-Schur algebras. J. Algebra, 310, 396–404.

[3] Fayers, M. (2007). Regularising a Partition On The Abacus.

http://www.maths.qmul.ac.uk/~mf/papers/abreg.pdf.

[4] Mathas, A.,James, G.(2002).Equating Decomposition Numbers For Different Primes. Journal Algebra Volume 258, Issue 2, 15 December 2002, Pages 599–614.

[5] Mathas, A.,James, G. & Lyle, S.(2004). Rouquier blocks. University of Sydney. Retrieved from. http://www.maths.usyd.edu.au/u/mathas/Talks/lausanne.

[6] Mahmood, A.S. (2011). On the introduction of young Diagram core, J.

education and since in Iraq. Vol. 34. [7] Fayers, M. (2010). On the irreducible representations of the alternating group which remain irreducible in characteristic. Representation Theory of the American Mathematical Society, 14(16), 601–626. o. 3. [8] Wildon, M. (2008). Counting partitions on the abacus. The Ramanujan Journal, 17(3), 355-367.

[9] Loehr, N. (2010). Abacus proofs of schur function identities. SIAM Journal on Discrete Mathematics, 24(4), 1356–1370.

[10] Loehr, N. (2011). Bijective combinatorics. CRC Press.

[11] Wildon, M. (2014). A short proof of a plethystic murnaghan–nakayama rule. arXiv preprint arXiv:1408.3554.

[12] Mohommed, E. F., Ahmad, N., & Ibrahim, H. (2016). Intersection of Main James Abacus Diagram for the Outer Chain Movement with Length [1, 0, 0...]. *Journal of Telecommunication, Electronic and Computer Engineering (JTEC)*, 8(8), 51-56.

[13] Mohommed, E.F., 2020. Topological Structure of Nested Chain Abacus. *Iraqi Journal of Science*, pp.153-160.