Mustansiriyah Journal for Sciences and Education

www.MJSE.com

On Some New Types of Partitions Associated with e s - Abacus E.F. Mohommed

Department of Mathematics, College of Education, Mustansiriyah University Iraq

(emanfatel@uomustansiriyah.edu.iq)

A B S T R A C T

 \mathcal{L}

30

In this work a new method called Sequences method used to establish new diagram which called e^s -abacus with four different movements, namely $(1,1,...,1)$. Then, a new rule constrict to find e^s -abacus diagram constrict in case $\ell_2, \ell_3, ..., \ell_e$ from e^s -abacus diagram in case ℓ_1 . Further, several examples are given to illustrate the new method.

Keywords: *β-numbers, e-abacus, Partition, Sequences method, abacus configuration.*

1. Introduction

A new convenient way to represented any partition of positive integer number using *β*-numbers which defined from Littlewod, 1951 was founded. The idea of *e*-abacus has been used to solve many problem which related with Iwahori-Hecke algebras and q-Schur algebras [1,2,3,4,5]. Mathas, James and Sinead (2005), introduced the idea of *e*abacus configuration with *k* beads (ℓ_1) (with $k + 1$ beads), (ℓ_2) , (with $k + 2$ beads),..., (ℓ_e) (with $k + e$ beads) [5]. Numerous diagrams have been generated based on different methods [7-11]. The idea of intersection of *e*-abacus configuration was intrudes in [6]. In this paper we introduced new method called Sequences method to find e-abacus configuration (in case $\ell_2, \ell_3, ..., \ell_e$) from *e*-abacus (case ℓ_1), this new abacus denoted e^s -abacus diagram, and research for relation between the intersection of the new and normal diagram.

1.BACKGROUND AND NOTATION

Let $\gamma = (\gamma_1, \gamma_2, \gamma_3, ..., \gamma_n)$ be a partition of *k*, where γ_i is a sequence of integers such that $|\gamma| = \sum_{i=1}^{n} \gamma_i = k, \forall i \ge 1$. Let be integer greater than or equal the number of non–zero parts γ . Now consider a graphical representation of partition called *e*-abacus configuration with *e* columns, labeled from 0 ... $e-1$ as (0,1,2,…,*e*-1) from left to right, and label the bead position as well as empty bead position on column *j* as $j, j + e, j + 2e, ...$ begin from top. There is a bijection between partitions γ with at most ℓ position and sequence of integer numbers $\beta_1 > \beta_2 > \cdots > \beta_i$ called beta number where $\beta_i = \gamma_i + \ell - i$ as shown in Figure 1.

*e-***abacus configuration**

Let $\mu = (8^2, 6, 3, 2, 1^4), d = 31,$

- 1. if *e* = 2 then there are two *e-*abacus configuration,
	- if $\ell_1 = 9 = 9$ then $\beta = \{1,2,3,4,6,8,12,15,16\}$
	- if $\ell_2 = 10 = 10$ then $\beta = \{0, 2, 3, 4, 5, 7, 9, 13, 16, 17\}.$
- 2. if *e* = 3 then there are thee *e-*abacus configuration,
- if $\ell_1 = 9$ then $\beta = \{1,2,3,4,6,8,12,15,16\}.$
- if $\ell_2 = 10$ then $\beta = \{0, 2, 3, 4, 5, 7, 9, 13, 16, 17\}.$
- If $\ell_3 = 11$ then $\beta = \{0, 1, 3, 4, 5, 6, 8, 10, 1, 17, 18\}.$

Theorem [7]: Let $m.d.\ell_{\epsilon}$ be an abacus configuration in case $\ell_1 = \gamma_1 - 1 + k$, $\ell_2 = \gamma_2 - 2 + k, ..., \ell_e = \gamma_k$

With *k* beads

1. for $\tau_{\kappa} = 1$, then $\#\cap_{s=1}^e m_{\cdot \ell_s} = 1 = \phi$

2. For $\tau_k \ge e$ for some κ , then: # $\bigcap_{s=1}^e m_{\cdot \ell_s} = [\sum_{t=1}^R \tau_t - R(e-1)]$ where r the number of parts of γ .

Consider $\gamma = (8^2, 6, 3, 2, 1^4)$ then # $\bigcap_{s=1}^e m_{\ell_s} = [\sum_{t=1}^R \tau_t - R(e-1)] =$ $[4-2]=2$

Remark 1[13]: Let $\alpha_{mn}^{A\ell_s}$ be a position in e-abacus configuration located in column *n* and rows *m* where s number of beads, $n=1,2,...,e$ and $m=1, 2, ...,$ \int fix $\left(\frac{\beta}{2}\right)$ $\binom{p_i}{2}$ + 1) + (e - 1) = r.

Sequences movement β –numbers:

In this section, e^s -abacus configuration was interfused by application the Sequences movement on *e*-abacus configuration.

Role 2: Let $\alpha_{mn}^{\ell_s}$ be a position in *e*-abacus, if $x = 1$ then

$$
\begin{cases}\n a_{(n-1)n}^{e^{s}\ell_{s}} & \text{if } (e-n+1) < m \le (r-e+n), \n\begin{cases}\n\frac{2+e}{2} \le n \le e & \text{if } n \text{ is even} \\
\frac{3+e}{2} \le n \le e & \text{if } n \text{ is odd} \\
\alpha_{(1+m)n}^{e^{s}\ell_{s}} & \text{if } n \le m < (r-n+1), \n\end{cases}\n\end{cases}
$$
\n
$$
\begin{cases}\n a_{(1+m)n}^{e^{s}\ell_{s}} & \text{if } n \le n \le (r-n+1), \n\begin{cases}\n1 \le n \le \frac{e}{2} & \text{if } n \text{ is even} \\
1 \le n \le \frac{e-1}{2} & \text{if } n \text{ is odd} \\
\alpha_{m(n-1)}^{e^{s}\ell_{s}} & \text{if } m = (r-u+1), u \le n < e-u+1, \n\end{cases}\n\end{cases}
$$
\n
$$
\begin{cases}\n1 \le u \le \frac{e}{2} & \text{if } n \text{ is even} \\
1 \le u \le \frac{e-1}{2} & \text{if } n \text{ is odd} \\
\alpha_{(1+m)n}^{e^{s}\ell_{s}} & \text{if } n = \frac{e-1}{2}, \frac{1+e}{2} \le m < \frac{2r-e-1}{2} \\
\alpha_{(3+p)n}^{e^{s}\ell_{s}} & \text{if } n = \frac{1+e}{2}, m = \frac{2r-e-1}{2}\n\end{cases}
$$

Where *s* is the number of beads, $n=1,2,\ldots,e$ and $m=1,2,\ldots,r$, for $r = \left(\text{fix} \left(\frac{\beta}{\epsilon} \right) \right)$ $\left(\frac{b_1}{2}\right) + 1$) + e - 1.

5.1 Sequences movement β **-numbers in case (1, 1, 1,...)**

To find e^s -abacus configuration in case $\ell_2, \ell_3, \ldots, \ell_e$ from *e*-abacus configuration we need to division *e*-abacus in case ℓ_1 into several parts:

A- If *e* is even

Remark 3: *e*-abacus configuration in case $b₁$ will be divided in to three parts:

1-
$$
H_k =
$$

\n
$$
\begin{cases}\n\alpha^{e^{s}\ell_{s}}_{21} & \text{if } k = 1 \\
\{\alpha^{e^{s}\ell_{s}}_{1(k-1)}, \alpha^{e^{s}\ell_{s}}_{2(k-1)}, ..., \alpha^{e^{s}\ell_{s}}_{(k-1)(k-1)}\} & \text{if } k = 2,3,..,\frac{e}{2} \\
\{\alpha^{e^{s}b_{s}}_{1(\frac{e+2u}{2})}, \alpha^{e^{s}b_{s}}_{2(\frac{e+2u}{2})}, ..., \alpha^{e^{s}\ell_{s}}_{(\frac{e-2u}{2}) (\frac{e+2u}{2})}\} & \text{if } k = \frac{e+2u+2}{2}, u = 0,1,...,\frac{e-4}{2}.\n\end{cases}
$$
\n
$$
\{\alpha^{e^{s}\ell_{s}}_{1(e-1)}, \alpha^{e^{s}\ell_{s}}_{1e}\} \quad \text{if } k = e
$$

$$
= \begin{cases} \left\{ \alpha_{31}^{e^{s} \ell_{s}}, \alpha_{41}^{e^{s} \ell_{s}}, \ldots, \alpha_{(r-1)1}^{e^{s} \ell_{s}} \right\} & \text{if} \qquad k=1\\ \left\{ \alpha_{(k+1)k}^{e^{s} \ell_{s}}, \alpha_{(k+2)k}^{e^{s} \ell_{s}}, \ldots, \alpha_{(r-k+1)k}^{e^{s} \ell_{s}} \right\} & \text{if} \qquad k=2,3,\ldots, \frac{e}{2}\\ \left\{ \alpha_{(\underbrace{e-2u}{2})}^{e^{s} \ell_{s}} \alpha_{(\underbrace{e-2u+2}{2})}^{e^{s} \ell_{s}}, \alpha_{(\underbrace{e-2u+2}{2})}^{e^{s} \ell_{s}} \right\} & \text{if} \quad k=\frac{e+2u+2}{2}, u=0,1,\ldots, \frac{e-4}{2}.\\ \left\{ \alpha_{2e}^{e^{s} \ell_{s}}, \alpha_{3e}^{e^{s} \ell_{s}}, \ldots, \alpha_{(r-4)e}^{e^{s} \ell_{s}} \right\} & \text{if} \qquad k=e \end{cases}
$$

Rule 4: The *e*-abacus configuration in case ℓ_1 plays a main role to find the *e*^s-abacus configuration in case $\ell_1, \ell_2, \ell_3, \ldots, \ell_e$ as follows:

1.*H*₁ in
$$
e^s
$$
-abacus configuration in case $\ell_1 \to H_2$ in case ℓ_2 then
\n $H_2 \cup \{\alpha_{32}^{e^s \ell_s}\} \to H_3$ in case ℓ_3 then $H_3 \cup \{\alpha_{43}^{e^s \ell_s}\} \to \cdots \to H_{\left(\frac{e+2}{2}\right)}$ in
\ncase $\ell_{\left(\frac{e+2}{2}\right)}$ then $H_{\left(\frac{e+2}{2}\right)} \setminus \{\alpha_{\left(\frac{e}{2}\right)\left(\frac{e}{2}\right)}^{e^s \ell_s}\} \to H_{\left(\frac{e+4}{2}\right)}$ in case $\ell_{\left(\frac{e+4}{2}\right)}$ then $H_{\left(\frac{e+4}{2}\right)} \setminus \{\alpha_{\left(\frac{e-2}{2}\right)\left(\frac{e+1}{2}\right)}^{e^s \ell_s}\} \to \cdots \to H_e$ in case ℓ_e .

 H'_{k}

Rule 4: The *e*-abacus configuration in case ℓ_1 plays a main role to find the *e*^s-abacus configuration in case $\ell_1, \ell_2, \ell_3, \ldots, \ell_e$ as follows:

1.*H*₁ in
$$
e^s
$$
-abacus configuration in case $\ell_1 \rightarrow H_2$ in case ℓ_2 then
\n $H_2 \cup \{\alpha_{32}^{e^s \ell_s}\}\rightarrow H_3$ in case ℓ_3 then $H_3 \cup \{\alpha_{43}^{e^s \ell_s}\}\rightarrow \cdots \rightarrow H_{\left(\frac{e+2}{2}\right)}$ in
\ncase $\ell_{\left(\frac{e+2}{2}\right)}$ then $H_{\left(\frac{e+2}{2}\right)} \setminus \{\alpha_{\left(\frac{e^s \ell_s}{2}\right)}^{e^s \ell_s}\}\rightarrow H_{\left(\frac{e+4}{2}\right)}$ in case $\ell_{\left(\frac{e+4}{2}\right)}$ then $H_{\left(\frac{e+4}{2}\right)} \setminus \{\alpha_{\left(\frac{e^s \ell_s}{2}\right)\left(\frac{e+4}{2}\right)}^{e^s \ell_s}\}\rightarrow \cdots \rightarrow H_e$ in case ℓ_e .
\n2.*H_k* in e^s -abacus configuration in case ℓ_1 then $H_k \cup \{\alpha_{(k+1)k}^{e^s \ell_1}\}\rightarrow H_{k+1}$ in case ℓ_2 then $H_{k+1} \cup \{\alpha_{(k+2)(k+1)}^{e^s \ell_s}\}\rightarrow H_{k+2}$ in case ℓ_3 then
\n $H_{k+2} \cup \{\alpha_{(k+3)(k+2)}^{e^s \ell_s}\}\rightarrow \cdots \rightarrow H_{\left(\frac{e}{2}+1\right)}$ in case $\ell_{\left(\frac{e-2k}{2}+2\right)}^{e^s \ell_s}$ then $H_{\left(\frac{e+2}{2}\right)} \setminus \{\alpha_{(\frac{e}{2}+2)}^{e^s \ell_s}\}\rightarrow H_{\left(\frac{e}{2}+2\right)}$ in case $\ell_{\left(\frac{e-2k}{2}+3\right)}$ then $H_{\left(\frac{e}{2}+2\right)} \setminus \{\alpha_{(\frac{e}{2}+1)(\frac{e}{2}+1)}^{e^s \ell_s}\}\rightarrow \cdots \rightarrow H_{\left(\frac{e}{2}+3\right)}$ in case $\ell_{\left(\frac{e-2k}{2}+4$

in case
$$
\ell_{\left(\frac{e-2k}{2}+(n+1)\right)}
$$
 then $H_{\left(\frac{e}{2}+n\right)}\setminus \left\{\alpha_{\left(\frac{e}{2}-n+1\right)\left(\frac{e}{2}+n\right)}^{e+1}\right\}$ in case ℓ_{e-k+1}
\n $\rightarrow H_1 = \{o\}$ in case $\ell_{e-k+2} \rightarrow H_2$ in case $\ell_{e-k+3} \rightarrow H_3$ in case ℓ_{e-k+4}
\nthen $H_3 \cup \left\{\alpha_{32}^{e^s\ell_1}\right\} \rightarrow \cdots \rightarrow H_{(k-1)}$ in case ℓ_e where $\kappa = 2, 3, \dots, e -$
\n $1, n = 1, 2, \dots, \frac{e-2}{2}$.

3. H_e in e^s -abacus configuration in case ℓ_l then $H_e \cup H'_e \rightarrow H'_1$ in case $_2 \rightarrow H_2$ in case ℓ_3 ...

4. *H*¹ in *e*^s-abacus configuration in case $b_1 \rightarrow H_2'$ in case l_2 then $H'_2 \setminus \left\{ \alpha_{32}^{e^s \ell_1}, \alpha_{(r-1)2}^{e^s \ell_1} \right\} \to H'_3$ in case ℓ_3 then $H'_3 \setminus \left\{ \alpha_{43}^{e^s \ell_1}, \alpha_{(r-2)3}^{e^s \ell_1} \right\} \to$ $\cdots H'_{\left(\frac{e}{2}\right)}$ $\frac{1}{2}$ $\ell(\frac{e}{a})$ in case $\ell(\frac{e}{a})$ $\frac{e}{2}$) then $\left\{\frac{H}{2}\right\}$ $\frac{2}{2}$ $\binom{e}{\frac{2}{2}}\setminus\left\{\alpha\frac{e^{3}}{2}\right\}$ $\frac{+2}{2}$ $\left(\frac{e}{2}\right)$ $\frac{5}{2}$ $\left\{\frac{e^{s}\ell_1}{\left(\frac{e+2}{2}\right)\left(\frac{e}{2}\right)}\right\}\right\}\cup\left\{\alpha\frac{e^{s}}{2}\right\}$ $\frac{-e+2}{2}$ $\left(\frac{e}{2}\right)$ $\frac{12}{2}$ $\left\{\begin{array}{c}e^{s}\ell_{1}\\(2r-e+2)(e+2)\end{array}\right\} \rightarrow$ $H'_{\left(\frac{e}{2}\right)}$ $\frac{12}{2}$ $\left(\frac{e+2}{2}\right)$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{+2}{2}$ then $\{H'_{\left(\frac{e}{2}\right)}\}$ $\left(\frac{e+2}{2}\right) \cup \left\{\alpha \frac{e^{3}}{2}\right\}$ $\frac{e}{2}$ $\left(\frac{e}{2}\right)$ $\frac{c}{2}$ $\left\{\frac{e^{s}\ell_1}{\left(\frac{e}{a}\right)\left(\frac{e}{a}\right)}\right\}\cup\left\{\alpha\frac{e^{s}}{2}\right\}$ $\frac{-e+4}{2}$ $\left(\frac{e}{2}\right)$ $\frac{12}{2}$ $\begin{array}{c} e^{s}\ell_1\\ (2r-e+4\setminus(e+2)\end{array}\right\} \rightarrow$ H'_e in case ℓ_e .

 $5.H'_k$ in *e s* configuration in case $b₁$ then $H'_k \setminus \left\{ \alpha \frac{e^s}{\left(\frac{e}{a}\right)} \right\}$ $\frac{e}{2}$ $\left(\frac{e}{2}\right)$ $\frac{12}{2}$ $\frac{e^{s}\ell_1}{\left(\frac{e}{2}\right)\left(\frac{e+2}{2}\right)}, \alpha \frac{e^{s}}{2}$ $\frac{e}{2}$) $\left(\frac{e}{2}\right)$ $\frac{12}{2}$ $\begin{array}{c} e^{s}\ell_1\\ (e^{s}\ell_1)e^{s}\ell_2 \end{array} \rightarrow H'_{k+1}$ in case ℓ_2 then $H'_{(k+2)}$ $\left\{\alpha \right.\}_{\left(\frac{e}{e}\right)}^{e}$ $\frac{-2}{2}$) $\left(\frac{e}{2}\right)$ $\frac{1}{2}^{+1}$ $\frac{e^{s}\ell_1}{\left(\frac{e-2}{2}\right)\left(\frac{e+4}{2}\right)}, \alpha^{e^{s}}$ $\frac{-e+2}{2}\Big)\Big(\frac{e}{2}\Big)$ $\frac{1}{2}^{+1}$ $\left\{\frac{e^{s}\ell_1}{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+4}{2}\right)}\right\} \rightarrow \cdots \rightarrow H'_{\left(\frac{e}{2}\right)}$ $\frac{2}{2}$ $\int_{\frac{e}{a}}^{b}$ in case $\ell_{\left(\frac{e}{a}\right)}$ $\frac{2k+2}{2}$ then $H'(\frac{e}{2})$ $\frac{5}{2}$ $\frac{1}{e}$ $\left\{\alpha \right.\}_{\left(\frac{e}{e}\right)}^{e}$ $\frac{+2}{2}$ $\left(\frac{e}{2}\right)$ $\frac{12}{2}$ $\left\{\frac{e^{s}\ell_1}{\left(\frac{e+2}{2}\right)\left(\frac{e+2}{2}\right)}\right\}\cup \left\{\alpha\frac{e^{s}}{2}\right\}$ $\frac{-e+2}{2}\Big) \Big(\frac{e}{2}\Big)$ $\frac{12}{2}$ $\left\{\frac{e^{s}\ell_1}{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+2}{2}\right)}\right\} \rightarrow H'_{\left(\frac{e}{2}\right)}$ $\frac{12}{2}$ $\ell_{\frac{e+2}{2}}'$ in case $\ell_{\frac{e}{2}}$ $\frac{2^{k+4}}{2}$ then $H'_{\left(\frac{e}{2}\right)}$ $\left(\frac{e+2}{2}\right) \cup \left\{\alpha \frac{A^4}{2}\right\}$ $\frac{e}{2}$ $\left(\frac{e}{2}\right)$ $\frac{2}{2}$ $\left\{\begin{array}{c} A^{tc}b_1 \\ \left(\frac{e}{2}\right)\left(\frac{e}{2}\right) \end{array}\right\} \cup \left\{\alpha\begin{array}{c} e^{st} \\ \alpha\end{array}\right\}$ $\frac{-e+4}{2}$ $\left(\frac{e}{2}\right)$ $\frac{1}{2}$ $\left\{\frac{e^{s}\ell_1}{(2r-e+4)(\frac{e+4}{2})}\right\} \rightarrow H'_{\left(\frac{e}{2r}\right)}$ $\frac{1}{2}^{+1}$ $\int_{\frac{e+4}{2}}^{e+4}$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{2k+6}{2}$ \rightarrow $\cdots \rightarrow H'_e$ in case ℓ_{e-k+1} then $H'_e \cup H_e \rightarrow H'_1$ in case $H'_{(k-1)}$ in case ℓ_e where $k =$

6. H_e in e^s-abacus configuration in case ℓ_1 then $H_e \cup H'_e \rightarrow H'_1$ in eabacus configuration in case l_2 ...

7. H_1'' in *e*^s-abacus configuration in case $\ell_1 \rightarrow H_2''$ in case ℓ_2 then $H''_2 \cup \left\{ a^{e^s \ell_1}_{2(r-1)} \right\} \to H''_3$ in case ℓ_3 then $H''_3 \cup \left\{ a^{e^s \ell_1}_{3(r-2)} \right\} \to \cdots \to H''_{\left(\frac{e^s}{n}\right)}$ $\binom{e}{\frac{e}{2}}$ in

case
$$
\ell_{\left(\frac{e}{2}\right)}
$$
 then $\left\{H'_{\left(\frac{e}{2}\right)}\setminus \left\{\alpha_{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+2}{2}\right)}^{e^{s}\ell_{1}}\right\}\right\} \to H'_{\left(\frac{e+2}{2}\right)}^{H}$ in case $\ell_{\left(\frac{e+2}{2}\right)}$ then
\n $H'_{\left(\frac{e+2}{2}\right)}\setminus \left\{\alpha_{\left(\frac{2r-e+4}{2}\right)\left(\frac{e+4}{2}\right)}^{e^{s}\ell_{1}}\right\} \to \cdots \to H'_{e}$ in case ℓ_{e} .
\n8. H''_{k} in e^{s} -abacus configuration in case ℓ_{1} then $H''_{k} \cup \left\{\alpha_{k(r-k+1)}^{A^{t}c} \right\}$
\n $\to H''_{k+1}$ in case ℓ_{2} then $H''_{k+1} \cup \left\{\alpha_{(k+1)(r-k)}^{A^{t}c} \right\} \to \cdots \to H''_{\left(\frac{e}{2}\right)} \text{ in case}$
\n $\ell_{\left(\frac{e-2k+2}{2}\right)}$ then $\left\{H''_{\left(\frac{e}{2}\right)}\setminus \left\{\alpha_{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+2}{2}\right)}^{A^{t}c}\right\}\right\} \to H''_{\left(\frac{e+2}{2}\right)} \text{ in case } \ell_{\left(\frac{e-2k+4}{2}\right)} \text{ then}$
\n $H''_{\left(\frac{e+2}{2}\right)}\setminus \left\{\alpha_{\left(\frac{2r-e+4}{2}\right)\left(\frac{e+4}{2}\right)}^{A^{t}c}\right\} \to \cdots \to H''_{e} \text{ in case } \ell_{e-k+1} \to H''_{1} \text{ in case}$
\n $\ell_{e-k+2} \to \cdots \to H''_{k-1} \text{ in case } \ell_{e} \text{ where } k = 2, 3, ..., e-I.$

9. H_{e}^{s} in e^{s} -abacus configuration in case ℓ_1 then $\rightarrow H_1^{s}$ in e^{s} -abacus configuration in case *²* …

> for the above example, where $\gamma = (8^2, 6, 3, 2, 1^4)$ and $e =$ 6.

On Some New Types of partition

\mathbf{b}_1							\mathbf{b}_2					\mathbf{b}_3						\mathbf{b}_4					
$\bf{0}$	O	-	$\mathbf 0$	\mathbf{O}	-	$\qquad \qquad \blacksquare$	${\bf O}$	${\bf O}$	$\overline{}$	${\bf O}$	${\bf O}$	${\bf O}$	$\overline{}$	$\mathbf O$	$\mathbf 0$			$\mathbf O$	\mathbf{o}	-	$\mathbf 0$	$\mathbf 0$	
			$\mathbf 0$		-	$\mathbf 0$	$\mathbf 0$	-	$\overline{}$	$\mathbf 0$	$\overline{}$	$\mathbf 0$	$\overline{}$	$\mathbf 0$	$\overline{}$	$\mathbf 0$	\mathbf{o}	$\mathbf O$	$\mathbf 0$	$\qquad \qquad -$	$\mathbf 0$	-	0
\blacksquare	\mathbf{o}	$\mathbf 0$	\mathbf{O}	$\mathbf 0$	$\mathbf 0$	$\mathbf 0$	$\qquad \qquad -$	$\mathbf 0$	$\overline{}$	$\mathbf 0$	$\mathbf 0$	${\bf O}$	$\mathbf 0$	$\qquad \qquad \blacksquare$	$\mathbf 0$	$\overline{}$	$\mathbf 0$	$\overline{}$	$\mathbf 0$	$\mathbf 0$	$\overline{}$	$\mathbf 0$	-
$\bf{0}$	-	O				$\qquad \qquad \blacksquare$	O				-	$\mathbf 0$	-	O				$\qquad \qquad$	\mathbf{o}				
	O					$\qquad \qquad \blacksquare$		Ω			-	-					-	\mathbf{O}	-				
						$\mathbf O$						$\mathbf 0$	Ω				-	${\bf O}$	\mathbf{o}	$\mathbf 0$			
						-																	
						-																	
			\mathbf{b}_5			b ₆																	
$\bf{0}$	0	$\mathbf O$	$\overline{}$	${\bf O}$	\mathbf{Q}	${\bf O}$	${\bf O}$	${\bf O}$	$\mathbf 0$														
$\mathbf 0$	\mathbf{O}	\mathbf{o}	$\qquad \qquad -$	$\mathbf 0$	\blacksquare	$\mathbf 0$	$\qquad \qquad -$	\mathbf{o}	\mathbf{o}		$\mathbf 0$												
$\bf{0}$					α	${\bf O}$	$\mathbf 0$	$\mathbf 0$	-														
\blacksquare		O	O			$\mathbf 0$	-	$\overline{}$	$\mathbf O$	$\mathbf 0$	$\qquad \qquad \blacksquare$												
$\bf{0}$	o					$\overline{}$	\mathbf{O}	$\mathbf 0$	-														
\blacksquare	\mathbf{o}	o				\mathbf{O}		$\mathbf O$															
						-																	
						-																	

Figure 5. e^s -abacus configuration in case ℓ_1 .

Theorem 5: Let $\gamma = (\gamma_1^{t_1}, \gamma_2^{t_2}, ..., \gamma_m^{t_m})$ be a partition of *k* and Let # $\bigcap_{s=1}^e m_{\cdot \ell_s}$ be a numerical value in e^s -abacus configuration to the beads positions which located in common bead positions in abacus configuration. Then $\#\bigcap_{s=1}^e m_{\cdot,\ell_s}$ in e^s -abacus configuration = $\#\bigcap_{s=1}^e m_{\cdot\ell_s}$ in *e*-abacus= $\#\bigcap_{s=1}^e m_{\ell_s} = \left[\sum_{k=1}^{\sigma} \Gamma_k - \sigma(e-1)\right]$. Based on Rule 2 all beads position will be stay in common positions in e^s -abacus configuration, hence $\#\cap m_{\ell_{\varepsilon}}$ in *e*-abacus = $\#\cap m_{\ell_{\varepsilon}}$ in e^s -abacus configuration.

These results in theorem 5 is clear in diagram 11 comparing it with diagram 3 for *e*=3, for our example when $\gamma = (8^2, 6, 3, 2, 1^4)$ for *e*=3.

$\ell_4=9$				$\ell_{4=10}$		$\ell_{4} = 11$			$\ell_{4} = 11$			$\bigcap_{s=1}^e m_{\cdot \ell_s}$				
												\bullet				
									$\overline{}$							

*E.F. Mohommed/*IJRIE 1(2) (2023117-130124

Figure 6. intersection e^s -abacus configuration in case b_1

Definition 6 [12]. Let $\lambda = (\lambda_1, \lambda_2, ...)$, $\gamma = (\gamma_1, \gamma_2, ...)$ be a two partitions, and let β_1^{λ} < \cdots < β_k^{λ} , β_1^{γ} < \cdots < β_k^{γ} , be Beta numbers to partition λ and γ sequently, then $\lambda \ge \mu$ if and only if $\sum_{s=1}^{k} \beta_s^{\lambda} \ge \sum_{s=1}^{k} \beta_s^{\gamma}$.

Remark 7: Let β_i^e be a set of Beta numbers for *e*-abacus and Let $\beta_i^{e^s}$ be a set of Beta numbers for e^s -abacus, since $\beta_i^e = n + me - e - 1$, where $i = 1, 2, \dots, \ell$.

$$
\text{Then } \beta_i^{e^s} = \begin{cases} \beta_i^e - e & \text{if } (1 + e - n) < m \le (r + n - e), \frac{2 + e}{2} \le n \le e, \\ \beta_i^e + e & \text{if } n \le m < (1 + r - n), 1 \le n \le \frac{e}{2}. \\ \beta_i^e - 1 & \text{if } m = u, u < n \le 1 + e - u, 1 \le u \le \frac{e}{2}. \\ \beta_i^e + 1 & \text{if } m = (1 + r - u), u \le n \le e - u, 1 \le u \le \frac{e}{2}. \end{cases}
$$

Not: Let N^{\downarrow} be numerical values of β_i^e where $e)$, $\frac{2}{\pi}$ $\frac{+e}{2} \le n \le e$ and N^{\uparrow} be numerical values of β_i^e where 1), $1 \le n \le \frac{e}{2}$ $\frac{e}{2}$. Let N^{\leftarrow} be numerical values of β_i^e where $1, 1 \le u \le \frac{e}{2}$ $\frac{e}{2}$ and N^{\rightarrow} be numerical values of β_i^e where $e-u, 1 \le u \le \frac{e}{2}$ $\frac{e}{2}$.

Theorem 9: Let = $(\lambda_1, \lambda_2, ...)$, $\gamma = (\gamma_1, \gamma_2, ...)$ be two partitions and let β_1^{λ} β_k^{λ} , β_1^{γ} < \cdots < β_k^{γ} , be positions of beads on the *e*-abacus and *e*^s-abacus respectively, then $\lambda \ge \mu$ if and only if N^{\downarrow} – (fix $(\frac{N}{\lambda})$ $\left(\frac{r}{e}\right)$) $\geq N^{\uparrow}$.

Proof: Since N^{\downarrow} – (fix $\left(\frac{N}{2}\right)$ $\frac{1}{e}$) $\geq N^{\dagger}$, then $eN^{\dagger} - N^{\dagger} \geq eN^{\dagger}$, then $eN^{\dagger} - N^{\dagger}$ $eN^{\dagger} \geq 0$. Then $\sum_{i=1}^{b} \beta_i^{e^s} = \sum_{i=1}^{b} \beta_i^{e} + eN^{\dagger} - N^{\leftarrow} - eN^{\dagger}$, then $\sum_{i=1}^{b} \beta_i^{e^s}$ $\sum_{i=1}^{b} \beta_i^e$. Based on Definition 9 then $\lambda \ge \mu$.

Following e^s -abacus in case l_4 will be divided in to three part:

1 -
$$
\Gamma_k
$$
 =
\n
$$
\begin{cases}\n\int_{\{\alpha_1 e^{s\ell_1}, \beta_1, \alpha_2 e^{s\ell_2}, \beta_2, \beta_3\}} \beta_1 \beta_2 \mu_1^2 \mu_2^2 \mu_2^2 \mu_1^2 \mu_2^2 \mu_
$$

Rule 10. The *e*-abacus configuration in case ℓ_1 Plays a essential role to find e^s abacus configuration in case $\ell_2, \ell_3, ..., \ell_e$ as follows:

 Γ_1 in e^s - abacus configuration case $\ell_1 \to \Gamma_2$ in case ℓ_2 then $\Gamma_2 \cup \{\alpha_{32}^{e^s_{\ell_1}}\} \to \Gamma_3$ in case ℓ_3 then $\Gamma_3 \cup \left\{ \alpha_{43}^{e^s \ell_1} \right\} \to \cdots \to \Gamma_{\left\{ \frac{e}{e} \right\}}$ $\frac{(-1)}{2}$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{-1}{2}$ then $\Gamma_{\left(\frac{e}{2}\right)}$ $\frac{(-1)}{2}$ U α $\left(\frac{e}{2}\right)$ $(\frac{+1}{2})^{\frac{e}{2}}$ $\frac{1}{2}$ $\begin{array}{c} e^{s} \ell_1 \\ \left(\frac{e+1}{e}\right) \left(\frac{e-1}{e}\right) \end{array} \rightarrow \Gamma$ $\frac{1}{2}$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{1}{2}$ $\rightarrow \Gamma$ $\left(\frac{e}{2}\right)$ $\frac{1+3}{2}$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{1}{2}$ then Γ _{(e} $\frac{+3}{2}$) $\Big\{\alpha \Big\}_{\theta}$ $\frac{-1}{2}$ $\left(\frac{e}{2}\right)$ $\frac{1}{2}$ $\begin{array}{c} e^{s} \ell_1 \\ \left(\frac{e-1}{e}\right) \left(\frac{e+1}{e}\right) \end{array} \rightarrow \Gamma$ $\frac{+5}{2}$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{1}{2}$ then Γ _(e) $\frac{1}{2}$ $\left\langle \alpha \right\rangle$ $\left\langle \alpha \right\rangle$ $\frac{-3}{2}$) $\left(\frac{e}{2}\right)$ $\frac{1}{2}$ $\begin{array}{c} e^{s} \ell_1 \\ (e^{-3}) (e+3) \end{array} \rightarrow \cdots \rightarrow \Gamma_e$ In case ℓ .

 Γ_k in *e*⁵-abacus configuration case ℓ_1 then $\Gamma_k \cup \left\{ \alpha_{(k+1)k}^{e^s}\right\} \to \Gamma_{k+1}$ in case ℓ_2 then $\Gamma_{k+1} \cup \left\{ \alpha_{(k+2)(k+1)}^{e^s \ell_1} \right\} \to \Gamma_{k+2}$ in case ℓ_3 then $\Gamma_{k+2} \cup \left\{ \alpha_{(k+3)(k+2)}^{e^s \ell_1} \right\} \to \cdots \to \Gamma_{\left\{ \frac{e^{s_{\ell}}}{e^s \ell_1} \right\}}$ $\frac{(-1)}{2}$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{2k+1}{2}$ then Γ _{($\frac{e}{2}$} $\frac{(-1)}{2}$ \ { α $\left(\frac{e}{2}\right)$ $\frac{+1}{2}$ $\left(\frac{e}{2}\right)$ $\frac{1}{2}$ $\begin{array}{c} e^{s} \ell_1 \\ \left(\frac{e+1}{e}\right) \left(\frac{e-1}{e}\right) \end{array} \rightarrow \Gamma$ $\frac{1}{2}$) in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{e^{ik+3}}{2}$ $\rightarrow \Gamma$ ($\frac{e}{2}$ $\frac{+3}{2}$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{2k+5}{2}$ then Γ _{($\frac{e}{2}$} $\frac{1}{2}$ $\left\{ \alpha \right\}$ $\alpha \left(\frac{e}{2} \right)$ $\frac{-1}{2}$) $\left(\frac{e}{2}\right)$ $\frac{1}{2}$ $\begin{cases} e^{s} e_{1} \\ e^{-1} \setminus (e+1) \end{cases} \rightarrow \cdots \rightarrow \Gamma_e$ in case ℓ_{e-k+1} then $\Gamma_e \cup \Gamma'_e \rightarrow \Gamma'_1$ in case ℓ_{e-k+2} . If $e = 3$

 Γ'_1 in e^s - abacus configuration case b_1 before shift this case the order of all element set Γ'_1 will be change and add $\alpha_{r_1}^{e^s}$ in up and be $=\{\alpha_{r_1}^{e^s}, \alpha_{r_1}^{e^s}, \alpha_{r_1}^{e^s}, \alpha_{r_1+1}^{e^s}\}\rightarrow \Gamma'_2$ in e^s - abacus configuration case ℓ_2 .

 Γ'_1 in *e*^s- abacus configuration case $\ell_1 \rightarrow \Gamma'_3$ in *e*^s- abacus configuration case ℓ_3 .

 Γ'_2 in e^s - abacus configuration case ℓ_1 before shift this case the order of all element set Γ'_2 will be change and add $\alpha_{r_1}^{e^s}$ in up and be $=\{\alpha_{11}^{e^s}, \alpha_{(r-1)2}^{e^s}\}$ $\alpha_{2}^{e^s}, \alpha_{32}^{e^s}, \dots, \alpha_{(r-2)2}^{e^s}, \alpha_{r3}^{e^s}$ } \rightarrow *H*₃ in *e*^s- abacus configuration case $\ell_2 \rightarrow \Gamma_1'$ in *e*^sabacus configuration case ℓ_3 and add o above.

 Γ'_3 in *e*^s- abacus configuration case $b_1 \rightarrow \Gamma'_1$ in *e*^s- abacus configuration case b_2 and add o above before shift this case the order of all element set Γ'_3 will be change and be $=\{$ o, $\alpha_{13}^{e^s}, \alpha_{23}^{e^s}, \alpha_{33}^{e^s}, \dots, \alpha_{(r-3)3}^{e^s}, \alpha_{12}^{e^s}, \alpha_{(r-2)3}^{e^s}\} \rightarrow \Gamma'_2$ in e^s - abacus configuration case $\ell_2 \rightarrow \Gamma'_2$ in e^s - abacus configuration case ℓ_2 .

If $e > 3$

 Γ'_1 in case $\ell_1 \to \Gamma'_2$ in case b_2 then $\Gamma'_2 \setminus \left\{ \alpha_{32}^{e^s \ell_1}, \alpha_{(r-1)2}^{e^s \ell_1} \right\} \to \Gamma'_3$ in case ℓ_3 then $\Gamma'_3 \setminus \left\{ \alpha_{43}^{e^s \ell_1}, \alpha_{(r-2)3}^{e^s \ell_1} \right\} \to \cdots \to \Gamma'_{\left(\frac{e}{r}\right)}$ $\frac{1}{2}$ $\ell_{\frac{e-1}{2}}$ in case $\ell_{\frac{e}{2}}$ $\frac{(-1)}{2}$, before shift to next case the order of all element set $\left\{\Gamma'_{\left(\frac{e}{2}\right)}\right\}$ $\frac{1}{2}$ $\frac{e^{e^{-i\omega}}}{2}$ $\frac{+1}{2}\Big)^{\left(\frac{e}{2}\right)}$ $\frac{-1}{2}$ $\begin{array}{c} e^{s}\ell_1\\ (e+1)(e-1) \end{array}$ will be change and be

$$
\left\{\alpha\frac{e^{s}\ell_1}{\left(\frac{2r-e+3}{2}\right)\left(\frac{e-1}{2}\right)},\alpha\frac{e^{s}\ell_1}{\left(\frac{e+3}{2}\right)\left(\frac{e-1}{2}\right)},\alpha\frac{e^{s}\ell_1}{\left(\frac{e+5}{2}\right)\left(\frac{e-1}{2}\right)},\ldots,\alpha\frac{e^{s}\ell_1}{\left(\frac{2r-e+1}{2}\right)\left(\frac{e-1}{2}\right)}\right\}\right\}
$$
 in case $\ell_{\left(\frac{e+1}{2}\right)}$

before shift to next case the order of all element set $\Gamma'_{\left(\frac{\beta}{2}\right)}$ $\left(\frac{e+1}{2}\right)$ will be change and be {

$$
\alpha \frac{e^{s} \ell_1}{\left(\frac{2r-e+1}{2}\right)\left(\frac{e+1}{2}\right)} \alpha \frac{e^{s} \ell_1}{\left(\frac{e+1}{2}\right)\left(\frac{e+1}{2}\right)} \alpha \frac{e^{s} \ell_1}{\left(\frac{e+3}{2}\right)\left(\frac{e+1}{2}\right)}, \dots, \alpha \frac{e^{s} \ell_1}{\left(\frac{2r-e-1}{2}\right)\left(\frac{e+1}{2}\right)}\}
$$
 and add $\alpha \frac{e^{s} \ell_1}{\left(\frac{2r-e+3}{2}\right)\left(\frac{e+3}{2}\right)}$ down
\n $\rightarrow \Gamma'_{\left(\frac{e+3}{2}\right)}$ in case $\ell_{\left(\frac{e+3}{2}\right)}$ then $\left\{\alpha \frac{e^{s} \ell_1}{\left(\frac{e-1}{2}\right)\left(\frac{e+1}{2}\right)}\right\} \cup \Gamma'_{\left(\frac{e+3}{2}\right)} \rightarrow \Gamma'_{\left(\frac{e+5}{2}\right)}$ in case $\ell_{\left(\frac{e+5}{2}\right)}$ then
\n $\left\{\alpha \frac{e^{s} \ell_1}{\left(\frac{e-3}{2}\right)\left(\frac{e+3}{2}\right)}\right\} \cup \Gamma'_{\left(\frac{e+5}{2}\right)} \rightarrow \dots \rightarrow \Gamma'_{e}$ in case b_e

 Γ'_k in case b_1 then $\Gamma'_k \setminus \left\{ \alpha \begin{matrix} e^{i\theta} \\ \frac{e^{i\theta}}{2} \end{matrix} \right\}$ $\frac{e}{2}$ $\left(\frac{e}{2}\right)$ $\frac{12}{2}$ $\left(\frac{e^{s}\ell_1}{\frac{e}{2}}\right)^{q}$ $\alpha \frac{e^{s}}{2}$ $\frac{e}{2}$) $\left(\frac{e}{2}\right)$ $\frac{12}{2}$ $\begin{array}{c} e^{s}\ell_1\\ (e^{s}e^{s})\ell_1\end{array} \rightarrow \Gamma'_{(k+1)}$ in case ℓ_2 then $\Gamma'_{(k+2)}$ $\{\alpha_{\left(\frac{e}{2}\right)}^e$ $\frac{-2}{2}$) $\left(\frac{e}{2}\right)$ $\frac{1}{2}^{+1}$ $\frac{e^{s}\ell_1}{\left(\frac{e-2}{2}\right)\left(\frac{e+4}{2}\right)}, \alpha\frac{e^{s}}{2}$ $\frac{-e+2}{2}$ $\left(\frac{e}{2}\right)$ $\frac{1}{2}^{+1}$ $\frac{e^{s}\ell_1}{\left(\frac{2r-e+2}{2}\right)\left(\frac{e+4}{2}\right)} \rightarrow \cdots \rightarrow \Gamma'_{\left(\frac{e}{2}\right)}$ $\frac{1}{2}$ $\ell_{\frac{e-1}{2}}$ in case $\ell_{\frac{e}{2}}$ $\frac{2k+1}{2}$, before shift to next case the order of all element set

$$
\{\Gamma'_{\left(\frac{e-1}{2}\right)}\{\alpha_{\left(\frac{e+1}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_1}\}}\{\alpha_{\left(\frac{2r-e+3}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_1}\alpha_{\left(\frac{e+5}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_1}\alpha_{\left(\frac{e+5}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_1}\dots\alpha_{\left(\frac{2r-e+1}{2}\right)\left(\frac{e-1}{2}\right)}^{e^{s}\ell_1}\}
$$
\nbefore shift to next case the order of all element set $\Gamma'_{\left(\frac{e+1}{2}\right)}$ will be change and be $\{\alpha_{\left(\frac{2r-e+1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_1}\alpha_{\left(\frac{e+1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_1}\alpha_{\left(\frac{e+1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_1}\alpha_{\left(\frac{e+1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_1}\}$ and add $\alpha_{\left(\frac{2r-e+3}{2}\right)\left(\frac{e+3}{2}\right)}^{e^{s}\ell_1}$ down
\n $\rightarrow \Gamma'_{\left(\frac{e+3}{2}\right)}$ in case $\ell'_{\left(\frac{e+2k+5}{2}\right)}$ then $\{\alpha_{\left(\frac{e-1}{2}\right)\left(\frac{e+1}{2}\right)}^{e^{s}\ell_1}\}$ or $\Gamma'_{\left(\frac{e+3}{2}\right)}^{e^{s}\ell_1}\}$ in case $\ell'_{\left(\frac{e-2k+7}{2}\right)}$ then $\{\alpha_{\left(\frac{e-3}{2}\right)\left(\frac{e+3}{2}\right)}^{e^{s}\ell_1}\}$ or $\Gamma'_{\left(\frac{e+3}{2}\right)}^{e^{s}\ell_1}\}$ in case $\ell'_{\left(\frac{e-2k+7}{2}\right)}$ in case $\ell'_{\left(\frac{e-3}{2}\right)\left(\frac{e+3}{2}\right)}$ or $\Gamma'_{\left(\frac{e+3}{2}\right)}$

Theorem 11: Let $\lambda = (\lambda_1^{d_1}, \lambda_2^{d_2}, ..., \lambda_m^{d_m})$ be a partition of *t*. Then $\#\cap m$. $d_{\cdot,\ell_{\varsigma}}$ in e abacus configuration = $\#\cap m$. $d_{\cdot b_{\varepsilon}}$ in e^s -abacus configuration.

	$e = 3$		$b = 9$			$b = 10$			$b=11$	D^3 $\sum_{s=1}^{m}$.d.			
		2	\bullet					\bullet					
3	4												
6		8	\bullet										
9	10	11											
12	13	14											
15	16	17	٠										
18	19	20	\bullet										

These results in theorem (11) is clear in Figure 9 where $\mu = (8^2, 6, 3, 2, 1^4)$ and for *e*=3.

Figure 9. Intersection e^s - abacus configurations

Remark 12 : Let β_i^e be a set of beta-numbers for *e*-abacus configurations and let $\beta_i^{e^s}$ be a set of beta-numbers for e^s -abacus configurations.

Remark 13: Let β_i^e set of beta-numbers for *e*-abacus configurations and Let β_i^e set of beta-numbers

 Γ_k'' in case $\ell_1 \to \Gamma_{k+1}''$ in case ℓ_2 then $\Gamma_{k+1}'' \cup \left\{ \alpha_{(r-1)2}^{e^{s}\ell_1} \right\} \to \cdots \to \Gamma_{(e)}''$ $\frac{\binom{n}{e-1}}{2}$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{e^{ik+1}}{2}$ then $\rightarrow \Gamma''$ $\frac{\binom{n}{e+1}}{2}$ in case $\ell_{\left(\frac{e}{2}\right)}$ $\frac{2k+3}{2}$ then Γ' $\frac{1}{2}$ $\left(\frac{e+1}{2}\right)$ $\left\{\alpha\frac{e^{3}}{2}\right\}$ $\frac{-e+3}{2}$ $\left(\frac{e}{2}\right)$ $\frac{1}{2}$ $e^{s} \ell_1$
 $\left\{\rightarrow \ldots \rightarrow \Gamma''_e \text{ in }$ case $\ell_{e-k+1} \to \Gamma_1''$ in case $\ell_{e-k+2} \to \cdots \to \Gamma_{k-1}''$ in case ℓ_e .

for e^s -abacus, since $\beta_i^e = me + n - e - 1$, where

Then

$$
\beta_i^{e^-} = \begin{cases}\n\beta_i^{e^-} - e & \text{if } (1 + e - n) < m \le (1 + r - e + n), \frac{e + 3}{2} \le n \le e \\
\beta_i^{e^+} + e & \text{if } n \le m < (1 + r - n), 1 \le n \le \frac{e - 1}{2} \\
\beta_i^{e^+} - 1 & \text{if } m = u, u \le n \le e - u, 1 \le u \le \frac{e - 1}{2} \\
\beta_i^{e^+} + 1 & \text{if } m = (1 + r - u), u \le n \le 1 + e - u, 1 \le u \le \frac{e - 1}{2} \\
\beta_i^{e^+} - e(r - e) & \text{if } n = \frac{e + 1}{2}, m = \frac{2r - e + 1}{2} \\
\beta_i^{e^+} + e & \text{if } n = \frac{e + 1}{2}, m = \frac{e + 1}{2}, \dots, \frac{2r - e - 1}{2}.\n\end{cases}
$$

Remark 14. Let $N^{\downarrow\downarrow}$ is the number of β_i^e where $k = \frac{e}{n}$ $\frac{+1}{2}$, $n = \frac{e}{2}$ $\frac{+1}{2}, \ldots, \frac{2}{n}$ $\frac{e^{-e^{-1}}}{2}$ $N^{\uparrow\uparrow} = (r - e).$

Theorem 15. Let $\lambda = (\lambda_1 \lambda_2, \dots)$ and $\gamma = (\gamma_1, \gamma_2, \dots)$ be a partitions and let β_1^{λ} $\cdots < \beta_k^{\lambda}, \ \beta_1^{\gamma} < \cdots < \beta_k^{\gamma}$ be the position of beta numbers for *e*-abacus and *e*⁵abacus respectively, then $\gamma \triangleright \lambda$ if and only if

$$
N^{\downarrow} + fix(\frac{N^{\rightarrow}}{e}) \ge N^{\uparrow} + fix(\frac{N^{\leftarrow}}{e}).
$$

Proof:

Since $\frac{1}{2}$ + fir($\frac{N}{2}$ $\frac{d^{r}}{e}$) $\geq N^{\uparrow} + fix(\frac{N}{e})$ $\frac{d}{e}$, then $eN^{\frac{1}{2}} + N^{\rightarrow} \ge eN^{\uparrow} + N^{\leftarrow}$. Thus $eN^{\downarrow} - N^{\leftarrow} - eN^{\uparrow} + N^{\leftarrow} \ge 0$. By remark (13) $\sum_{i=1}^{b} \beta_i^{e^s} = \sum_{i=1}^{b} \beta_i^{e^e} + eN^{\downarrow} - N^{\leftarrow}$ $eN^{\uparrow} + eN^{\downarrow\downarrow} - e(r - e)$. Then $\sum_{i=1}^{b} \beta_i^{e^s} \geq \sum_{i=1}^{b} \beta_i^{e}$. By Definition 6 then $\lambda \geq \mu$.

CONCLUSION

In this work, a method is proposed to create an *e*-abacus that represents the sequence movement of betanumber in the *e*-abacus configurations. A special case when the length $(1,1, \ldots,1)$ was revealed to illustrate the rule for designing a new *e*-abacus, a rule to find the new diagram of $\ell_2, \ell_3, ..., \ell_e$, was presented where *e* integers number, $e \geq 2$.

ACKNOWLEDGMENT

The auther would like to thanks Mustansiriyah university [\(www.](http://www/) uomustansiriyah.edu.iq) Baghdad-Iraq foris support in the present work

REFERENCE

[1] James, G. (2002). Some combinatorial results involving Young diagrams.

Math. Proc. CambridgePhilos. Soc.,83,1-10.

[2] Fayers, M. (2007). Another runner removal theorem for *v*-decomposition

numbers of Iwahori–Heckealgebras and *q*-Schur algebras. J. Algebra, 310, 396–404.

[3] Fayers, M. (2007). Regularising a Partition On The Abacus.

[http://www.maths.qmul.ac.uk/~mf/papers/abreg.pdf.](http://www.maths.qmul.ac.uk/~mf/papers/abreg.pdf)

[4] Mathas, A.,James, G.(2002).Equating Decomposition Numbers For Different Primes. Journal Algebra [Volume](http://www.sciencedirect.com/science/journal/00218693/258/2) 258, Issue 2, 15 December 2002, Pages 599–614.

[5] Mathas, A.,James, G. & Lyle, S.(2004). Rouquier blocks. University of Sydney. Retrieved from. [http://www.maths.usyd.edu.au/u/mathas/Talks/lausanne.](http://www.maths.usyd.edu.au/u/mathas/Talks/lausanne)

[6] Mahmood, A.S. (2011). On the introduction of young Diagram core, J.

education and since in Iraq. Vol. 34. [7] Fayers, M. (2010). On the irreducible representations of the alternating group which remain irreducible in characteristic. Representation Theory of the American Mathematical Society, 14(16), 601–626. o. 3. [8] Wildon, M. (2008). Counting partitions on the abacus. The Ramanujan Journal, 17(3), 355-367.

[9] Loehr, N. (2010). Abacus proofs of schur function identities. SIAM Journal on Discrete Mathematics,24(4), 1356–1370.

[10] Loehr, N. (2011). Bijective combinatorics. CRC Press.

[11] Wildon, M. (2014). A short proof of a plethystic murnaghan–nakayama rule. arXiv preprint arXiv:1408.3554.

[12] Mohommed, E. F., Ahmad, N., & Ibrahim, H. (2016). Intersection of Main James Abacus Diagram for the Outer Chain Movement with Length [1, 0, 0...]. *Journal of Telecommunication, Electronic and Computer Engineering (JTEC)*, *8*(8), 51-56.

[13] Mohommed, E.F., 2020. Topological Structure of Nested Chain Abacus. *Iraqi Journal of Science*, pp.153-160.