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ABSTRACT

In this paper, an experimental and numerical study of dynamic deflection and dynamic bending stress
of beam structure under moving load has been carried out. The moving load is constant in magnitude
and travels at a uniform speed. The dynamic analysis of beam-type structure is done by taking three
(39.24, 58.86 and 78.48) N concentrated loads; each one of them travels at two uniform speeds(0.2
and 0.25) m/s . The theoretical analysis is based On Euler- Bernoulli theory and Fourier series
solution. A finite element model of a beam vibrating under moving load is established by ANSYS
software. The comparison between the numerical dynamic stresses of beam via ANSYS software with
the experimental results showed that the percentage error of (15%). Effect of the speed and load
variables on the dynamic stress and dynamic deflection is investigated. It is concluded that the
influence of variable speed on the dynamic deflection and dynamic bending stress is more than the
effect of variable load on them. On the other hand, the dynamic bending stress is more sensitive to the
variable speed and load than the dynamic deflection. Dynamic bending stress and dynamic deflection
due to moving load could become significantly higher than those obtained with the stationary loads,
thus they must be considered.
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1. INTRODUCTION:

In recent years, all branches of transport have experienced great advances, characterized by the
increasingly high speed and weight of vehicles and other moving bodies. As a result, corresponding
structures have been subjected to vibration and dynamic stress far longer than ever before. The
moving load problem has been the subject of numerous research efforts in the last century. The
importance of this problem is manifested in numerous applications in the field of transportation.
Bridges, guide ways, overhead cranes, cableways, rails, roadways, runways, tunnels, launchers and
pipelines are examples of structural elements designed to support moving loads so the literature
concerning the forced vibration analysis of structures with moving bodies is sparse.

Many methods are applied to determine dynamic responses under moving load, some yield to exact
solution, such as Fryba [;; who used Fourier sine (finite) and Laplace-Carson integral transformation
to determine the dynamic response of beams due to moving loads exactly and obtained a response in
the form of series solutions. Michaltsos et al [5; formulated and solved the transverse vibration of
beam under moving load problem by using finite Fourier series. He presented the effect of load’s
speed on the dynamic response of beam. M.A. Foda and Z. Abdul-Jabbar 3; used a green function
approach to study the dynamic response of a simply supported Bernoulli-Euler beam with finite
length subjected to a moving load traversing with constant speed through its span. In addition to the
previous methods, some researchers innovate numerical methods that yield to approximate solution
which has an excellent agreement with the exact solution. Hamada 4 presented a method, based on
the double Laplace transformation, to obtain the dynamic response of uniform Euler-Bernoulli
vibrated under moving load. H.P. Lee [s5; presented a numerical integration programs using the fourth
order Runge-Kutta method to solve the equation of motion of Euler -Bernoulli beam for investigating
the dynamic responses of both a simply supported beam and a fixed-fixed beam vibrating by moving
load. Husain Mehdi et al [ investigated the dynamic response of Euler-Bernoulli uniform beam
under moving load, The finite element method and numerical time integration method (New mark
method) were employed in the dynamic response analysis.

It should be noted, many researchers were applied different type of moving load. Jing Ji et al 7
studied the deformation of bridge subjected to vehicles with different velocities. Finite element model
of bridge was established by ANSYS software. Through the numerical simulation analysis, dynamic
response of the characteristics of the bridge body is acquired when the vehicle can be considered as
concentrated load passes through the bridge at different speeds or as harmonic load with different
frequents. M.Mohsengs; analyzed the dynamic response of elastic homogeneous isotropic beams with
various boundary conditions subjected to a harmonic force travelling with a uniform and variable
velocity. M.Abu-hilal [9] investigated the dynamic response of elastic homogenous isotropic Euler-
Bernoulli beam with general boundary conditions subject to random moving concentrated load. Y.-H.
Lin (o) presented the theory for dynamic response of the beam-type structures vibrated by uniform
partially distributed moving loads.

In this paper, dynamic deflection and dynamic bending stress of copper alloy (c85700) simply
supported beam under moving load are presented. The moving load is constant in magnitude and
travels at a uniform speed. The dynamic analysis of beam-type structure is done by taking three
(39.24, 58.86 and 78.48) N concentrated loads; each one of them travels at two uniform speeds(0.2
and 0.25) m/s. On the basis of Euler- Bernoulli theory and Fourier series solution, the theoretical
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analysis is presented. A finite element model of a beam vibrating under moving load is established by
ANSYS software version (11).

2. THEORETICAL PRESENTATION:

Consider a simply supported beam subjected to a concentrated force F (constant magnitude) moves
towards the right with a constant speed, as illustrated in Figure (1). When the time is equal to 0, F is
located in the left supporting place, and when the time is equal to T, F moves to the right supporting
place, According to the vibration analysis, The governing differential equation that describes the
vibration of beam under moving load is;; ;

0*Yixn) 0%Y(xn)
El— 2 tpA—3 = fxo) €Y)

Y(xt) : beam deflection at point x and time £ x an length coordinate with the origin at the left-
hand end of the beam, ¢: time coordinate, E young's modulus of elasticity of the beam, I second
moment of inertia of the beam cross section, p density of the material of beam, 4 area of cross
section of beam and f(, ) : external force .

The concentrated force is represented by using a Fourier series. For this, the concentrated load P
effecting at x = d is assumed to be distributed uniformly over an elemental length 2Ax centered at x =
d, as shown in Fig. (2). Now the distributed force, f (x), can be defined as [

0 for0 <x <d— Ax
fx) = ZAE ford — Ax <x <d + Ax ?)
0 ford + Ax < x <

[ ] Y

5 S &

|
| !
’ |

| F———x

Figure (1); simply supported beam subjected Figure (2) Concentrated load assumed to
to a moving concentrated load. be uniformly distributed over a length 2Ax

From Fourier series analysis, it is known that if a function f (x) is defined only over a finite interval
(e.g., from xy to xo + L), the definition of the function f (x) can be extended for all values of x and can
be considered to be periodic with period L. The Fourier series expansion of the extended periodic
function converges to the function f (x) in the original interval from x, to xop + L. As a specific case, if
the function f (x) is defined over the interval O to [, its Fourier series expansion in terms of only sine
terms is given by 13
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> o
f(x) = z fn sin (_
n=1

Where,
2 fl . (nn )6
= — * R
fn A fx) * sin i x)0x
According to equation (2), equation (4) yields to;
d—Ax d+Ax l
nm 2 D omm 2 omn
f"_T_L (0)*sm(l )6x+lL_Axm*sm(lx)6x+lL+Ax(0)*sm(lx)ax

Solution the integration and simplifying the equation (5) yields to:

fan= sz sin (nln d)

Substituting equation (6) into (3) yields:

foo) = szi sin (nTn d) sin (nTnx)
n=1

Using (d = u*t) in Eq. (7), the load distribution will be represented in terms of x and t as:

_2p nnu . /nm
fan = T Z t sin (T) X
n=

Now, substituting the equation (8) into equation (1) gives:

04 0° 2
El V(x,t) + pA V(x,t) _ _P
Ox* ot? l

s

sin (@) t sin (?) X

1

S
1l

(3)

C)

(5)

(6)

()

(8)

)

The above equation represents the governing partial differential equation for force transverse of beam

traversed by moving load. To solve this equation;

Ve t) = Y) * V)

(10)

From the modal analysis of simply supported beam (13}, the Eigen function is y(,) = sin ( ) X in

above equation so it yields to

. nm
y(x,t) = Sll’l(

Substituting equations (11) into equation (9) gives:
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8

Ely (nTn)‘* sin (nTn) x + pAsin (nln ) o ajt};t) = sz nnu t sin (nln) X (12)

n=1

Multiply equation (12) by {sin (nTn) x} and integrating it from O to L yield to:

niy 4 0%yw 2p . (mmu
Ely(t) (T) + pA 9t2 = Tsm (T) t (13)
From the modal analysis of simply supported beam; , the Eigen value is w, = (nm)? ZL - in
above equation so it yields to
%y 2p nmwu
W+a)ny(t) lpASlTl( ] )t (14)

Equation (14) can be observed as a nonhomogeneous second order ordinary differential equation, so
that the solution is

Asinw,t + B £+ 2P ! ; (znu)t (15)
= Sin w. COoS w * *SIN|——
Y n n lpA . (27‘[11)2 l

Wy _l

Where, A and B are constants obtained from applying initial conditions for zero displacement and
zero velocity gives:

2p 1 [ ) (2nu> . (2nu> ) t] (16)
=— % ———= % |Sin — sin w
YO =" (Znu)z l Loy, n
Wy T
Substituted equation (16) in equation (11) yields to:
_2p 1 - (2nu 2mu\ _mm 1
Vor) = 7k ——————— * [sm (T) t— (m> sin a)nt] sin (T) X (17)

o =)

Rearrangement equation (17) and using ~ w,, = (nm)? / ZH yields to:

2pl® o 1 1 _mmy [ . (2mu 2muy
Yo = mz ot Tsm (T) x [sm (T) t— (la) ) sin wnt] (18)
n=1 1-— <_) n
lw,?

335



AFQadisiyah Journal For Engineering Sciences, Vol 9...No. 3....2016

The above equation represents the dynamic response of transverse vibration of a uniform Euler -
Bernoulli beam traversed under moving load. Simply supported boundary conditions are considered.

3. EXPERIMENTAL INVESTIGATIONS:

The experimental work divided in three parts, the first part is interested with free transverse vibration
of simply supported beam, the second part is mainly focused on transverse vibration of beam traversed
under moving load and the third part investigated the dynamic stress due to moving load.

3.1 Free Transverse Vibration of Simply Supported Beam:

The vibration test involves studying the fundamental natural frequency for the beam. The material of
beam was brass alloy (c 85700 ), Table (1) illustrated the mechanical properties of alloy that used in
this test , dimension of beam was (0.01x 0.025x0.84) m, boundary conditions taken as a simply
supported beam, where the used technique depended on reference [14). Figure (3) illustrates the beam
sample which is tested to evaluate the fundamental natural frequency. Figure (3) consists of the
following parts:

1-Rig structure :It is one of the most important devices of vibration Laboratories called universal
vibration apparatus (tm16) produced by Technical Teaching Equipment For Engineering Companyys;.
2-The supporting conditions in the ends of beam are rolling supported in the left end and pinned at
right.

3-Impact hammer of model (086C01-PCB Piezotronics vibration division) is used.

4-The amplifier is used with the model No. (480E09).

5-Digital storage oscilloscope model (ADS 1202CL+) and serial No.01020200300012 is employed.
6-The model of accelerometer (352C68) is also used.

3.2 Force Transverse Vibration of simply supported beam By Moving Load Test.
Force transverse vibration of uniform beam by moving load test involves studying the dynamic
response due to the moving load. The experimental results are obtained where constant moving load
with uniform speed passed through beam span from lift to right. In this test, ,three different moving
loads are applied, each one of them travels at two uniform speeds over beam span, see Table (2) .The
Global Coordinates Center at left end supported. The start point of load was (70 mm) and end point
was (720 mm) from Global Coordinates Center.
The rig of this test manufactures to complete the practical requirements illustrated in Figure (4).
Figure (4) consists of the following parts

1. Rig stricture.

2. Beam.

3. Supported part.

4. Carriage for moving load.

The design and implementation of carriage should satisfy the practical requirements of moving load

problem, which are:

*  Minimum attached area between the carriage and beam to decrease the friction.

* Simple and easily assembling and disassembling with beam.

* Rolling motion should not cause sliding between the beam and carriage during motion.

* There are no adverse effects on the beam surface during motion.

* The possibility of moving with any speed.
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* (Can carry any load into the elastic reign.

* (Carriage designed in minimum size to consider the carriage and the load as concentrated load.

Solidworks software was used to illustrate the carriage design Figure (5) depicting the final shape

of carriage and the drawing in SOLIDWORKS software.

5. Masses:

6. Dc motor gear box.

The Table (3) lists information about the Dc motor gear box. A pulley is attached to the motor and

connected with a metallic string which links the pulley with the carriage to transient the motion.

7. Power supply model PS-305D.

8. Measure unit: It consists of minor power supply , data acquisition model 6009, accelerometer
model ADXL335, wire and on/off switch

9. Computer pc: where the Lab view program installed and by help of sound and vibration tools in
this program the single and double integration operation will be done, which yield to in axel
form tables and curves of velocity and amplitude vs time.

3.3 Dynamic Stresses By Moving Load

The purpose of the experimental work is to estimate the dynamic bending stress at mid span beam
produced from force transverse vibration due to moving load. Through the observation of the Figure
(6), the moving load position is obtained according to variables (a and b) instantaneously .the moving
load is located at the three prospects as illustrated [;6);

1 — Moving load travels before mid-span beam (0<a< L/2),

b
M= % (19)

Where, x = l/z and b = (I — a)

Substituting the above variable in equation (19) and rearrangement yields:

2M

= 20
Substitute equation (20) in equation (18) gives:
Elm* l—a
413 3> 1. ;sin (ﬂ) x [sin (Znu) t— (Znu) sin wyt ]
n=lnt (2nu>2 [ [ lw, n
1 — | —
lw,?
2 — Moving load travels after mid-span beam (L/2<a<L),
bx
M=% - (22)

l

Where, x = l/ o and b = (I — a), so substituting those variables in equation and rearrangement gives:
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p=—" (23)

Substitute equation (23) into equation (18) gives;

M = 43y 1., 1 . (n_ﬂ) . (Znu)t B (Znu) ) . (24)
n=1p4% 2 ST ) X [sin (7 lw, ) S @n
1= ()
wn
The experimental result of previous test (y(,) is applied into equation (26) and equation (29) to obtain

the dynamic bending moment. The flexure formula is employed to convert the dynamic bending
moment to dynamic bending stresses as shown,

My
Opending = _T (25)

Where,
y: The distance from neutral axis to any point in the cross section, in the present work, this point is

located at the bottom surface, y = h/ o = —0.005m
I : Second moment of area

I_bh3
12

b(width of beam) = 0.025m and h(high of beam):0.0lm so I=2.083 m4

4. FINITE ELEMENT MOEL

To simulate the moving load on beam problem, the beam is drawn 2D as rectangle by two corners (0,
0) and (0.79, 0.01). Figure (7); show the finite element grid for the beam model. A (PLANE 82) was
used to build the finite element model inside the frameworks described above; the element is defined
by eight nodes having two degrees of freedom at each node: translations in the nodal x and y directions.
The comparison between the numerical and the experimental results showed that the PLANE 82 is
suitable to simulate the transverse vibration under moving load for a simply supported beam. The plane
stress option with unit thickness was used and scaled to the actual model thickness of 0.01 m. To
specify the boundary conditions, all the nodes on right terminal end of the beam were selected and
given zero displacement in both directions X and Y, while the lift terminal end of the beam were
selected and given zero displacement in directions X only, as illustrated in Figure (8) .

4.1 Modal Analysis

Having obtained the finite element model, a modal analysis has been conducted on the beam. The
global stiffness matrix [K] and global mass matrix [M] was obtained by assembling the element
stiffness and mass matrices, respectively. The natural frequencies of the beam were obtained by solving
the Eigen value problem given by the following equation:
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[KI{U} = 0,” [M] {U} (26)

Where, o, is the natural frequency of the system and {U} is the corresponding normalized Eigen vector
(mode shape). The Eigen values and Eigen vectors were obtained using Block Lanczos method. The
first five natural frequencies and corresponding normalized Eigen vectors were calculated using this
technique. The first five natural frequencies of the beam obtained for the selected model are given in
Table (4).

4.2 Load distribution on beam:

In order to conduct a static stress analysis, the loads have to be evaluated. The load on the mid span of
the beam finite element model produces the largest bending stress. For node26, the maximum bending
stresses are (-18.57 MPa, -27.9 MPa and -37.181 MPa) for (39.24 N, 58.86 N and 78.48 N),
respectively. The magnitude of load at any point of contact on beam surface as the load moves from
left end to the right end of beam depends on the moving speed. Figure (10) shows the magnitude of
loads at various points along the path of contact. The normal load P acting on the beam of the proposed
model is taken as (39.24 N, 58.86 N and 78.48 N), each one moves in two different speeds as ( 0.2 m/s
and 0.25 m/s) respectively. Nodes starting from the extreme left end are (node 85) to the final point of
contact and (node 53) of the model.

4.3 Transient analysis

After computing the natural frequencies and the mode shapes the dynamic response is obtained using
the modal superposition technique [17;. The method is computationally efficient, particularly for a large
sized problem.

Time steps:
The time of contact T of beam depends on speed of the moving load on beam contact surface. The time

taken for any moving load can be divided into required number of intervals in the present work, eight
intervals will be considered. One time step AT can be calculated by considering the number of modes,
which are expected to contribute to the dynamic response. So, the first frequency of the model is
(24.008 cycle/sec) which is taken from the finite element modal analysis results in Table (4);

_ 1
T10x f

(27)

The total time obtained are (3.25 sec) and (2.6 sec), respectively for the two indicated speeds. The total
number of time steps for each speed can be evaluated by

TNTS — total time 28
=T (28)

Where, TNTS is the total number of time steps. So, the total number of time steps for the model is 780
and 624, respectively for the two mentioned speeds which mean that there are about 97.5 and78 time
step between each two nodes when speed is 0.2m/s and 0.25m/s, respectively, as shown in figure (3.8).
At any time, two nodes are considered to calculate the load vector for that time step. The actual load at
a point is distributed in inverse proportion to its distance from either node, to the two nodes under
consideration. The Initial conditions for displacements and velocities for the beam in the proposed
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model are taken as zero for all degrees of freedom. The first mode is selected for the mode
superposition technique. At each time interval, the acting load is calculated and fed into the mode
superposition part in ANSYS software, and the corresponding deformation and stress are thus obtained.
The dynamic displacement and dynamic stress in the Y direction in the mid span portion of the selected
beam model (node 26 is mid-span of beam), are plotted in condition of the three indicated loads. This
dynamic analysis is carried out for the following three speeds of moving load namely 0.2 m/s and 0.25
m/s respectively.

5. RESULTS AND DISCUSSION

The obtained results from the numerical and experimental work are discussion in this section. The
results are divided into three parts, as mentioned in the previous section, first is the evaluation of the
fundamental natural frequency of simply supported beam, obtain the dynamic response (amplitude) of
beam under moving load, get the dynamic bending stresses of beam due to moving loads.

5.1 Free Transverse Vibration of Beam.

The results of this part include the calculation of the first mode of the natural frequency of beam type-
structure. Through the analysis of the accelerometer signal with sigview software, the natural frequency
of the beam was evaluated. This software is used to transform the signal obtained from time domain
into frequency domain by using FFT function. The experimental signal is acquired from the
oscilloscope and drawn via Excel Microsoft office, as shown in Figure (9) while Figure (10) illustrates
the FFT function. The comparison between numerical natural frequency of beam via ANSYS software
and experimental result showed that the percentage error between them is (4.09%). The natural
frequency that evaluated numerically is (24.008Hz) and its value that computed experimentally is
(23.026 Hz).

5.2 Force Transverse Vibration of Beam under Moving Load

The experimental and numerical results were obtained when a constant moving load with a uniform
speed passed through beam span from left to right. In this part, there are three different moving loads,
each one of them travels at two uniform speeds over beam span, see Table (2).

When the concentrated moving load (39.34 N) traveled with following speeds (0.2 and 0.25 m/s), the
behavior of dynamic response is shown in Figures (11), (13) respectively. These Figures display the
amplitude in meter unit in y- axis, while time of carriage motion represent in the x-axis. To validate the
experimental result, finite element modeling by ANSYS software is achieved, as shown in Figures (12)
and (14).

It’s clear from these figures that the dynamic deflection due to moving load could become significantly
higher than those obtained with the stationary loads because the obtained deflection is result from two
component, due to static and dynamic of moving load . Table (5) illustrates the maximum dynamic
deflection increase with increasing the speed of moving load, the percentage of increase of dynamic
deflection according to static deflection also included in the Table (5) where, the maximum dynamic
deflection for other cases shown in same table.

5.3 Dynamic bending stresses of beam due to moving load:

When the concentrated moving load (39.34 N) traveled with following speeds (0.2 and 0.25 m/s), the
behavior of dynamic bending stresses is shown in Figures (15) and (17), respectively. These figures
display the relationship between the dynamic stresses in y-axis, and time of carriage motion in x-axis.
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To validate the experimental results, finite element modeling by ANSYS software is achieved as shown
in Figures (16) and (18). It’s clear from these figures that the dynamic stresses due to moving load
could become significantly higher than those obtained with the stationary loads because the obtained
bending stresses is result from two component, due to static and dynamic of moving load. Table (6)
illustrates the dynamic bending stress increase with increasing the speed of moving load, the
percentage of increase of dynamic bending stress according to static bending stresses also included in
the Table (6). As well the maximum dynamic bending stress for other cases shown in same table.

When the moving load reached to mid-span of beam, the beam vibrated freely via two components,
weight of beam and the moving load at mid-span. The vibration of beam appears as a result of these
two components. Dunkerley’s method ;5; was used to estimate the natural frequency of beam.

1 1 1

—=—+— Dunkerley formula
Wy Wy Wy

y: circular nature frequency of beam
: experimental value of circular nature frequency due to beam’s weight
yy: circular nature frequency due to concentrated load

k rad
W2y = M (T) (29)

K is the stiffness of beam and can be calculated for mid-span of simply supported beam

48E1
k= B (30)
By substitute equation (30) into (29):
W22
B 48E1 31
- Z3Mmoving load ( )

Where My, ping 10aa 18 mass of moving load

Substituting equation (31) in Dunkerley formula yields:

LZ: ]; +Z3Mmovingload (32)
W W 48EI

According to Dunckerley’s principle, the natural frequency of the beam depends on the stiffness of
beam. The stiffness of beam varies with position of moving load, so it can conclude that the natural
frequency of beam had a value at each position of moving load. The dynamic response signal was
analyzed with FFT function by using sigview program; the purpose of this analysis is to get the natural
frequency of beam under moving load. As previously mentioned, there are two frequencies, constant
due to uniform speed of moving load and variable natural frequency due to position of moving load
along the beam span (Dunkerly’s principle). The value of the ratio force frequency to the variable
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nature frequency is varies with position of moving load along the beam span. Whenever this ratio is
close to one, the concern of resonant is increasing.

The reason expected for the sudden drop in dynamic bending stress behavior at mid-span is the ratio of
force frequency to variable natural frequency in mid-span had the highest value compared with another
position of moving load along the beam span, as well as the static bending moment had a maximum
value at mid-span beam according to the principle of strength of material ;6.

6. CONCLUSIONS:
The main conclusions of this thesis are :

1. The natural frequency increases with the decrease of the load at mid-span. In this work, for the
indicated moving loads the highest value occurred at moving load (39.24 kg) according to
Dunkerley’s principle .

2. The force frequency increases with increasing the speed of moving load and the highest value
of force frequency occurred at 0.25 m/s .

3. A ratio of the force frequency to the natural frequency in mid-span had the highest value
compared with another position of moving load along the beam span. When the load (78.48 kg)
traveled with speed (0.25 m/s), this ratio had the greatest value that is (0.61).

4. The dynamic deflection and dynamic stresses due to moving load could become significantly
higher than that obtained with the stationary loads.

5. The dynamic deflection and dynamic stresses increase with increase the speed of moving load
and the magnitude of moving load.

6. During the process, the variation of speed and load effects on the dynamic deflection and
dynamic bending stress. The influence of variable speed on the dynamic deflection and dynamic
bending stress more than the effect of variable load on them. On the other hand, the dynamic
bending stresses is more sensitive to the variable speed and load than the dynamic deflection.
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Table (1): mechanical
copper alloy (¢85700)

properties of

Young’s modules

87 GPa

Yol 9...No. 3....2016

Table (2): Moving loads with uniform

speeds.

Masses(kg) | Load(N) | Speed(m/s) |

Passion ration

0.35

Density

7904.76 kg/m’

Second moment of
inertia

2.083%10° m*

A 39.24 0.20
39.24 0.25
. 58.86 0.20
58.86 0.25
78.48 0.20
8 78.48 0.25

Table (3) : Characteristics of Dc motor gear box

Table (4):The first five natural frequencies

Model: gmx-8pvol7d | Power rating : 27(W) 1 >4 033
2 1

Current rating : 1(A) | Speed rating : 143(r.p.m) 3 3?5 gg
4 381.33

Voltage rating : 19(V) | Efficiency :99% ) 0021

Table (5): maximum dynamic deflection and the rate of increase of the deflection

experimentally | numerically | experimentally || numerically
0.2 -0.002520416 -0.0027 14.5643527 22.72
39.24 -0.0022
0.25 -0.002878441 -0.0035 30.83824176 59.090
0.2 -0.003482576 -0.0041 5.532598664 24.24
58.86 -0.0033
0.25 -0.003556374 -0.005 7.768923564 51.51
0.2 -0.00460624 -0.0056 4.687273403 27.27
78.48 -0.0044
0.25 -0.0048 -0.007 9.090909091 59.09
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Table (6): maximum dynamic bending stress and the rate of increase of the stress

maximum Maximum dynamic bending :
. The rate of increase %
static speed stresses(Mpa)

8 treb;esg(siangpa) (m/s) experimentally | numerically | experimentally | numerically
394 18.57 0.2 -27.3856 -28 47.4722671 | 50.78082929
0.25 -34.0552 -30.708 83.38826064 | 65.3634895

58.86 279 0.2 -37.8756 -42 35.75483871 | 50.53763441
0.25 -45.8542 -46 64.35197133 | 64.87455197

78.48 37181 0.2 -49.713 -56 33.70538716 | 50.6145612
0.25 -54.0084 -60.91 45.25806191 | 63.82023076

Figure (4): Rig of force vibration by moving load
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(b)

Figure (5): (a) drawing in
SOLDWORKS and (b)
final shape of carriage
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Figure (9): Experimental response in

time domain.

Figure (10): Analysis of the experimental
signal by sigview software.
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Figure (11): Experimental dynamic
response of mid-span when load 39.24N
travel at 0.2 m/s
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Figure (13): Experimental dynamic
response of mid-span when load 39.24 N
travels at 0.25 m/s
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Figure (12): Numerical dynamic response
of mid-span when load 39.24 N travels at
0.2 m/s
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Figure (14): Numerical dynamic response
of mid-span when load 39.24 N travels at
0.25 m/s
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dynamic bending stresses(Mpa)
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Figure (15): Experimental dynamic
bending stresses of mid-span when load
39.24 N travels at 0.2 m/s
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Figure (17): Experimental dynamic
bending stresses of mid-span when load
39.24 N travels at 0.25 m/
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Figure (16): Numerical dynamic bending
stresses of mid-span when load 39.24 N
travels at 0.2 m/s
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Figure (18): Numerical dynamic bending
stresses of mid-span when load 39.24 N
travels at 0.25 m/s




