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ABSTRACT
In this work, we present new concept which is y-closed-pseudo-projective module (briefly, YCP-

projective module). This work which is generalization of pseudo-projective modules. We have
provided some characteristics and descriptions of those concepts. Semi-simple modules have been
characterized in terms of YCP- projective modules. We have shown the relationships of YCP-
projective with other concepts, including a Co-Hopfian, directly finite modules.

Keywords: Y-closed-pseudo-projective, Y-closed submodule, YCP-K-projective module, YCPP-
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1. Introduction

Throughout this work, R is a ring with identity, and each R-module is a unitary right R-
module, A € P denotes A is a submodule of an R-module P, Hom r(P,K) (Epi r(P,K))
denotes all an R-homomorphism (R-epimorphism) from P to R- module K over ring R.
Let P and K be R-modules. P is referred to as (pseudo)-K-projective if for any
v€ Hom gr(P, K/B) ( Epi r(P, K/B) ) where B € K there exists & € Hom r(P,K) with
n 6 = v, where m:K—K / B be the natural R-epimorphism. An R-module K is a quasi-
projective, if K is a K-projective. Also, P is a projective if it is K-projective for all R-module
K. (see [1-4]).
A submodule B of an R-module K is said to be closed in K (briefly, B €c K) if B has
no proper essential extension inside K. The submodule Z (B) of K define as Z (B) = {beB:
ann (b) e R} is called singular of K. If Z (K) =K (Z (K) = 0), then K is a singular
(nonsingular). For a submodule B is said to be y-closed (briefly, B Cyc K) if K/B be a

[1] Ranjita

A.A. Ahmed and Mahdi Saleh Nayef in [10], presented the concept of pseudo -y- closed -
injective modules. Also, B. H. Al-Bahrani in [7], introduces the concept of y-closed-
projectivity. Let P, K be R- modules. An R-module P is referred to as K-y-closed-projective
(briefly, P is K-yc-projective), if for every € Hom r(P, K/ B), where B Cyc K, 3 o €
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Hom gr(P, K) with © a = 8 with 7 be the natural R-epimorphism. An R-module P is yc-
projective if P is a K-yc-projective, for any R-module K.

An R-module K is said to be directly finite if it is not isomorphic to a proper direct summand
of K. For an R-module K is a co-Hopfian (Hopfian) if any monomorphism (epimorphism) in
End r(K) is an automorphism, see [8]. An R-module P is said to have D, if for each
submodule B of P where P / B = X with X S P, then B <& P, see [1].

2. y-closed-Pseudo-Projective Modules.

We will present the concept of an YCP-K-projective module. This concept is a generalization
of a pseudo-projective module.

Definition (2.1): Let K be an R-module. An R-module P is called y-closed-pseudo-K-
projective (briefly P is YCP-K-projective) if for any y-closed submodule A of K and any
Be Epi R(P, K/ A), there exists & € Hom R(P, K) such that & a = . Where 7 be the natural
R-epimorphism, i.e., the following diagram:

] K—» K/A —» 0
IS commulte. e

Also, an R- module H is called YCPP-module, if H is an YCP-H-projective. Two modules H
and D are said to be mutually YCP-projective if H is an YCP-D-projective, D is an YCP-H-
projective

Examples and Remarks (2.2):

1) Every singular R-module is YCP-K-projective, for any R-module K.

Proof: Let P be a singular R-module. Let A Syc K and B € Epi r(P, K/A). Since K/A is a
nonsingular, by [5, Proposition (1.20), p.31] we have B = 0. Therefore, there exists 0 = o €
Hom g(P, K) with & o = B, where 7 is the natural R-epimorphism

2) Every pseudo-K-projective module is an YCP-K-projective. The opposite is not true.
Proof: A Z-module P = Z/4Z be an YCP-K-projective, since P is singular. Now it require to
show that P is not pseudo-Z-projective. Suppose that P is pseudo-Z-projective. Let
B: P—P, be defined by B (a + 4Z) = a + 4Z, where a € Z, easily seen that B is a Z-

epimorphism. Consider the illustration below:
Z/4Z

a /',":x‘:" l B

Z —————>» 7/4Z —» 0
T

There exist a € Hom Z (P, Z) such that 7 o (n) = B (n), n € P. But Hom Z (P, Z) = 0
by [5, Proposition (1.20), p.31]. It is follows that for all a € Z, B (a + 4Z) = 4Z, which is a
contradiction. So, P is not pseudo-Z-projective.

3) Clearly, any K-yc-projective module which is an YCP-K-projective, we know that any
K-projective is K-yc-projective. Hence, any K-projective module is an YCP-K-
projective.

4) Any simple R-module is YCP-K-projective.
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Proof: Let P be a simple R-module, K be any R-module. By [5, Proposition (1.24)], P is
singular or projective. Now, if P is singular, thus by (1) it is YCP-K-projective. If P is
projective, then by (3) it is YCP-K-projective as well.

5) For an R-module K is simple y-closed R- module, if (0) and K are only y-closed
submodule of K. Consider the module Z, as Z-module, clear that it is simple, but Z; is
singular, thus by[9] we get Z, is only y-closed submodule of Z,. Hence, Z; is not simple
y-closed Z-module. We know that Z as Z-module is not simple, Z and (0) be only y-
closed submodules of Z see [9], therefore, Z is simple y-closed Z-module. This means
there are no relationship between simple R-module and simple y-closed R-module.

6) For simple y-closed R- module K, each R- module P is an YCP-K-projective.

Proof: Assume that P be an R-module. Let B € Epi r(P, K/A) with A Syc K . Consider

the illustration below:

K—» KA —»0
T

Since K is a simple R-module we have A=0 or A=K. If A=0, since ker () =A, therefore, 7 is
an R-isomorphism. So, = -1 exists. It is follow that = -1 B € Hom R(P, K) such that wx-1f3
=B. Now, if A=K, clearly, P is an YCP-K-projective.

Definition (2.3): An R-module K is referred to as fully y-closed (briefly, K is FYC-module),
if each submodule of K is y-closed of K.

Example (2.4): If D is a nonsingular semi-simple R-module, then D is a fully y-closed.

Proof: Let A € D, we have A & D since D is semi-simple, we know that every direct
summand is closed, thus A Sc D. But D is nonsingular, hence A Syc D by [5, Proposition
2.4)].

Example (2.5): D = Zs as Zg-module is fully y-closed, because it is evident that D is semi-
simple and nonsingular. Also, Z as Z-module is not fully y-closed.

In the following result, we demonstrate that for a fully y-closed module, the concepts of the
pseudo-K-projective and YCP-K-projective are equivalents.

Proposition (2.6): Let K be an R-module. If K is a FYC-module, then the following
statements are equivalent:

1) pseudo-K-projective module;

2) YCP-K-projective module.

Proof: (1) = (2). Obviously.

(2) = (1). Assume that P is an YCP-K-projective. Let A € K and let B € Epi gr(P, K/A).
Since K is a fully y-closed, we have A Cyc K. By YCP-K-projectivity of P, there exists
a € Homg(P, K) with 7 o= . Hence, P is a pseudo-K-projective.

Proposition (2.7): Let P and K be two R- modules. If ker (B) Syc P with any B €
Epi r(P, K/A), where A be any submodule of K, the next statements are equivalent:

1) P isa pseudo-K-projective;

2) Pisan YCP-K-projective.
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Proof: (1) = (2). Clear

(2) = (1). Assume that P is an YCP-K-projective. Let B €Epi r(P, K/A) and let 1: K— K/A

be the natural R-epimorphism. By the first isomorphism theorem, we have K/A = P/ ker (B).

Since ker (B) Syc P, Therefore, P/ ker (B) is a nonsingular. Therefore, K /A is a nonsingular,

hence A Cyc K. thus by (1), there exists o€ Hom r(P, K) with © o = p.

In the following proposition, we provide a characterization of an Y CP-K-projective module.

Proposition (2.8): For R-modules P and K, the next statements are equivalent:

1) P isan y-closed-pseudo-K-projective;

2) For any A € Epi r(K, H) with ker (A) Syc K, where H be each R-module , each
Be Epigr(P, H) there exists a € Homg(P, K) with A a. = .

Proof: (1) = (2). Let A € Epi r(K, H) with ker (L) Syc K, let € Epi g(P, H). By the first

isomorphism theorem, we have H = K/ ker (L), therefore, there exists an R-isomorphism ¢:

H— K/ ker (A) defined by ¢ (h) = m + ker (A) where A (m) = h. Consider the illustration

below:
. /
&

N

K/Ker(A)—» 0

Clearly, ¢ B is an R-epimorphism. By (1), there exist « € Hom r(P, K) such that =t a = ¢ B,

where m: K—K/ker (A) is the neutral R-epimorphism. For any m € K, we have ¢ A (m) = ¢

(A (m)) = ¢ (h) =m+ ker (A) = = (m). So, ¢ A =n. Therefore, ¢ f=m o= ¢ A a. Hence, A o = .
(2) = (). Itis clear.

Proposition (2.9): Let P is an YCP-K- projective and : K — P be any R-epimorphism with

ker (B) Syc K, then ker (B) €& K.

Proof: Let Ipis the identity map of P. Consider the illustration below:

K—»pP—>» 0
By Proposition 3.8, there exists a € Hom r(P, K) such that B a = Ip. Therefore B split.
Hence, ker (B) €o K
In [2, (5.3.2)], an R-module P is called projective if any R-epimorphism f: K—P split, for
all R-module K. In [4, Theorem 3.2], it was proved that; P is projective iff P is pseudo-K
projective, for all R-module K. The next result is generalization of Theorem 3.2 in [4]
Proposition (2.10): Let R be a ring such that any R-module is fully y-closed, the next are
equivalent:
1) YCP-K-projective module, for all R-module K.
2) projective module
3) yc-projective module
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Proof: (1) = (2). Assume that P is pseudo -K- yc -projective such that K be any R-
module. Let B: K—P be any R-epimorphism. Since K is fully y-closed R-module, so ker
(B) €yc K. Therefore by (prop 2.8) we have B split.

(2) = (3) = (1). Clear.

The next result, we give a condition under which an YCP-K-projective is CLS-module.
Proposition (2.11): Let K be an R-module. If K/A is an YCP-K-projective module, for all
y-closed submodules A of K, then K is CLS- module.

Proof: Assume that A Cyc K. Let n: K— K/A be the natural R-epimorphism. Hence, ker
(r) = A. But K/A is an YCP-K-projective. Therefore, by Proposition (2.9) we get A is a
direct summand of K. Hence, K is a CLS-module.

Now, we give some properties of YCP-K-projective module.

Proposition (2.12): If D = P and P is an YCP-K-projective, then D is an YCP-K-projective.

Proof: Let P is an YCP-K-projective and D = P. Let X Cyc K and B €Epi r(D, K/X). Since
D = P, there exists an R-isomorphism ¢: P— D. Consider the illustration below:

K — 3 K/X —» 0

m

It is clear that A = B ¢ € Epi r(P, K/X). Since P is an YCP-K-projective, there exists a €
Hom (P, K) with w o= A. Now, let 5 =0 ¢, we haven 8 = a ¢ =B ¢ ¢ = . Hence, D
is an YCP-K-projective.

Proposition (2.13): Let P be an YCP-K-projective. If A is a submodule of K, then P is an
YCP-K/A-projective.

Proof: Let U/A is an y-closed submodule of K/A and € Epi (P, K/A/U/A). But KA/ UA
= K /U by third isomorphism theorem. Therefore, there exists an R-isomorphism ¢: K/AU

/A — K /U defined by ¢ (k +A + U/A) = k + U, for all k € K. Consider the illustration
below:

x v
i
K/A— »KA/UA —» 0

FL%] I o
T v

1
K —» K/U —» 0

Where 7, m, m, are the natural R-epimorphisms. Since K/A/U /A is nonsingular, K/U is
also non-singular, it follows that U Cyc K. Since P is an YCP-K-projective, there exists
L€ Homg(P,K)suchthat ;y A=¢@ . Leta=m A. Then o f=m A= n m A= ¢ T a, SO
B =1 a since ¢ is an R-isomorphism. Therefore, P is an YCP-K/A-projective.

The next result gives a characterization of YCPP-module.
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Proposition (2.14): Let P be a fully y-closed R-module, the next are equivalent:

1) Pisan YCPP-module;

2) For submodules A, B of P and R-epimorphisms 6: PA— P/B and A: P— P/ B there
exists h € Homg(P, P/A) such that 6 h =,

3) For any submodule B and direct summand U of P with o € Epigr(U, P/B) and
L € Epir(P, P/B) there exists h € Homg(P, U ) withd h=A.

Proof: (1) = (2). Let A, B be a submodules of P and 8€ Epi r(P /A, P/ B), A €

Epi R(P, P/B). Consider the illustration below:

P—»P/A—»P/B
T 0
Clearly, 6 7 is an R-epimorphism and ker (& ) Syc P since P is a fully y-closed. Therefore,
by Coro. (2.9), there exists oo € End g(P) such that 6 mt a = A. Now, leth=m a, then h €
Hom r(P, PA) withdh=8ma=2A
(2= (3). Let Uce P and B be a submodule of P with 6 € Epi r(U, P/B), A€ Epi r(P, P/
B). Consider the illustration below:

P/V » U » P/B

Since U €@ P, there exists a submodule V of P such that U@V = P. It follows that P/V =
U+ V/V = U by second isomorphism theorem. So, there exists ¢: PV — U which is an
R-isomorphism. Thus, 3 ¢ € Epir(P/V, P/B), so by (2) there exists a € Hom g(P, P/V) with
0@ a=A Now, leth=¢ a. Hence, h € Homg(P, U)y withd h=0 g a = A.

(3) = (2). Clear.

Lemma (2.15): ([1], Prop. 1.25) An R- module H is directly finite iff p A = I implies that A 8
= | for each B, A € End r(H).

In the next results presented below discuss the relationships between YCPP-modules and
some well-known modules such as, co-Hopfian, Hopfian and directly finite modules.
Proposition (2.16): Let P is an YCPP-module and FYC-module. Then P is a directly finite
iff P is a Hopfian.

Proof: Assume that P is a directly finite. Let B be any R-epimorphism in End g(P). Since P
is a FYC-module, then ker (B) Syc P. Therefore, by Prop. (2.8) there exists A € End r(P)
with B A=I where I is the identity map of P. But P is a directly finite, so A B = 1. Hence, A is
an R-automorphism. Conversely, let P be a Hopfian. Now, let B, A € Endg(P) and B A =1,

we have B is an R-epimorphism. Hence, 3 is an R-automorphism since P is Hopfian. So A =
. Therefore, A B=I.

Corollary (2.17): If P is an yc-projective and FYC-module. Then P is a directly finite iff P is
a Hopfian.

Proposition (2.18):Let P be any YCPP-module and FYC-module. If P is a co-Hopfian, then
it is Hopfian.

Proof: Let B be any R-epimorphism in End g(P) and let Ip : P — P be an identity map on P.
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By y-closed-pseudo-projectivity of P there exists A € End r(P) such that p A = Ip which
implies that A is an R-monomorphism. As P is a co-Hopfian, A is an R-automorphism.
Thus, B = ! is an R-automorphism on P. Hence, P is a Hopfian

Now, we give some properties of direct sum in term YCP -K-projective modules.

Theorem (2.19): Let D; and D, be R-modules. Then D1@®D, is YCP-K-projective iff D; and
D, are YCP-K-projective.

Proof: Assume that D;@®D, is an YCP-K-projective. To show that D; is an YCP-K-
projective. Let X Cyc K and let B € Epir(D;, K/X) . Consider the illustration below:

1
D;®D:; «—— Dy

P ,/"
o B
g

> K/
K — K/X —» 0

Where P; is the projection map and i is an inclusion map. Clearly, p P; € Epi r(D:®D> ,
K/X). Since D:@®D; is an YCP-K-projective, there exists a € Hom g(D:®D,, K) such that
na=pP;.Now,let h=ai.ltfollowsthatth=mnoi=pP;i=f1=p. Therefore, Dy is
an YCP-K-projective. Similarly, we can show that D, is an YCP-K-projective. Conversely,
suppose that D; and D, are YCP-K-projective modules. Let A € Epi r(D1®D,, K/X) with
X Syc K. Therefore, A | pj: Dj —K/X, is an R-epimorphism, where j = 1, 2. Consider the
illustration below:

B
. Di®D: —» Dj

A *| o
-

K K/X ——» 0
Since Dj is an YCP-K-projective, it follows that w hj = A | pj for some h; eHom r(D;, K).
Now, let h = h; P;. Hence, h € Hom r(D1@®D,, K) with mh=mhjPj=2|pjPj=%.

Corollary (2.20): Any direct summand of YCP-K-projective module is an YCP-K
projective.

Proposition (2.21): Let P = P1@®P;, be an R-module. If P, is an YCP-P;-projective, then for
each y-closed submodule A of P with P = P; + A, there exists a submodule X of A such
thatP =P, & X.

Proof: Assume that P, is an YCP-P;- projective. Let A Syc P such that P=P; + A. Ifn, €
P, then n; = n; + a, where n; € P, a € A. Let ¢: P, — P1/P1NA be a map defined by ¢
(n2)= ¢ (n1+a) = n; + P1NA. To show that ¢ is well defined. If n,= n,” in P, then
np=n;+aandny,” =n;" +a°, forsomen;, n"€Pranda,a” € A. Thenn,—n, =a—ae€
P:NA. So, ¢ (np) = ¢ (ny"). Clearly ¢ is an R- epimorphism. By the second isomorphism
theorem P; / P;NA = Pi+ A/ A = P/A. So, exists A P;/P1N A — P/A is an R-
isomorphism defined as follows A (ni;+ P1NA) = ni+A, for all ny € P;. Consider the
illustration below:
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l .
P —n-——n- P/A —» 0

Where nt; and & are the natural epimorphisms and j; and j, are the inclusion maps. Since
P/A is a nonsingular and P/A = P;/P1NA, we have P;/P;NA is a nonsingular, it follows
that P1NA Cyc P;. Since P, is an YCP-P;-projective, there exist h € Hom g(P1, P2) such that
1 h= ¢. Now, let X= (j; h —j2) (P,), to show that X € A. Let x € X, Xx=(j1 h—]2) (no)
wheren, € P, So, X+ A= (j]_ h —jz)(nz) +A=nmn ((]1 h —jz)(nz)) = 7tj1 h (ng) - Tfjg(ng) = A
M h(nz)— thz(nz) =10 (Ilz) - njz(nz) =A(ng + PlnA) -7 (nz) =n;+A- (n2 + A) =ni—-np
+A=-a+A=A,hencex € A andso X € A. Clearly, P=P;+ P, =P;+ X. Now, lety €
PiNXwegety = (i1 h—]J2) (n2) =jih(n2) —Jj2 (N2). So, y =h (nz) —na. Thusny =h (ny) -y
€ P;NP, =0 we have y = 0. Hence, P =P, @ X.

In [2, Coro. (8.2.2)], was proved that; any R-module be projective iff each R-module be
injective iff R be semi-simple iff any simple R-module is projective. The next theorem

gives characterization of semisimple ring in terms of YCP-K-projective.

Proposition (2.22): Let R be a ring, then for all R-module K the next statement are
equivalent

1) Any YCP-K-projective is K-projective.

2) The direct sum of each family of YCP-K-projective is a K-projective

3) The direct sum of each two YCP-K-projective is a K-projective

4) R issemisimple

Proof: 1) = 2) By Theorem. (2.19). (2) = (3) clear.

(3)= (4) let D is simple R-module, thus by remark 2.2, (4) we get D is YCP-K-projective.
It follows that D@D is projective by (3). Therefore, D is a projective by [1, Proposition
(4.32)]. Hence, R is semi-simple by [2, Coro. (8.2.2)].

(4) = (1) since any R-module is projective, then (1) hold.
3. Conclusion

Through this paper, we reached the following conclusions: Any pseudo-K-projective
module is an YCP-K-projective, we give an example of an YCP-K-projective which is no
pseudo-K-injective. Also, we have given the sufficient condition for equivalence; YCP-K-
projective and pseudo-K-projective, K-projective. And the direct sum of YCP-K-projective
is an YCP-K-projective. And any direct summand of YCP-K-projective is an YCP-K-
projective.
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