## Mustansiriyah Journal of Pure and Applied Sciences

#### www.MJPAS.com

# y-Closed-Pseudo-Projective Modules

A. A. Arabi<sup>1,\*</sup>, M. S. Nayef<sup>2</sup>

<sup>1,2</sup> Department of Mathematics, College of Education, Mustansiriyah University, Iraq (aklhlkm1669@gmail.com<sup>1\*</sup>, mahdisaleh773@uomustansiriyah.edu.iq)

#### ABSTRACT

In this work, we present new concept which is y-closed-pseudo-projective module (briefly, YCP-projective module). This work which is generalization of pseudo-projective modules. We have provided some characteristics and descriptions of those concepts. Semi-simple modules have been characterized in terms of YCP- projective modules. We have shown the relationships of YCP-projective with other concepts, including a Co-Hopfian, directly finite modules.

*Keywords*: Y-closed-pseudo-projective, Y-closed submodule, YCP-K-projective module, YCPP-module, Co-Hopfian.

#### 1. Introduction

Throughout this work, R is a ring with identity, and each R-module is a unitary right R-module,  $A \subseteq P$  denotes A is a submodule of an R-module P, Hom  $_R(P,K)$  (Epi  $_R(P,K)$ ) denotes all an R-homomorphism (R-epimorphism) from P to R- module K over ring R. Let P and K be R-modules. P is referred to as (pseudo)-K-projective if for any

 $\gamma \in \text{Hom }_R(P, K/B)$  (Epi  $_R(P, K/B)$ ) where  $B \subseteq K$  there exists  $\delta \in \text{Hom }_R(P,K)$  with  $\pi \delta = \gamma$ , where  $\pi:K \longrightarrow K/B$  be the natural R-epimorphism. An R-module K is a quasi-projective, if K is a K-projective. Also, P is a projective if it is K-projective for all R-module K. (see [1–4]).

A submodule B of an R-module K is said to be closed in K (briefly, B  $\subseteq$ c K) if B has no proper essential extension inside K. The submodule Z (B) of K define as Z (B) = {b $\in$ B: ann (b)  $\subseteq$ e R} is called singular of K. If Z (K) =K (Z (K) = 0), then K is a singular (nonsingular). For a submodule B is said to be y-closed (briefly, B  $\subseteq$ yc K) if K/B be a

[1] Ranjita

A.A. Ahmed and Mahdi Saleh Nayef in [10], presented the concept of pseudo -y- closed -injective modules. Also, B. H. Al-Bahrani in [7], introduces the concept of y-closed-projectivity. Let P, K be R- modules. An R-module P is referred to as K-y-closed-projective (briefly, P is K-yc-projective), if for every  $\beta \in \text{Hom }_R(P, K / B)$ , where  $B \subseteq yc K$ ,  $\exists \alpha \in \mathbb{R}$ 

\*

Hom  $_R(P, K)$  with  $\pi \alpha = \beta$  with  $\pi$  be the natural R-epimorphism. An R-module P is ycprojective if P is a K-yc-projective, for any R-module K.

An R-module K is said to be directly finite if it is not isomorphic to a proper direct summand of K. For an R-module K is a co-Hopfian (Hopfian) if any monomorphism (epimorphism) in End  $_R(K)$  is an automorphism, see [8]. An R-module P is said to have  $D_2$ , if for each submodule B of P where P / B  $\cong$  X with X  $\subseteq \oplus$  P, then B  $\subseteq \oplus$  P, see [1].

## 2. y-closed-Pseudo-Projective Modules.

We will present the concept of an YCP-K-projective module. This concept is a generalization of a pseudo-projective module.

Definition (2.1): Let K be an R-module. An R-module P is called y-closed-pseudo-K-projective (briefly P is YCP-K-projective) if for any y-closed submodule A of K and any  $\beta \in \text{Epi R}(P, K/A)$ , there exists  $\alpha \in \text{Hom R}(P, K)$  such that  $\pi \alpha = \beta$ . Where  $\pi$  be the natural R-epimorphism, i.e., the following diagram:



is commute.

Also, an R- module H is called YCPP-module, if H is an YCP-H-projective. Two modules H and D are said to be mutually YCP-projective if H is an YCP-D-projective, D is an YCP-H-projective

Examples and Remarks (2.2):

1) Every singular R-module is YCP-K-projective, for any R-module K.

Proof: Let P be a singular R-module. Let  $A \subseteq yc$  K and  $\beta \in Epi_R(P, K/A)$ . Since K/A is a nonsingular, by [5, Proposition (1.20), p.31] we have  $\beta = 0$ . Therefore, there exists  $0 = \alpha \in Hom_R(P, K)$  with  $\pi \alpha = \beta$ , where  $\pi$  is the natural R-epimorphism

2) Every pseudo-K-projective module is an YCP-K-projective. The opposite is not true.

Proof: A Z-module P = Z/4Z be an YCP-K-projective, since P is singular. Now it require to show that P is not pseudo-Z-projective. Suppose that P is pseudo-Z-projective. Let  $\beta: P \longrightarrow P$ , be defined by  $\beta$  (a + 4Z) = a + 4Z, where a  $\in$  Z, easily seen that  $\beta$  is a Z-epimorphism. Consider the illustration below:



There exist  $\alpha \in \text{Hom Z }(P, Z)$  such that  $\pi \alpha (n) = \beta (n)$ ,  $n \in P$ . But Hom Z (P, Z) = 0 by [5, Proposition (1.20), p.31]. It is follows that for all  $a \in Z$ ,  $\beta (a + 4Z) = 4Z$ , which is a contradiction. So, P is not pseudo-Z-projective.

- 3) Clearly, any K-yc-projective module which is an YCP-K-projective, we know that any K-projective is K-yc-projective. Hence, any K-projective module is an YCP-K-projective.
- 4) Any simple R-module is YCP-K-projective.

Proof: Let P be a simple R-module, K be any R-module. By [5, Proposition (1.24)], P is singular or projective. Now, if P is singular, thus by (1) it is YCP-K-projective. If P is projective, then by (3) it is YCP-K-projective as well.

- 5) For an R-module K is simple y-closed R- module, if (0) and K are only y-closed submodule of K. Consider the module  $Z_2$  as Z-module, clear that it is simple, but  $Z_2$  is singular, thus by[9] we get  $Z_2$  is only y-closed submodule of  $Z_2$ . Hence,  $Z_2$  is not simple y-closed Z-module. We know that Z as Z-module is not simple, Z and (0) be only y-closed submodules of Z see [9], therefore, Z is simple y-closed Z-module. This means there are no relationship between simple R-module and simple y-closed R-module.
- 6) For simple y-closed R- module K, each R- module P is an YCP-K-projective. Proof: Assume that P be an R-module. Let  $\beta \in \text{Epi }_R(P,\ K/A)$  with  $A \subseteq y_C K$ . Consider the illustration below:



Since K is a simple R-module we have A=0 or A=K. If A=0, since ker  $(\pi)$  =A, therefore,  $\pi$  is an R-isomorphism. So,  $\pi$ -1 exists. It is follow that  $\pi$ -1  $\beta$  ∈ Hom R(P, K) such that  $\pi$   $\pi$ -1  $\beta$  =  $\beta$ . Now, if A=K, clearly, P is an YCP-K-projective.

Definition (2.3): An R-module K is referred to as fully y-closed (briefly, K is FYC-module), if each submodule of K is y-closed of K.

Example (2.4): If D is a nonsingular semi-simple R-module, then D is a fully y-closed.

Proof: Let  $A \subseteq D$ , we have  $A \subseteq \oplus D$  since D is semi-simple, we know that every direct summand is closed, thus  $A \subseteq c$  D. But D is nonsingular, hence  $A \subseteq yc$  D by [5, Proposition (2.4)].

Example (2.5):  $D = Z_6$  as  $Z_6$ -module is fully y-closed, because it is evident that D is semi-simple and nonsingular. Also, Z as Z-module is not fully y-closed.

In the following result, we demonstrate that for a fully y-closed module, the concepts of the pseudo-K-projective and YCP-K-projective are equivalents.

Proposition (2.6): Let K be an R-module. If K is a FYC-module, then the following statements are equivalent:

- 1) pseudo-K-projective module;
- 2) YCP-K-projective module.

Proof:  $(1) \Longrightarrow (2)$ . Obviously.

(2)  $\Longrightarrow$  (1). Assume that P is an YCP-K-projective. Let  $A \subseteq K$  and let  $\beta \in \text{Epi }_R(P, K/A)$ . Since K is a fully y-closed, we have  $A \subseteq \text{yc } K$ . By YCP-K-projectivity of P, there exists  $\alpha \in \text{Hom }_R(P, K)$  with  $\pi \alpha = \beta$ . Hence, P is a pseudo-K-projective.

Proposition (2.7): Let P and K be two R- modules. If ker  $(\beta) \subseteq yc$  P with any  $\beta \in Epi_R(P, K/A)$ , where A be any submodule of K, the next statements are equivalent:

- 1) P is a pseudo-K-projective;
- 2) P is an YCP-K-projective.

Proof:  $(1) \Longrightarrow (2)$ . Clear

(2)  $\Longrightarrow$  (1). Assume that P is an YCP-K-projective. Let  $\beta \in \text{Epi }_R(P, K/A)$  and let  $\pi: K \to K/A$  be the natural R-epimorphism. By the first isomorphism theorem, we have  $K/A \cong P/\ker(\beta)$ . Since  $\ker(\beta) \subseteq \text{yc } P$ , Therefore,  $P/\ker(\beta)$  is a nonsingular. Therefore, K/A is a nonsingular, hence  $A \subseteq \text{yc } K$ . thus by (1), there exists  $\alpha \in \text{Hom }_R(P, K)$  with  $\pi \alpha = \beta$ .

In the following proposition, we provide a characterization of an YCP-K-projective module. Proposition (2.8): For R-modules P and K, the next statements are equivalent:

- 1) P is an y-closed-pseudo-K-projective;
- 2) For any  $\lambda \in \text{Epi }_R(K, H)$  with ker  $(\lambda) \subseteq_{yc} K$ , where H be each R-module, each  $\beta \in \text{Epi }_R(P, H)$  there exists  $\alpha \in \text{Hom }_R(P, K)$  with  $\lambda \alpha = \beta$ .

Proof: (1)  $\Longrightarrow$  (2). Let  $\lambda \in \text{Epi }_R(K, H)$  with ker ( $\lambda$ )  $\subseteq_{yc} K$ , let  $\beta \in \text{Epi }_R(P, H)$ . By the first isomorphism theorem, we have  $H \cong K / \ker (\lambda)$ , therefore, there exists an R-isomorphism  $\phi$ :  $H \longrightarrow K / \ker (\lambda)$  defined by  $\phi$  (h) = m + ker ( $\lambda$ ) where  $\lambda$  (m) = h. Consider the illustration below:



Clearly,  $\varphi$   $\beta$  is an R-epimorphism. By (1), there exist  $\alpha \in \text{Hom }_R(P, K)$  such that  $\pi$   $\alpha = \varphi$   $\beta$ , where  $\pi$ :  $K \longrightarrow K/\ker(\lambda)$  is the neutral R-epimorphism. For any  $m \in K$ , we have  $\varphi$   $\lambda$   $(m) = \varphi$   $(\lambda (m)) = \varphi$   $(h) = m + \ker(\lambda) = \pi$  (m). So,  $\varphi$   $\lambda = \pi$ . Therefore,  $\varphi$   $\beta = \pi$   $\alpha = \varphi$   $\lambda$   $\alpha$ . Hence,  $\lambda$   $\alpha = \beta$ .  $(2) \Longrightarrow (1)$ . It is clear.

Proposition (2.9): Let P is an YCP-K- projective and  $\beta$ : K  $\rightarrow$  P be any R-epimorphism with ker ( $\beta$ )  $\subseteq$  yc K, then ker ( $\beta$ )  $\subseteq$   $\oplus$  K.

Proof: Let I<sub>P</sub> is the identity map of P. Consider the illustration below:



By Proposition 3.8, there exists  $\alpha \in \text{Hom }_R(P, K)$  such that  $\beta \alpha = I_P$ . Therefore  $\beta$  split. Hence,  $\ker(\beta) \subseteq \oplus K$ 

In [2, (5.3.2)], an R-module P is called projective if any R-epimorphism  $\beta$ : K $\rightarrow$ P split, for all R-module K. In [4, Theorem 3.2], it was proved that; P is projective iff P is pseudo-K projective, for all R-module K. The next result is generalization of Theorem 3.2 in [4]

Proposition (2.10): Let R be a ring such that any R-module is fully y-closed, the next are equivalent:

- 1) YCP-K-projective module, for all R-module K.
- 2) projective module
- 3) yc-projective module

Proof: (1)  $\Rightarrow$  (2). Assume that P is pseudo -K- yc -projective such that K be any R-module. Let  $\beta$ : K $\rightarrow$ P be any R-epimorphism. Since K is fully y-closed R-module, so ker  $(\beta) \subseteq$ yc K. Therefore by (prop 2.8) we have  $\beta$  split.

 $(2) \Longrightarrow (3) \Longrightarrow (1)$ . Clear.

The next result, we give a condition under which an YCP-K-projective is CLS-module.

Proposition (2.11): Let K be an R-module. If K/A is an YCP-K-projective module, for all y-closed submodules A of K, then K is CLS- module.

Proof: Assume that  $A \subseteq yc$  K. Let  $\pi: K \to K/A$  be the natural R-epimorphism. Hence, ker  $(\pi) = A$ . But K/A is an YCP-K-projective. Therefore, by Proposition (2.9) we get A is a direct summand of K. Hence, K is a CLS-module.

Now, we give some properties of YCP-K-projective module.

Proposition (2.12): If  $D \cong P$  and P is an YCP-K-projective, then D is an YCP-K-projective.

Proof: Let P is an YCP-K-projective and D  $\cong$  P. Let X  $\subseteq$ yc K and  $\beta \in$ Epi  $_R(D, K/X)$ . Since D  $\cong$  P, there exists an R-isomorphism  $\varphi$ : P $\longrightarrow$  D. Consider the illustration below:



It is clear that  $\lambda = \beta \ \phi \in \text{Epi }_R(P, K/X)$ . Since P is an YCP-K-projective, there exists  $\alpha \in \text{Hom }_R(P, K)$  with  $\pi \ \alpha = \lambda$ . Now, let  $\delta = \alpha \ \phi^{-1}$ , we have  $\pi \ \delta = \pi \ \alpha \ \phi^{-1} = \beta \ \phi \ \phi^{-1} = \beta$ . Hence, D is an YCP-K-projective.

Proposition (2.13): Let P be an YCP-K-projective. If A is a submodule of K, then P is an YCP-K/A-projective.

Proof: Let U/A is an y-closed submodule of K/A and  $\beta \in \text{Epi}_R(P, K/A/U/A)$ . But K/A/U/A  $\cong K/U$  by third isomorphism theorem. Therefore, there exists an R-isomorphism  $\phi: K/A/U$  /A  $\to K/U$  defined by  $\phi(k + A + U/A) = k + U$ , for all  $k \in K$ . Consider the illustration below:



Where  $\pi$ ,  $\pi_1$ ,  $\pi_2$  are the natural R-epimorphisms. Since K/A/U/A is nonsingular, K/U is also non-singular, it follows that U  $\subseteq$ yc K. Since P is an YCP-K-projective, there exists  $\lambda \in \operatorname{Hom}_R(P, K)$  such that  $\pi_1 \lambda = \varphi \beta$ . Let  $\alpha = \pi_2 \lambda$ . Then  $\varphi \beta = \pi_1 \lambda = \varphi \pi \pi_2 \lambda = \varphi \pi \alpha$ , so  $\beta = \pi \alpha$  since  $\varphi$  is an R-isomorphism. Therefore, P is an YCP-K/A-projective.

The next result gives a characterization of YCPP-module.

Proposition (2.14): Let P be a fully y-closed R-module, the next are equivalent:

- 1) P is an YCPP-module;
- 2) For submodules A, B of P and R-epimorphisms  $\delta$ : P/A  $\rightarrow$  P/B and  $\lambda$ : P  $\rightarrow$  P/B there exists  $h \in \operatorname{Hom}_R(P, P/A)$  such that  $\delta h = \lambda$ ;
- 3) For any submodule B and direct summand U of P with  $\delta \in \operatorname{Epi}_R(U, P/B)$  and  $\lambda \in \operatorname{Epi}_R(P, P/B)$  there exists  $h \in \operatorname{Hom}_R(P, U)$  with  $\delta h = \lambda$ .

Proof: (1)  $\Rightarrow$  (2). Let A, B be a submodules of P and  $\delta \in \text{Epi }_R(P / A, P / B), \lambda \in \text{Epi } R(P, P / B)$ . Consider the illustration below:



Clearly,  $\delta \pi$  is an R-epimorphism and ker  $(\delta \pi) \subseteq \text{yc } P$  since P is a fully y-closed. Therefore, by Coro. (2.9), there exists  $\alpha \in \text{End }_R(P)$  such that  $\delta \pi \alpha = \lambda$ . Now, let  $h = \pi \alpha$ , then  $h \in \text{Hom }_R(P, P/A)$  with  $\delta h = \delta \pi \alpha = \lambda$ 

(2) $\Longrightarrow$  (3). Let  $U\subseteq \oplus P$  and B be a submodule of P with  $\delta \in \operatorname{Epi}_R(U, P/B)$ ,  $\lambda \in \operatorname{Epi}_R(P, P/B)$ . Consider the illustration below:



Since  $U \subseteq \bigoplus P$ , there exists a submodule V of P such that  $U \bigoplus V = P$ . It follows that  $P/V = U + V/V \cong U$  by second isomorphism theorem. So, there exists  $\varphi \colon P/V \to U$  which is an R-isomorphism. Thus,  $\delta \varphi \in Epi_R(P/V, P/B)$ , so by (2) there exists  $\alpha \in Hom_R(P, P/V)$  with  $\delta \varphi \alpha = \lambda$ . Now, let  $h = \varphi \alpha$ . Hence,  $h \in Hom_R(P, U)$  with  $\delta h = \delta \varphi \alpha = \lambda$ . (3)  $\Longrightarrow$  (1). Clear.

Lemma (2.15): ([1], Prop. 1.25) An R- module H is directly finite iff  $\beta \lambda = I$  implies that  $\lambda \beta = I$  for each  $\beta, \lambda \in \text{End}_R(H)$ .

In the next results presented below discuss the relationships between YCPP-modules and some well-known modules such as, co-Hopfian, Hopfian and directly finite modules.

Proposition (2.16): Let P is an YCPP-module and FYC-module. Then P is a directly finite iff P is a Hopfian.

Proof: Assume that P is a directly finite. Let  $\beta$  be any R-epimorphism in End  $_R(P)$ . Since P is a FYC-module, then ker  $(\beta) \subseteq_{yc} P$ . Therefore, by Prop. (2.8) there exists  $\lambda \in \text{End }_R(P)$  with  $\beta \lambda = I$  where I is the identity map of P. But P is a directly finite, so  $\lambda \beta = I$ . Hence,  $\lambda$  is an R-automorphism. Conversely, let P be a Hopfian. Now, let  $\beta$ ,  $\lambda \in \text{End }_R(P)$  and  $\beta \lambda = I$ , we have  $\beta$  is an R-epimorphism. Hence,  $\beta$  is an R-automorphism since P is Hopfian. So  $\lambda = \beta^{-1}$ . Therefore,  $\lambda \beta = I$ .

Corollary (2.17): If P is an yc-projective and FYC-module. Then P is a directly finite iff P is a Hopfian.

Proposition (2.18):Let P be any YCPP-module and FYC-module. If P is a co-Hopfian, then it is Hopfian.

Proof: Let  $\beta$  be any R-epimorphism in End R(P) and let  $I_P: P \to P$  be an identity map on P.

By y-closed-pseudo-projectivity of P there exists  $\lambda \in \operatorname{End}_R(P)$  such that  $\beta \lambda = I_P$  which implies that  $\lambda$  is an R-monomorphism. As P is a co-Hopfian,  $\lambda$  is an R-automorphism. Thus,  $\beta = \lambda^{-1}$  is an R-automorphism on P. Hence, P is a Hopfian

Now, we give some properties of direct sum in term YCP -K-projective modules.

Theorem (2.19): Let  $D_1$  and  $D_2$  be R-modules. Then  $D_1 \oplus D_2$  is YCP-K-projective iff  $D_1$  and  $D_2$  are YCP-K-projective.

Proof: Assume that  $D_1 \oplus D_2$  is an YCP-K-projective. To show that  $D_1$  is an YCP-K-projective. Let  $X \subseteq \text{yc } K$  and let  $\beta \in \text{Epi}_R(D_1, K/X)$ . Consider the illustration below:



Where  $P_1$  is the projection map and i is an inclusion map. Clearly,  $\beta$   $P_1 \in Epi$   $_R(D_1 \oplus D_2)$ , K/X). Since  $D_1 \oplus D_2$  is an YCP-K-projective, there exists  $\alpha \in Hom$   $_R(D_1 \oplus D_2)$ , K such that  $\pi$   $\alpha = \beta$   $P_1$ . Now, let  $C_1 = \alpha$  i. It follows that  $C_2 = \alpha$  is an YCP-K-projective. Similarly, we can show that  $C_2 = \alpha$  is an YCP-K-projective. Conversely, suppose that  $C_2 = \alpha$  are YCP-K-projective modules. Let  $C_2 = \alpha$  is an XCP-K-projective.  $C_3 = \alpha$  is an XCP-K-projective. Conversely, suppose that  $C_3 = \alpha$  is an XCP-K-projective modules. Let  $C_3 = \alpha$  is an XCP-K-projective. Conversely, suppose that  $C_3 = \alpha$  is an XCP-K-projective modules. Let  $C_3 = \alpha$  is an XCP-K-y-projective modules.



Since  $D_j$  is an YCP-K-projective, it follows that  $\pi$   $h_j = \lambda \mid_{D_j}$  for some  $h_j \in \text{Hom }_R(D_j, K)$ . Now, let  $h = h_i P_j$ . Hence,  $h \in \text{Hom }_R(D_1 \oplus D_2, K)$  with  $\pi$   $h = \pi$   $h_i P_j = \lambda \mid_{D_i} P_j = \lambda$ .

Corollary (2.20): Any direct summand of YCP-K-projective module is an YCP-K projective.

Proposition (2.21): Let  $P = P_1 \oplus P_2$  be an R-module. If  $P_2$  is an YCP- $P_1$ -projective, then for each y-closed submodule A of P with  $P = P_1 + A$ , there exists a submodule X of A such that  $P = P_1 \oplus X$ .



In [2, Coro. (8.2.2)], was proved that; any R-module be projective iff each R-module be injective iff R be semi-simple iff any simple R-module is projective. The next theorem gives characterization of semisimple ring in terms of YCP-K-projective.

Proposition (2.22): Let R be a ring, then for all R-module K the next statement are equivalent

- 1) Any YCP-K-projective is K-projective.
- 2) The direct sum of each family of YCP-K-projective is a K-projective
- 3) The direct sum of each two YCP-K-projective is a K-projective
- 4) R is semisimple

Proof: 1)  $\Rightarrow$  2) By Theorem. (2.19). (2)  $\Rightarrow$  (3) clear.

(3) $\Rightarrow$  (4) let D is simple R-module, thus by remark 2.2, (4) we get D is YCP-K-projective. It follows that D $\oplus$ D is projective by (3). Therefore, D is a projective by [1, Proposition (4.32)]. Hence, R is semi-simple by [2, Coro. (8.2.2)].

 $(4) \Longrightarrow (1)$  since any R-module is projective, then (1) hold.

## 3. Conclusion

Through this paper, we reached the following conclusions: Any pseudo-K-projective module is an YCP-K-projective, we give an example of an YCP-K-projective which is no pseudo-K-injective. Also, we have given the sufficient condition for equivalence; YCP-K-projective and pseudo-K-projective, K-projective. And the direct sum of YCP-K-projective is an YCP-K-projective is an YCP-K-projective.

### 4. Acknowledgement

Authors would like to thank Mustansiriyah University (<u>www.uomustansiriyah.edu.iq</u>) Baghdad- Iraq for its support in the present work.

## 5. References

- [1] S. H. Mohamed and B. J. Müller, "Continuous and discrete modules," Cambridge University Press, 1990.
- [2] F. Kasch, "Modules And Rings," Acad. Press INC, London, 1982.
- [3] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, "Lifting modules: supplements and projectivity in module theory," Springer Science & Business Media, 2006
- [4] Y. Talebi and I. K. Gorji, "On Pseudo-Projective and Pseudo-Small-Projective Modules," International Journal of Algebra, vol.10, no.2, pp. 463–468, 2008
- [5] K. R. Goodearl, "*Ring Theory: Non-Singular Rings And Modules*," Marcel Dekker, INC. New York and Basel, 1976.
- [6] L. H. Sahib and B. H. AL-Bahraany, "ON CLS- MODULES," Iraqi Journal of science, vol. 54, no. 1, pp. 195–200, 2013.
- [7] B.H. Al-Bahrani, "*Projectivity on y-closed Submodules*," Iraqi Journal of science, vol. 54, no.4, pp. 926–922, 2013
- [8] V.A. Hiremath, "*Hopfian rings and hopfian modules*," Indian J.Pure appl.Math.17(7): 895 900, 1986
- [9] H. S. Lamyaa, "*Extending, Injectivity and chain condition on Y-closed submodules*," M.SC, University of Baghdad, Baghdad, 2012.
- [10] A.A. Ahmed and Mahdi Saleh Nayef, "Pseudo -y- closed Injective Modules," Iraqi Journal of science, vol. 65, no.5, 2023