Mustansiriyah Journal of Pure and Applied Sciences

www.MJPAS.com

y-Closed-Pseudo-Projective Modules

A. A. Arabi^{1,*}, M. S. Nayef²

 $1,2$ Department of Mathematics, College of Education, Mustansiriyah University, Iraq [\(aklhlkm1669@gmail.com](mailto:aklhlkm1669@gmail.com1*)^{1*}, mahdisaleh773@uomustansiriyah.edu.iq)

A B S T R A C T

 In this work, we present new concept which is y-closed-pseudo-projective module (briefly, YCPprojective module). This work which is generalization of pseudo-projective modules. We have provided some characteristics and descriptions of those concepts. Semi-simple modules have been characterized in terms of YCP- projective modules. We have shown the relationships of YCPprojective with other concepts, including a Co-Hopfian, directly finite modules.

Keywords: Y-closed-pseudo-projective*,* Y-closed submodule, YCP-K-projective module, YCPPmodule, Co-Hopfian.

1. Introduction

Throughout this work, R is a ring with identity, and each R-module is a unitary right Rmodule, A \subseteq P denotes A is a submodule of an R-module P, Hom $_R(P,K)$ (Epi $_R(P,K)$) denotes all an R-homomorphism (R-epimorphism) from P to R- module K over ring R. Let P and K be R-modules. P is referred to as (pseudo)-K-projective if for any $\gamma \in$ Hom _R(P, K/B) (Epi _R(P, K/B)) where B \subseteq K there exists $\delta \in$ Hom _R(P,K) with $\pi \delta = \gamma$, where $\pi:K \rightarrow K \rightarrow B$ be the natural R-epimorphism. An R-module K is a quasiprojective, if K is a K-projective. Also, P is a projective if it is K-projective for all R-module K. (see $[1-4]$).

A submodule B of an R-module K is said to be closed in K (briefly, $B \subseteq c K$) if B has no proper essential extension inside K. The submodule Z (B) of K define as $Z(B) = \{b \in B:$ ann (b) ⊆e R} is called singular of K. If Z (K) =K (Z (K) = 0), then K is a singular (nonsingular). For a submodule B is said to be y-closed (briefly, $B \subseteq_{\text{yc}} K$) if K/B be a

[1] Ranjita

*

A.A. Ahmed and Mahdi Saleh Nayef in [10], presented the concept of pseudo -y- closed injective modules. Also, B. H. Al-Bahrani in [7], introduces the concept of y-closedprojectivity. Let P, K be R- modules. An R-module P is referred to as K-y-closed-projective (briefly, P is K-yc-projective), if for every $\beta \in$ Hom $_R(P, K \mid B)$, where B \subseteq yc K, $\exists \alpha \in$

Hom _R(P, K) with $\pi \alpha = \beta$ with π be the natural R-epimorphism. An R-module P is ycprojective if P is a K-yc-projective, for any R-module K.

An R-module K is said to be directly finite if it is not isomorphic to a proper direct summand of K. For an R-module K is a co-Hopfian (Hopfian) if any monomorphism (epimorphism) in End $_R(K)$ is an automorphism, see [8]. An R-module P is said to have D_2 , if for each submodule B of P where $P / B \cong X$ with $X \subseteq \oplus P$, then $B \subseteq \oplus P$, see [1].

2. y-closed-Pseudo-Projective Modules.

We will present the concept of an YCP-K-projective module. This concept is a generalization of a pseudo-projective module.

Definition (2.1): Let K be an R-module. An R-module P is called y-closed-pseudo-Kprojective (briefly P is YCP-K-projective) if for any y-closed submodule A of K and any β∈ Epi R(P, K/A), there exists $\alpha \in$ Hom R(P, K) such that $\pi \alpha = \beta$. Where π be the natural R-epimorphism, i.e., the following diagram:

is commute.

Also, an R- module H is called YCPP-module, if H is an YCP-H-projective. Two modules H and D are said to be mutually YCP-projective if H is an YCP-D-projective, D is an YCP-Hprojective

Examples and Remarks (2.2):

1) Every singular R-module is YCP-K-projective, for any R-module K.

Proof: Let P be a singular R-module. Let $A \subseteq_{yc} K$ and $\beta \in Epi_R(P, K/A)$. Since K/A is a nonsingular, by [5, Proposition (1.20), p.31] we have $\beta = 0$. Therefore, there exists $0 = \alpha \in$ Hom $_{R}(P, K)$ with $\pi \alpha = \beta$, where π is the natural R-epimorphism

2) Every pseudo-K-projective module is an YCP-K-projective. The opposite is not true.

Proof: A Z-module $P = Z/4Z$ be an YCP-K-projective, since P is singular. Now it require to show that P is not pseudo-Z-projective. Suppose that P is pseudo-Z-projective. Let β: P→P, be defined by β (a + 4Z) = a + 4Z, where a \in Z, easily seen that β is a Zepimorphism. Consider the illustration below**:**

There exist $\alpha \in$ Hom Z (P, Z) such that $\pi \alpha$ (n) = β (n), $n \in$ P. But Hom Z (P, Z) = 0 by [5, Proposition (1.20), p.31]. It is follows that for all $a \in Z$, β ($a + 4Z$) = 4Z, which is a contradiction. So, P is not pseudo-Z-projective.

- 3) Clearly, any K-yc-projective module which is an YCP-K-projective, we know that any K-projective is K-yc-projective. Hence, any K-projective module is an YCP-Kprojective.
- 4) Any simple R-module is YCP-K-projective.

Proof: Let P be a simple R-module, K be any R-module. By [5, Proposition (1.24)], P is singular or projective. Now, if P is singular, thus by (1) it is YCP-K-projective. If P is projective, then by (3) it is YCP-K-projective as well.

5) For an R-module K is simple y-closed R- module, if (0) and K are only y-closed submodule of K. Consider the module Z_2 as Z-module, clear that it is simple, but Z_2 is singular, thus by [9] we get Z_2 is only y-closed submodule of Z_2 . Hence, Z_2 is not simple y-closed Z-module. We know that Z as Z-module is not simple, Z and (0) be only yclosed submodules of Z see [9], therefore, Z is simple y-closed Z -module. This means there are no relationship between simple R-module and simple y-closed R-module.

6) For simple y-closed R- module K, each R- module P is an YCP-K-projective.

Proof: Assume that P be an R-module. Let $\beta \in$ Epi _R(P, K/A) with A \subseteq yc K. Consider the illustration below**:**

Since K is a simple R-module we have A=0 or A=K. If A=0, since ker (π) =A, therefore, π is an R-isomorphism. So, π -1 exists. It is follow that π -1 $\beta \in$ Hom R(P, K) such that $\pi \pi$ -1 β $= \beta$. Now, if A=K, clearly, P is an YCP-K-projective.

Definition (2.3): An R-module K is referred to as fully y-closed (briefly, K is FYC-module), if each submodule of K is y-closed of K.

Example (2.4): If D is a nonsingular semi-simple R-module, then D is a fully y-closed.

Proof: Let $A \subseteq D$, we have $A \subseteq \oplus D$ since D is semi-simple, we know that every direct summand is closed, thus A \subseteq c D. But D is nonsingular, hence A \subseteq yc D by [5, Proposition (2.4)].

Example (2.5): $D = Z_6$ as Z_6 -module is fully y-closed, because it is evident that D is semisimple and nonsingular. Also, Z as Z-module is not fully y-closed.

In the following result, we demonstrate that for a fully y-closed module, the concepts of the pseudo-K-projective and YCP-K-projective are equivalents.

Proposition (2.6): Let K be an R-module. If K is a FYC-module, then the following statements are equivalent:

1) pseudo-K-projective module;

2) YCP-K-projective module.

Proof: $(1) \implies (2)$. Obviously.

(2) \Rightarrow (1). Assume that P is an YCP-K-projective. Let A \subseteq K and let $\beta \in$ Epi _R(P, K /A). Since K is a fully y-closed, we have A \subseteq yc K. By YCP-K-projectivity of P, there exists $\alpha \in$ Hom $_{R}(P, K)$ with $\pi \alpha = \beta$. Hence, P is a pseudo-K-projective.

Proposition (2.7): Let P and K be two R- modules. If ker (β) \subseteq yc P with any β \in Epi $_{R}(P, K/A)$, where A be any submodule of K, the next statements are equivalent:

- 1) P is a pseudo-K-projective;
- 2) P is an YCP-K-projective.

Proof: $(1) \implies (2)$. Clear

(2) \Rightarrow (1). Assume that P is an YCP-K-projective. Let β ∈Epi _R(P, K/A) and let $\pi: K \rightarrow K/A$ be the natural R-epimorphism. By the first isomorphism theorem, we have $K/A \cong P/\text{ker }(\beta)$. Since ker (β) \subseteq yc P, Therefore, P/ker (β) is a nonsingular. Therefore, K/A is a nonsingular, hence A \subseteq vc K, thus by (1), there exists $\alpha \in$ Hom $_{\mathbb{R}}(P, K)$ with $\pi \alpha = \beta$.

In the following proposition, we provide a characterization of an YCP-K-projective module. Proposition (2.8): For R-modules P and K, the next statements are equivalent:

1) P is an y-closed-pseudo-K-projective;

2) For any $\lambda \in$ Epi _R(K, H) with ker (λ) \subseteq yc K, where H be each R-module, each β∈ Epi _R(P, H) there exists $\alpha \in$ Hom _R(P, K) with $\lambda \alpha = \beta$.

Proof: (1) \Rightarrow (2). Let $\lambda \in$ Epi _R(K, H) with ker (λ) \subseteq yc K, let $\beta \in$ Epi _R(P, H). By the first isomorphism theorem, we have $H \cong K/ker (\lambda)$, therefore, there exists an R-isomorphism φ : H \rightarrow K/ ker (λ) defined by φ (h) = m + ker (λ) where λ (m) = h. Consider the illustration below:

Clearly, φ β is an R-epimorphism. By (1), there exist $\alpha \in$ Hom $_{R}(P, K)$ such that $\pi \alpha = \varphi \beta$, where $\pi: K \rightarrow K/k$ er (λ) is the neutral R-epimorphism. For any $m \in K$, we have $\varphi \lambda$ (m) = φ $(\lambda(m)) = \varphi(h) = m + \ker(\lambda) = \pi(m)$. So, $\varphi \lambda = \pi$. Therefore, $\varphi \beta = \pi \alpha = \varphi \lambda \alpha$. Hence, $\lambda \alpha = \beta$. $(2) \implies (1)$. It is clear.

Proposition (2.9): Let P is an YCP-K- projective and $\beta: K \rightarrow P$ be any R-epimorphism with ker (β) \subseteq yc K, then ker (β) \subseteq ⊕ K.

Proof: Let I_P is the identity map of P. Consider the illustration below:

By Proposition 3.8, there exists $\alpha \in$ Hom $_R(P, K)$ such that $\beta \alpha = I_P$. Therefore β split. Hence, ker $(\beta) \subseteq \oplus K$

In [2, (5.3.2)], an R-module P is called projective if any R-epimorphism β: K→P split, for all R-module K. In [4, Theorem 3.2], it was proved that; P is projective iff P is pseudo-K projective, for all R-module K. The next result is generalization of Theorem 3.2 in [4]

Proposition (2.10): Let R be a ring such that any R-module is fully y-closed, the next are equivalent:

- 1) YCP-K-projective module, for all R-module K.
- 2) projective module
- 3) yc-projective module

Proof: (1) \Rightarrow (2). Assume that P is pseudo -K- yc -projective such that K be any Rmodule. Let β : K \rightarrow P be any R-epimorphism. Since K is fully y-closed R-module, so ker (β) ⊆yc K. Therefore by (prop 2.8) we have β split.

 $(2) \implies (3) \implies (1)$. Clear.

The next result, we give a condition under which an YCP-K-projective is CLS-module.

Proposition (2.11): Let K be an R-module. If K∕A is an YCP-K-projective module, for all y-closed submodules A of K, then K is CLS- module.

Proof: Assume that A $\subseteq_{\text{yc}} K$. Let $\pi: K \rightarrow K/A$ be the natural R-epimorphism. Hence, ker (π) = A. But K/A is an YCP-K-projective. Therefore, by Proposition (2.9) we get A is a direct summand of K. Hence, K is a CLS-module.

Now, we give some properties of YCP-K-projective module.

Proposition (2.12): If $D \cong P$ and P is an YCP-K-projective, then D is an YCP-K-projective.

Proof: Let P is an YCP-K-projective and D ≅ P. Let X ⊆_{yc} K and β ∈Epi _R(D, K/X). Since $D \cong P$, there exists an R-isomorphism $\varphi: P \to D$. Consider the illustration below:

It is clear that $\lambda = \beta \varphi \in \text{Epi}_R(P, K/X)$. Since P is an YCP-K-projective, there exists $\alpha \in$ Hom _R(P, K) with $\pi \alpha = \lambda$. Now, let $\delta = \alpha \varphi^{-1}$, we have $\pi \delta = \pi \alpha \varphi^{-1} = \beta \varphi \varphi^{-1} = \beta$. Hence, D is an YCP-K-projective.

Proposition (2.13) : Let P be an YCP-K-projective. If A is a submodule of K, then P is an YCP-K∕A-projective.

Proof: Let U/A is an y-closed submodule of K⁄A and β∈ Epi _R(P, K/A/ U/A). But K/A/ U/A ≅ K ⁄ U by third isomorphism theorem. Therefore, there exists an R-isomorphism φ: K **∕**A⁄U \overline{A} \rightarrow K \overline{C} U defined by φ (k +A + U \overline{A}) = k + U, for all k \in K. Consider the illustration below:

Where π , π_1 , π_2 are the natural R-epimorphisms. Since K **/**A**/** U /**A** is nonsingular, K **/** U is also non-singular, it follows that $U \subseteq$ yc K. Since P is an YCP-K-projective, there exists $\lambda \in$ Hom _R(P, K) such that $\pi_1 \lambda = \varphi \beta$. Let $\alpha = \pi_2 \lambda$. Then $\varphi \beta = \pi_1 \lambda = \varphi \pi \pi_2 \lambda = \varphi \pi \alpha$, so $β = π α$ since φ is an R-isomorphism. Therefore, P is an YCP-K/A-projective.

The next result gives a cհaracterization of YCPP-module.

Proposition (2.14): Let P be a fully y-closed R-module, the next are equivalent:

- 1) P is an YCPP-module;
- 2) For submodules A, B of P and R-epimorphisms δ : P/A \rightarrow P/B and λ : P \rightarrow P/B there exists h \in Hom _R(P, P/A) such that δ h = λ ;
- 3) For any submodule B and direct summand U of P with $\delta \in$ Epi _R(U, P/B) and $\lambda \in$ Epi_R(P, P/B) there exists h \in Hom _R(P, U) with δ h = λ .

Proof: (1) \Rightarrow (2). Let A, B be a submodules of P and $\delta \in$ Epi _R(P /A, P/ B), $\lambda \in$ Epi R(P, P⁄ B). Consider the illustration below:

Clearly, $\delta \pi$ is an R-epimorphism and ker $(\delta \pi) \subseteq$ yc P since P is a fully y-closed. Therefore, by Coro. (2.9), there exists $\alpha \in$ End $_R(P)$ such that $\delta \pi \alpha = \lambda$. Now, let $h = \pi \alpha$, then $h \in$ Hom $_{\rm R}$ (P, P/A) with δ h = $\delta \pi \alpha = \lambda$

(2) \Rightarrow (3). Let U⊆⊕ P and B be a submodule of P with $\delta \in$ Epi _R(U, P/B), $\lambda \in$ Epi _R(P, P/ B). Consider the illustration below:

Since U $\subseteq \bigoplus P$, there exists a submodule V of P such that U $\bigoplus V = P$. It follows that P/V = $U + V/V \cong U$ by second isomorphism theorem. So, there exists $\varphi: P/V \to U$ which is an R-isomorphism. Thus, $\delta \varphi \in \text{Epi}_R(P/V, P/B)$, so by (2) there exists $\alpha \in \text{Hom}_R(P, P/V)$ with $\delta \varphi \alpha = \lambda$. Now, let h = $\varphi \alpha$. Hence, h \in Hom _R(P, U) with $\delta h = \delta \varphi \alpha = \lambda$. $(3) \implies (1)$. Clear.

Lemma (2.15): ([1], Prop. 1.25) An R- module H is directly finite iff $\beta \lambda = I$ implies that $\lambda \beta$ = I for each β , $\lambda \in$ End _R(H).

In the next results presented below discuss the relationships between YCPP-modules and some well-known modules such as, co-Hopfian, Hopfian and directly finite modules.

Proposition (2.16): Let P is an YCPP-module and FYC-module. Then P is a directly finite iff P is a Hopfian.

Proof: Assume that P is a directly finite. Let β be any R-epimorphism in End _R(P). Since P is a FYC-module, then ker (β) \subseteq yc P. Therefore, by Prop. (2.8) there exists $\lambda \in$ End _R(P) with β λ=I where I is the identity map of P. But P is a directly finite, so $\lambda \beta = I$. Hence, λ is an R-automorphism. Conversely, let P be a Hopfian. Now, let β , $\lambda \in$ End $_R(P)$ and $\beta \lambda = I$, we have β is an R-epimorphism. Hence, β is an R-automorphism since P is Hopfian. So λ = β ⁻¹. Therefore, λ β=I.

Corollary (2.17): If P is an yc-projective and FYC-module. Then P is a directly finite iff P is a Hopfian.

Proposition (2.18):Let P be any YCPP-module and FYC-module. If P is a co-Hopfian, then it is Hopfian.

Proof: Let β be any R-epimorphism in End _R(P) and let I_P : P \rightarrow P be an identity map on P.

By y-closed-pseudo-projectivity of P there exists $\lambda \in$ End _R(P) such that β $\lambda = I_P$ which implies that λ is an R-monomorphism. As P is a co-Hopfian, λ is an R-automorphism. Thus, $\beta = \lambda^{-1}$ is an R-automorphism on P. Hence, P is a Hopfian

Now, we give some properties of direct sum in term YCP -K-projective modules.

Theorem (2.19): Let D_1 and D_2 be R-modules. Then $D_1 \oplus D_2$ is YCP-K-projective iff D_1 and D_2 are YCP-K-projective.

Proof: Assume that $D_1 \oplus D_2$ is an YCP-K-projective. To show that D_1 is an YCP-Kprojective. Let $X \subseteq_{yc} K$ and let $\beta \in \text{Epi}_R(D_1, K/X)$. Consider the illustration below:

Where P₁ is the projection map and i is an inclusion map. Clearly, $\beta P_1 \in Epi_R(D_1 \oplus D_2)$, K/X). Since $D_1 \oplus D_2$ is an YCP-K-projective, there exists $\alpha \in$ Hom $_R(D_1 \oplus D_2, K)$ such that $\pi \alpha = \beta P_1$. Now, let $h = \alpha i$. It follows that $\pi h = \pi \alpha i = \beta P_1 i = \beta I = \beta$. Therefore, D_1 is an YCP-K-projective. Similarly, we can show that D_2 is an YCP-K-projective. Conversely, suppose that D_1 and D_2 are YCP-K-projective modules. Let $\lambda \in$ Epi _R(D₁⊕D₂, K/X) with X ⊆yc K. Therefore, $\lambda \mid_{D_i}: D_i \rightarrow K/X$, is an R-epimorphism, where j = 1, 2. Consider the illustration below:

Since D_j is an YCP-K-projective, it follows that $\pi h_j = \lambda \vert_{D_j}$ for some $h_j \in Hom_R(D_j, K)$. Now, let $h = h_j P_j$. Hence, $h \in \text{Hom}_R(D_1 \oplus D_2, K)$ with $\pi h = \pi h_j P_j = \lambda \big|_{D_j} P_j = \lambda$.

Corollary (2.20): Any direct summand of YCP-K-projective module is an YCP-K projective.

Proposition (2.21): Let $P = P_1 \oplus P_2$ be an R-module. If P_2 is an YCP-P₁-projective, then for each y-closed submodule A of P with $P = P_1 + A$, there exists a submodule X of A such that $P = P_1 \oplus X$.

Proof: Assume that P₂ is an YCP-P₁- projective. Let A \subseteq yc P such that P= P₁ + A. If n₂ \in P₂ then $n_2 = n_1 + a$, where $n_1 \in P_1$, $a \in A$. Let $\varphi: P_2 \to P_1/P_1 \cap A$ be a map defined by φ $(n_2) = \varphi$ $(n_1 + a) = n_1 + P_1 \cap A$. To show that φ is well defined. If $n_2 = n_2^*$ in P_2 then $n_2 = n_1 + a$ and $n_2^* = n_1^* + a^*$, for some $n_1, n_1^* \in P_1$ and $a, a^* \in A$. Then $n_1 - n_1^* = a^* - a \in A$ P₁ $\bigcap A$. So, φ (n₂) = φ (n₂^{*}). Clearly φ is an R- epimorphism. By the second isomorphism theorem P_1 / $P_1 \cap A \cong P_1 + A$ / $A = P/A$. So, exists λ : $P_1/P_1 \cap A \longrightarrow P/A$ is an Risomorphism defined as follows λ (n₁+ P₁ \cap A) = n₁+A, for all n₁ \in P₁. Consider the illustration below:

Where π_1 and π are the natural epimorphisms and i_1 and i_2 are the inclusion maps. Since P⁄A is a nonsingular and P/A \cong P₁/P₁ \cap A, we have P₁/P₁ \cap A is a nonsingular, it follows that $P_1 \cap A \subseteq_{yc} P_1$. Since P_2 is an YCP- P_1 -projective, there exist $h \in Hom_R(P_1, P_2)$ such that π_1 h= φ. Now, let X= (j₁ h - j₂) (P₂), to show that $X \subseteq A$. Let $x \in X$, $x=(i_1 \ h - i_2)$ (n₂) where $n_2 \in P_2$ So, $x + A = (j_1 h - j_2)(n_2) + A = \pi ((j_1 h - j_2)(n_2)) = \pi j_1 h (n_2) - \pi j_2(n_2) = \lambda$ π_1 h(n₂) - π j₂(n₂) = λ φ (n₂) - π j₂(n₂) = λ (n₁ + P₁ \cap A) - π (n₂) = n₁ + A - (n₂ + A) = n₁ - n₂ $+ A = -a + A = A$, hence $x \in A$ and so $X \subseteq A$. Clearly, $P = P_1 + P_2 = P_1 + X$. Now, let $y \in A$ $P_1 \cap X$ we get y = (j₁ h - j₂) (n₂) = j₁ h (n₂) - j₂ (n₂). So, y = h (n₂) - n₂. Thus n₂ = h (n₂) - y $\in P_1 \cap P_2 = 0$ we have y = 0. Hence, P = $P_1 \oplus X$.

In [2, Coro. (8.2.2)], was proved that; any R-module be projective iff each R-module be injective iff R be semi-simple iff any simple R-module is projective. The next theorem gives cհaracterization of semisimple ring in terms of YCP-K-projective.

Proposition (2.22): Let R be a ring, then for all R-module K the next statement are equivalent

- 1) Any YCP-K-projective is K-projective.
- 2) The direct sum of each family of YCP-K-projective is a K-projective
- 3) The direct sum of each two YCP-K-projective is a K-projective
- 4) R is semisimple

Proof: 1) \Rightarrow 2) By Theorem. (2.19). (2) \Rightarrow (3) clear.

 $(3) \implies (4)$ let D is simple R-module, thus by remark 2.2, (4) we get D is YCP-K-projective. It follows that $D \oplus D$ is projective by (3). Therefore, D is a projective by [1, Proposition (4.32)]. Hence, R is semi-simple by [2, Coro. (8.2.2)].

 $(4) \implies (1)$ since any R-module is projective, then (1) hold.

3. Conclusion

Through this paper, we reached the following conclusions: Any pseudo-K-projective module is an YCP-K-projective, we give an example of an YCP-K-projective which is no pseudo-K-injective. Also, we have given the sufficient condition for equivalence; YCP-Kprojective and pseudo-K-projective, K-projective. And the direct sum of YCP-K-projective is an YCP-K-projective. And any direct summand of YCP-K-projective is an YCP-Kprojective.

4. Acknowledgement

 Authors would like to thank Mustansiriyah University [\(www.uomustansiriyah.edu.iq\)](http://www.uomustansiriyah.edu.iq/) Baghdad- Iraq for its support in the present work.

5. References

- [1] S. H. Mohamed and B. J. Müller, "**Continuous and discrete modules**," Cambridge University Press, 1990.
- [2] F. Kasch, *Modules And Rings*," Acad. Press INC, London, 1982.
- [3] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting modules: supplements and projectivity in module theory*," Springer Science & Business Media, 2006
- [4] Y. Talebi and I. K. Gorji, "On Pseudo-Projective and Pseudo-Small-Projective Modules," International Journal of Algebra, vol.10, no.2, pp. 463⎼468, 2008
- [5] K. R. Goodearl, "*Ring Theory: Non-Singular Rings And Modules*," Marcel Dekker, INC. New York and Basel, 1976.
- [6] L. H. Sahib and B. H. AL-Bahraany, "ON CLS- MODULES," Iraqi Journal of science, vol. 54, no. 1, pp. 195–200, 2013.
- [7] B.H. Al-Bahrani, *Projectivity on y-closed Submodules*," Iraqi Journal of science, vol. 54, no.4, pp. 926⎼922, 2013
- [8] V.A. Hiremath, *Hopfian rings and hopfian modules*," Indian J.Pure appl.Math.17(7): 895 - 900, 1986
- [9] H. S. Lamyaa, *Extending, Injectivity and chain condition on Y-closed submodules*," M.SC, University of Baghdad, Baghdad, 2012.
- [10] A.A. Ahmed and Mahdi Saleh Nayef , "*Pseudo -y- closed - Injective Modules*," Iraqi Journal of science, vol. 65, no.5, 2023