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Abstract— unlike continuously triggered techniques, event-triggered strategies update 

the control actions based on specific conditions. Consequently, the energy consumption 

will be reduced while maintaining performance and stability. Compared to the traditional 

(periodic) implementation of SMC, event-triggered sliding mode controller (ET-SMC) 

requires 101 control action modifications, 33.9 % less than periodic SMC 

implementation. The proposed triggering rule technique is shown to be feasible and 

closed-loop stable. A positive lower bound for inter-event execution time prevents Zeno-

type behavior. The mathematical model of a linear time invariant system which is chosen 

to be a Direct Current servo motor (DC servo motor) is simulated to show the advantages 

of the recommended technique over conventional sliding mode technique. The Direct 

Current servo motor (DC servo motor) is chosen as the mathematical model of a linear 

time invariant system which simulated to show the advantages of the recommended 

technique over conventional sliding mode technique. 

Index Terms— Event control, Triggered control, Sliding mode, Event triggered control, 

Aperiodic control, DC servo motor. 

I. INTRODUCTION 

Due to their widespread applications in nearly all domains, computer-controlled systems have 

become an indispensable topic of study in contemporary control theory. Several design methods for 

investigating the stability of computer-controlled systems have been proposed in the literature [1], [2]. 

Due to its ease of conception and application, the sample-and-hold method is the most popular and 

prevalent one of these techniques.  Though, this process results in additional workload for the hardware 

of the systems (namely processors) and wasteful use of energy. Mainly in network-based control 

systems, where unnecessary frequent assessments are performed with periodic triggered control. Event-

Triggered (ET) control, introduced in this article, is an innovative sampling approach in which the 

control action is updated on request only. In this technique, the trigger policy that ensures the system's 

stability also determines the intervals between control signal updates. Thus, the system's stability is 

maintained while unnecessary control action updates is minimized. The concept of event-based control 

design is originally described in [3], with subsequent in-depth discussions taking place in [4]-[9]. More 

recent developments and practical uses of event-triggered control are discussed in [10]-[12]. In recent 

years, (ET) method has been devised in the literature to account for knowledge of the plant's nominal 

model. This has resulted in the Model-Based ET Control (MB-ETC), which has been implemented 

alongside the SMC [13]-[15]. This strategy has been successfully combined with SMC, to produce a 

control strategy that guarantee satisfactory and robust performance for the controlled system against 

system perturbation [16]-[18]. In SMC structure, there are two stages (phases) of operation: the reaching 

stage and the sliding stage [19]-[21]. During the reaching stage, the system states' trajectories are driven 

https://doi.org/10.33103/uot.ijccce.24.2.2
mailto:160115@uotechnology.edu.iq
mailto:2safanah.m.raafat@uotechnology.edu.iq


 18 

Received 05/September/2023; Accepted 05/November/2023 

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 24, No. 2, June 2024             

DOI: https://doi.org/10.33103/uot.ijccce.24.2.2 

 

to the sliding surface then the states move toward the origin asymptotically [22]-[24]. The need for 

adaptation in dealing with modeling perturbation that may influence the system in an unavoidable 

manner, necessitates the employment of SMC that is associated with ET technique [25]. We present an 

SMC that is based on event-triggering technique which employs only aperiodic measurements. The 

method's primary advantage is to eliminates the need for continuous assessment of control action while 

maintain a positive lower constraint on the inter-event time. In addition, the aperiodic ET-SMC ensures 

system’s reliable operation under any specified steady-state constraint. In this method, the SMC and the 

trigger rule are constructed concurrently to ensure the stability of an ET system while implementing 

event trigger limitations. In this paper, we develop traditional SMC first in order to be able to show the 

superiority of the proposed ET-SMC. The same linear system mathematical model is used for both 

controllers. The system stability with the application of ET-SMC is investigated extensively. Using the 

suggested triggering mechanism, we demonstrate the sufficient condition for aperiodic ET-SMC that 

guarantee closed loop system stability. The following points summarize the principal contributions of 

this study. 

1. Develop a sliding mode controller activated by events, where the sliding manifold's upper and 

lower bounds can be modified by changing the controller's settings.  

2. For a certain type of linear systems, a triggering rule is developed to guarantee that the trajectory 

of the system state is always contained inside the enclosed region of the sliding surface 

(manifold). 

3. Suitable condition is developed and maintained to avoid the building up of trigger events. 

The remaining parts of this paper are organized as follows: In Section II, the problem formulation and 

a general overview of the SMC layout is presented. The theoretical background of integrating event 

trigger approach with SMC is covered in Section III. The stability analysis of the closed-loop system 

and the impact of using an event-triggering mechanism is given in Section IV. The mathematical model 

of the LTI system is given is in Section V. All the results obtained from applying the theory described 

in this paper is presented in Section VI this includes both traditional SMC and event-triggered SMC. 

Finally, the main significant outcomes of this paper is outlined in Section VII. 

II. PRELIMINARIES AND PROBLEM FORMULATION 

In order to simplify our explanation of the sliding mode system and to offer brief knowledge about 

event-triggered control, we will consider the following model of the LTI system: 

�̇� = 𝐴𝑥 + 𝐵(𝑢 + 𝑑)                                                   (1)     

where, 𝑥 ∈ 𝑅𝑛 are the states of the system, 𝑢 ∈ 𝑅 is the scalar control input,  𝐴, and 𝐵 are the system 

dynamics matrices with suitable dimensions, and 𝑑 is the matched system model uncertainty. The paper 

operates under the premise of the following perturbation conditions:    

Assumption 1.  the disturbance 𝑑(𝑡) has a finite upper bound, this implies that there exists 𝑑𝑜 such that 

𝑠𝑢𝑝𝑡≥0| 𝑑(𝑡) ≤ 𝑑𝑜 

Assumption 2. The original system is in regular form. 

First, for the classical SMC design, the sliding variable is given as follows [19]: 

𝑠(𝑥) = 𝜆𝑇𝑥                                                        (2) 

where, 𝜆 ∈ 𝑅𝑛 are the sliding variable parameters with 𝜆 = 1. Then the sliding manifold can be 

described as follows [19] 

𝑆 = {𝑥: 𝑠(𝑥) = 𝜆𝑇𝑥 = 0                                    (3) 

The goal is to guarantee, in finite time, that the system given in Eq. (1) always operates within the 

sliding mode. The sliding motion will be introduced to the system by designing suitable control policies. 

This can be obtained by differentiating 𝑠(𝑥)  with respect to time:   

�̇� = 𝜆𝑇  𝐴𝑥 +  𝜆𝑇  𝐵𝑢 +  𝜆𝑇  𝐵𝑑                                   (4) 
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Sliding mode can be produced using the following control law [19]: 

 𝑢 = (𝜆𝑇𝐵)−1(𝜆𝑇𝐴𝑥 + 𝐾 𝑠𝑖𝑔𝑛 (𝑠))                                     (5) 

where K > 𝑠𝑢𝑝𝑡≥0|𝜆𝑇𝐵𝑑| and provided that 𝜆𝑇𝐵 ≠ 0 

Substituting Eq. (5) in Eq. (4) to obtain the following:   

�̇�= − 𝐾𝑠𝑖𝑔𝑛 (𝑠) +𝜆𝑇Bd                                                         (6)  

For the system's trajectory to reach the sliding manifold, the following requirements must be valid: 

𝑠�̇�  ≤  −η |s| , η >  0                                                            (7) 

where, η is the reachability factor which is well-known in the literature of sliding mode control. This 

criterion guarantees that the surface of sliding system is accessible in a finite time. The control rule is 

often implemented in practical applications through the use of digital processors. Therefore, the 

continuous-time control formulation may be converted into a digital control statement by simply 

substituting discrete states for the continuous ones, where the value of control action is fixed until the 

subsequent triggering instant, as described in the following: 

𝑢 = (𝜆𝑇𝐵)−1(𝜆𝑇𝐴𝑥 + 𝐾𝑠𝑖𝑔𝑛(𝑠(𝑡𝑖)))                                  (8) 

at 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1), we look at how the execution of an event-triggered structure influences the stability of 

a system using discrete control given in Eq. (8). The instants at which the control input is sent to the 

plant are denoted by the sequence: (𝑡𝑖)𝑖=0
∞ .  

Inter-event time, or Tin, is defined as 𝑇𝑖𝑛 = (𝑡𝑖+1 − 𝑡𝑖), the plant error 𝑒(𝑡) = (𝑥(𝑡𝑖) − 𝑥(𝑡𝑖+1)) is 

introduced into the system for all times, because of the controller's discrete implementation. 

It is generally agreed that due to the discontinuity of the control rule of SMC, it can not be 

implemented directly on a digital platform. Thus, the application of ET-SMC can serve as 

one solution for this problem. In this work, both the highest permissible disturbance and the 

sampling interval are included in the design procedure of the ET-SMC proposed in this 

paper. They are employed to establish the top bound of the sliding trajectory, i.e., The 

sampling interval and disturbance restriction used to determine the steady-state bounds of 

the trajectory of a system. Which enhanced the system's steady-state performance.  

III. EVENT-TRIGGERED SLIDING MODE CONTROL 

In ET-SMC shown in Fig. 1 (a), the bound that surround the system states at steady-state is 

insensitive to changes in sampling frequencies or other aspects of the plant. The steady-state boundary 

in sliding mode is completely determined by the event parameter in the presence of disturbances. This 

property makes event-triggered SMC applicable for achieving any target steady-state boundaries. Such 

system motion is known as Practical Sliding Mode (PSM), and the frequency area in which they occur 

is known as the Practical Sliding Mode Band (PSMB). The system's path from the initial state 𝑥(𝑡𝑜) at 

time 𝑡 is denoted by the notation 𝑥(𝑡, 𝑥(𝑡𝑜) ) [25, 26]. 

Definition (Practical Sliding Mode): Take into consideration the system given in Eq. (1) and the 

sliding surface given in Eq. (2) for every stable sliding function 𝑠(𝑥(𝑡)). The system is in Practical 

Sliding Mode if, for any 𝑡 > 0 , the sliding trajectories are constrained to the neighborhood of the sliding 

manifold by the bound for all times. The band of possible sliding trajectories shown in Fig. 1 (b) is 

known as the Practical Sliding Mode Band (PSMB) [25].  

Designing a switching gain to force the system states into PSM is the main objective of ET-SMC. We 

develop sufficient criteria that enable us to first design the ET scheme and then to select the steady-state 

bound of the sliding trajectory. The primary goal of ET-SMC design is to implement the PSM by 

designing a switching gain. PSM gain condition is comparable to classical sliding mode gain condition. 

In order to construct the steady-state band of the sliding trajectory, this study first establishes necessary 

criteria for that [25, 26]. 
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Proposition: considering the system given in Eq. (1) and the control law given in Eq. (8), suppose that 

the value of α > 0 is chosen such that [25]:  

∥ 𝜆 ∥ 𝐴 ∥∥ 𝑒 ∥< 𝛼                                                  (9) 

 

 

FIG. 1 (A). PRACTICAL SLIDING MODE BAND (PSMB). FIG. 1 (B). BLOCK DIAGRAM REPRESENTATION OF THE PROPOSED SYSTEM. 

 

For all t ≥ 0, the steady- state boundary of the system's trajectories is set by the value of 𝛼, hence, it 

must be chosen according to the design restrictions. The maximum value of 𝛼 that ensures the system 

performs effectively can be determined at any time. The maximum steady-state bound occurs with little 

computing effort only for high values of 𝛼. If this condition holds, then the system is controlled 

according to the PSM law given in Eq. (8). The gain value of the system can be obtained using the 

following equation [25]: 

 K >  𝑠𝑢𝑝𝑡≥0|𝜆𝑇Bd(t)| + α                                                         (10)  

The Lyapunov function can be used as proof that a PSM does exist [19]. 

𝑉 =
1

2
𝑠2                                                                                        (11)                          

The following equations demonstrate that the control law of Eq. (8) brings the sliding trajectories of the 

system states to the neighborhood of 𝑠, as described in Eq. (3), for all times 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1). By 

differentiating 𝑉 with respect to time the following is obtained: 

𝑉 = 𝑠(𝑡)�̇�(𝑡) 

𝑉 = 𝑠(𝑡)(𝜆𝑇𝐴𝑥(𝑡) + 𝜆𝑇𝐴𝑥(ti) − ksign(s(ti)) + 𝜆𝑇Bd(t)  

    = −𝑠(𝑡)( 𝜆𝑇𝐴𝑒 + ksign(s(ti)) − 𝜆𝑇Bd(t) 

    = |𝑠(𝑡)||𝜆𝑇𝐴𝑒| − 𝑠(𝑡)ksign(s(ti)) + |𝑠(𝑡)| |𝜆𝑇B|𝑑0                                       (12) 

Substituting Eq. (10) and Eq. (9) in Eq. (12), it yields 

 𝑉(̇𝑠(𝑡)) ≤ |𝑠(𝑡)|‖𝜆‖‖𝐴‖‖𝑒‖ − 𝑠(𝑡) 𝐾 𝑠𝑔𝑛 (𝑠(𝑡𝑖)) + |𝑠(𝑡)||𝜆𝑇𝐵|𝑑𝑜  

𝑉(̇𝑠(𝑡)) = |𝑠(𝑡)|𝛼 − 𝑠(𝑡) 𝐾 𝑠𝑔𝑛 (𝑠(𝑡𝑖)) + |𝑠(𝑡)||𝜆𝑇𝐵|𝑑𝑜                                  (13) 

Take 𝐾 = 𝜇 + |𝜆𝑇𝐵|𝑑𝑜, yields, 

𝑉(̇𝑠(𝑡)) = |𝑠(𝑡)|𝛼 − |𝑠(𝑡)|𝑠𝑖𝑔𝑛 (𝑠(𝑡)) × 𝐾 𝑠𝑖𝑔𝑛 (𝑠(𝑡𝑖)) + |𝑠||𝜆𝑇𝐵|𝑑𝑜            (14)                                                                                  

IV. EVENT-TRIGGERING CONDITION 

In most cases, the rule's triggering condition is chosen to ensure the stability of the closed-loop 

system. Thus, the design ensures that a stable sliding motion dynamic exists, and that a PSM exists as 

well. In the following a rule for conditional triggering [25]: 

𝑡𝑖+1 = inf {𝑡 > 𝑡𝑖|𝑐||𝐴||𝑒| ≥  α}                                                       (15) 

When the condition given in Eq. (15) is met the necessary instant to generate control action are 

produced. Then, if the trigger condition is met, the control signal will have been modified (updated). 

https://doi.org/10.33103/uot.ijccce.24.2.2
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The suggested triggering rule for ET control system is examined, along with its impact on system 

stability. The sequence of trigger events produced by Eq. (15) is represented by {𝑡𝑖}𝑖=0
∞ . 

Assigning a specific control rule to the processor means that ensuring the time between any two 

successive triggering instants is always less than some finite positive quantity. This quantity is called 

as the inter-event time interval. 

In the present work, the triggering condition is simplified via the following proposition  

Proposition (1) Considering the control law and the system given in Eq. (8), and Eq. (1) respectively. 

Let the series of triggering events produced by Eq. (9) be {𝑡𝑖}𝑖=0
∞  , and let 𝛼 ∈  (0, ∞)  is given. The 

triggering condition is given by : 

𝑡𝑖+1 = inf {𝑡 > 𝑡𝑖: |𝑠| > 𝜌 𝜖} 

where 0 < 𝜌 < 1 and 𝜖 is the boundary layer thickness as a result, the state will be ultimately bounded 

by ‖𝑥‖ ≤ 𝛿(𝜖, 𝜆) 

where 𝛿 can be suffeciently small by proper selection of  𝜖, and 𝜆 

Before proving the proposition, let us define the sets Ω𝜖 and its complement Ω𝜖𝑐; 

Ω𝜖 = {𝑥: |𝑠(𝑡)| ≤ 𝜖} 

Ω𝜖𝑐 = {𝑥: |𝑠(𝑡)| > 𝜖} 

proof. 

Let the state 𝑥(𝑡) initiated in Ω𝜖𝑐. In this case the derivative of Lyapunov function (Eq.(14)) becomes,  

𝑉(̇𝑠(𝑡)) ≤ |𝑠|𝛼 − |𝑠(𝑡)|𝐾 + |𝑠||𝜆𝑇𝐵|𝑑𝑜 

𝑉(̇𝑠(𝑡)) = |𝑠|[𝐾 − 𝛼 − |𝜆𝑇𝐵|𝑑𝑜] 

𝑉(̇𝑠(𝑡)) = |𝑠|[𝐾 − 𝛼 − |𝜆𝑇𝐵|𝑑𝑜] 

𝑉(̇𝑠(𝑡)) = |𝑠|[𝜇 − 𝛼]                                                                           (16) 

Where, 𝑠𝑖𝑔𝑛 (𝑠(𝑡𝑖)) = 𝑠𝑖𝑔𝑛 (𝑠(𝑡)). since |𝑠| > 𝜖, the event will be triggered through each sampling 

period 𝑇𝑜, i.e., 

𝑡𝑖+1 = 𝑡𝑖 + 𝑇𝑜                                                                                                                                       

Where it is assumed that 𝛼(𝑡𝑖+1) will be less than 𝜇, so the region defined by the set Ω𝜖 in finite time 

and after that the triggering will be take on place when the state leave the region inside Ω𝜖 defined by 

{𝑥: |𝑠| ≤ 𝜖𝜌}. Therefore, one can assume that the state will not leave the following positively invariant 

set defined by Ω̅𝜖 = {𝑥: |𝑠| < 𝐵𝜖} , where B>0 which is function to 𝑇𝑜 and the system dynamics. 

Eventually, the steady state error can be computed as [21]. 

Where by proper selection of 𝜖 and  𝜆, its value can be adusted to the desired one. 

V. MATHEMATICAL MODEL (ELECTRICAL DC SERVO MOTOR) 

In this paper, electrical DC servo motor is used as the system plant, which is modelled as linear 

time invariant system. Several technical systems depend on the precise control of the servo motor's 

position and speed, including Computerized Numerical Control (CNC) machines, industrial robots, 

winding machines, and others [27]. DC servo motor systems need to have good resilience under the 

influence of the perturbation term in addition to other desirable qualities, such as no overshoot, fast 

response, and high tracking behaviour [28]-[29]. The system behaviour is defined by the following 

equation [30]: 

�̈� = −
𝑏

𝐽
�̇� +

𝑘𝑡

𝐽
∗ 𝑢 +

1

𝐽
𝑑                                           (17) 

𝜃: position (angle) of the rotor motor (rad) 

�̇� : velocity in (rad/sec)  

�̈�: acceleration (rad/sec2) 

j and b are moment of inertia and damping coefficient, respectively. 𝑢 is the torque current command 

in (Amp). 𝑘𝑡 is the torque constant, and 𝑑 is the external disturbance in (N. m), the value of d is assumed 
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to be constant throughout this paper (d=1). The nominal values of the system parameters are denoted 

by b𝑛 and j𝑛, while the uncertainty values are denoted by b and J that are shown in Tables I and II.  

Where 𝛿𝑏 = 40% × 𝑏𝑛, and 𝛿𝐽 = 40% × 𝐽.  

The tracking error is the difference between the actual position output and its desired value. The error 

in tracking is given by 𝑒 = 𝜃 – 𝜃𝑑 where 𝜃𝑑 represents the desired output value. Using the error and its 

derivative, we can define the system's states as follows:  𝑥1 = 𝑒,  𝑥2 = �̇�.  

 

TABLE I. THE VALUES OF THE SYSTEM DYNAMIC PARAMETERS 

 

 

 

 

 

 

 

TABLE II. THE NOMINAL, MAXIMAL AND MINIMAL UNCERTAINTIES VALUES OF 

 THE SYSTEM DYNAMIC PARAMETERS 

 

 

 

 

 

In this work, a value of  
𝑃𝑖

4
= 0.078 is used for  𝜃𝑑 and this number is being used as a step input. Thus, 

Eq.(17) in state-space format as shown below:   

𝑥1̇ =  𝑥2 

𝑥2̇ = −
𝑏𝑛

𝑗𝑛
+

𝑘𝑡

𝑗𝑛
u + Δ(𝑥, 𝑢)                                                     (18) 

Where Δ(𝑥, 𝑢) is the term of perturbation that incorporates both the external disturbance and the 

parameter’s uncertainty. 

𝛥(𝑥, 𝑢) = −
Δ𝑏

Δ𝑗𝑛
+

𝑘𝑡

Δ𝑗𝑛
 𝑢𝑑𝑖𝑠

1

𝑗𝑚𝑖𝑛
𝑑                                       (19) 

The SMC for the servo DC motor system is designed in the manner described below: 

𝑠 =  𝑥1 + 𝑥2                                                                          (20)                                                                                              

The sliding variable s dynamics is expressed as: 

 �̇� = 𝜆�̇�1 + �̇�2                                                                          (21)                                                                                  

Substituting Eq. (18) in Eq. (21): 

�̇� = 𝜆𝑥2 −
𝑏𝑛

𝑗𝑛
𝑥2 +

𝑘𝑡

𝑗𝑛
𝑢 + 𝛥(𝑥, 𝑢)                                           (22) 

Let  𝑢 =  𝑢1 + 𝑢2                                                                     (23) 

𝑢2 = 𝑢𝑑𝑖𝑠 = −𝑘 ∗ 𝑠𝑖𝑔𝑛(𝑠)                                                      (24) 

Substituting Eq. (23) in Eq. (22) above: 

�̇� = 𝜆𝑥2 −
𝑏𝑛

𝑗𝑛
𝑥2 +

𝑘𝑡

𝑗𝑛
(𝑢1 + 𝑢2) + 𝛥(𝑥, 𝑢)                             (25) 

When the system state is on the sliding surface, the control action 𝑢1 is devoted to cancel the nominal 

term in Eq.(25) as follow: 

𝑢1 =
𝑗𝑛

𝑘𝑡
(𝑥2 (

𝑏𝑛

𝑗𝑛
− 𝜆))                                                            (26) 

According to the controller u is given by: 

𝑢 =
𝑗𝑛

𝑘𝑡
(𝑥2 (

𝑏𝑛

𝑗𝑛
− 𝜆)) − 𝑘(𝑥) ∗ 𝑠𝑖𝑔𝑛(𝑠)                                (27) 

In Eq. (27), 𝑢 represents the whole control action. 

Parameter Nominal value Units Units 

b 8.8 × 10−3 𝑁𝑚2/𝑟𝑎𝑑 

J 5.77 × 10−2 𝑁𝑚𝑠2 

kt 0.66 𝑁𝑚/𝐴 

Parameter Nominal Maximal Minimal 

b/J 0.125 0.216 0.092 

kt/J 11.55 16.188 6.935 
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VI. SIMULATION RESULTS  

In In this section, a set of comprehensive simulation experiments is conducted using Matlab 

software to demonstrate the theoretical results presented thorough out the previous sections.  

The simulations are carried out in two cases; Case one, classical SMC is developed to stabilize the 

system dynamics in the presence of perturbation. While in Case two, an event-driven strategy is applied 

in combination with SMC is used to stabilize the same system used in Case one. In both cases, the 

applied desired input trajectory which is the position angle (𝜃𝑑) is chosen to be equal to 𝑃𝑖/4. The 

initial values for the system states are selected as 𝑥 = [1,0]. It is worth to mention here, that both 

controllers maintain stability for the system, however, number of controller updates reduced 

significantly using ET-SMC which is the main objective of this study. 

 

A. Case One Classical SMC Design 

Fig. 2 shows the behaviour of the system states 𝑥1and 𝑥2, which clearly move toward the origin 

asymptotically. The sliding surface (s) and the control action (u) are plotted in Fig. 3 and Fig. 4 

respectively. Fig. 5 is showing the phase plane plot of the system states with the application of the 

controller, where the states trajectory travelled from its initial value and settle down on the controller’s 

sliding manifold after finite amount of time then remain on the sliding manifold for rest of the time. 

The size band of (s) remains constant unless the time interval or boundaries of disturbance change.     

Fig. 6, shows clearly the ability of the SMC to derive the position angle (𝜃) to its desired value in about 

(4.8sec). By examining the above conducted simulation results using classical SMC, it is clear that the 

controller was able to maintain stability and show robust behaviour in the presence of system 

perturbation. 

 

 

 

 

 

 

 

 

 

 

 

 

        FIG. 2. THE EVOLUTION OF STATES OF THE SYSTEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3. SLIDING MANIFOLD S. 
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             FIG. 4. CONTROL INPUT (U). 

 

 

                   FIG. 5. STATE TRAJECTORY IN PHASE PLANE. 

 

                 FIG. 6. ACTUAL AND DESIRED POSITION. 

 

It is important to highlight the fact that the control action of the classical SMC applied in this case is 

updated at a fixed rate of time (continuously) based on constant sampling period. This can lead to 
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unnecessary control updates, especially when the system response does not require frequent adjustments 

to the control action. In this case the number of updates of the control actin equal (6000). 

 

B. Case two ET-SMC Design  

In this case, the value of 𝐾 is designed according to Eq. (10). The parameter (α) is chosen to be 

equal to 0.1. Fig. 7 shows the behaviour of the system's states over time. Fig. 8 shows the phase plan 

of the system states with the application of the ET-SMC, while the operation of the control action is 

shown in the Fig. 9. It is clear that the ET-SMC controller can easily derive the position angle (𝜃) to 

track its reference value as shown in Fig. 10.  

It is important here to highlight the fact that the sliding surface of the ET-SMC applied in this case is 

not zero exactly, but it lies within a band given by 𝜔𝜀 = 
𝛼

∥𝐴∥
  and the numerical value of the band is 

found to be equal to 0.01 as shown in Fig. 11. This value guarantees the existence of Practical Sliding 

Mode (PSM). Moreover, it guarantees that the mechanical system behaves in Zeno-free behaviour. 

Furthermore, the proposed control approach ensures that the lower bound of inter event time 𝑇𝑖𝑛 

bounded away from zero by a constant value (0.122), as shown in Fig. 12. The quantities of the 

generated events can be decreased by suitable selection of the event design parameter value (α). A larger 

value of α results in fewer events being generated, hence, requiring less action from the controller. 

 

 

                        FIG. 7. THE EVOLUTION OF STATES OF THE SYSTEM. 

 

 

 

 

 

 

 

 

 

 

 

 

        FIG. 8. TRAJECTORY STATE IN PHASE PLANE. 
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         FIG. 9. CONTROL INPUT (U). 

 
        FIG. 10. SLIDING MANIFOLD S. 

 

 
      FIG. 11. DESIRED TRACKING. 

 

 

 

 

 

 

 

 

 

 

 

 

           FIG. 12. INTER EVENT TIME (TIN). 

 

Table III shows the effect of using traditional SMC in contrast with ET-SMC. It compares the number 

of control updates between traditional SMC and ET-SMC scheme. Which lessen the number of updates 
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significantly, reduce the amount of control computation, and uses fewer resources without affecting 

stability or performance which is the main target of this work. 

 

TABLE III. DIFFERENCE BETWEEN CLASSICAL SMC AND ET-SMC 

 

 

 

 

 

VII. CONCLUSIONS 

In this paper, a classical SMC and an Event triggered sliding mode control ET-SMC are designed 

to maintain stability for a class of LTI system. The main outcomes of this paper are outlined in the 

following points: 

1. In order to reduce the consumed energy in the system, a SMC that is based on event-triggering 

approach is developed. This strategy has significantly reduced the number of control action 

updates in the system from being (6000) with classical SMC to (2036) with ET-SMC, which 

means a valuable reduction percentage by 33 %. This is refected mainly on the consumed 

energy by the two controllers. 

 

2. This feature is highlighted by comparing it to the outcomes of a classical SMC. The simulation 

experiments are given to demonstrate the efficiency and highlight the difference between the 

two proposed methods. 

3. A new triggering mechanism is developed to ensure stable sliding motion of the system states, 

hence, maintain closed-loop system stability.  

4. The ET-SMC is designed to drive the system states into PSMB by using a switching gain (K), 

then suitable steady state band (band of possible sliding trajectories) is obtained numerically 

according to system design specifications that ensures effective performance for the system. 

The value of (𝛼) affect the band size, larger number of (𝛼) is associated with larger value of  

the band size. 

5. The designed ET-SMC guarantees a Zeno free system by imposing positive lower bound to the 

inter-execution event time. 

As a main outcome of this paper, is that all the above-mentioned findings are 

demonstrated for the LTI system that under the effect of perturbation (external disturbance 

and system parameter uncertainty). Finally, applying the suggested ET-SMC technique to 

be used for nonlinear system is a possible extension for the work proposed in this paper in 

the future.  
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