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Abstract— Definitely, image processing operations without advanced and 

expensive microprocessors consume more time, power, and larger programs. 

So, improving the reasonable cost of microprocessors is crucial in this 

situation. This paper proposes an improvement for the MIPS_32 architecture 

that is called a Customized MIPS_32 (CMIPS_32) to enhance the capabilities 

of image processing (IP) operations. The proposal aims to increase throughput 

by minimizing the iterative fetching of instructions required by a certain IP 

operation into a single customized IP instruction. The architecture of MIPS_32 

was developed in two phases. Firstly, the Register File, control unit, and ALU 

are modified to manipulate the information related to the IP operations. 

Secondly, two new units, the address calculation unit and the last pixel 

detection unit, were proposed to determine a certain image's starting and 

ending addresses. Furthermore, the MIPS_32 pipeline is customized to have 

five to six stages depending on the intensity of operation required by a certain 

IP instruction to decrease the number of machine clocks and the power 

consumed. The proposal was implemented using the Zed-Board 

XC7Z020CLG484-1 FPGA. The results showed that the computation speedup 

increased by a factor equal to the number of standard instructions required to 

execute the same operation performed by one of the proposed IP instructions. 

The CMIPS_32 consumed less power than other models that were implemented 

on Spartan3-XC3S1500L, Virtex5-XC5VFX30T, Virtex6-XC6VLX75T, and 

Virtex6-Low-Power-XC6VLX75T by 0.0138W, 0.6468W, 1.31W, and 0.7898W, 

respectively. Comparing the power consumed by the proposal with the GPU 

proved that the CMIPS_32 consumes less than the NVIDIA-GPU-GTX980 by 

63.8698W. 

Index Terms— FPGA, Image processing instructions, MIPS_32, Verilog.  

 

I. INTRODUCTION 

Modern electronic smart devices have entered many areas of life. Some have become the 

backbone of many sensitive fields, including health care, science, and education. Most smart 

electronics devices depend on parallel processing, which supports multi-core system devices. Reduced 

Instruction Set Architecture (RISC) is an architectural type that uses a fixed size of instructions with 

many general-purpose registers [1]. The research community widely uses this type of architecture 

because of its simplicity and development capability [2]. A Microprocessor without Interlock Pipeline 

Stage (MIPS) is a kind of RISC architecture developed by MIPS technologies. However, the MIPS 

pipeline, including MIPS_32 and MIPS-64, has five stages: Instruction Fetch (IF), Instruction 

Decoding (ID), Execute (EX), Memory Access (MA), and Write back (WB) [3, 4]. Field 
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 Programming Gate Arrays (FPGAs) are a programmable package allowing the developer to 

implement and develop the processor design. The arrays contain many complex sets of essential 

logical functions using Hardware Description Language (HDL). Verilog is a kind of (HDL) that is 

standardized by IEEE 1364 and used to implement electronic systems [5, 14]. This work aims to 

exploit the energy conservation and reconfigurability introduced by the architecture of MIPS_32 to 

design a CPU capable of executing dedicated image processing instructions. This work is with 

improved computation speed and reasonable cost in contrast to GPU or extended vector processors, 

which are expensive and, in their nature, have a complexity from the side of manufacturing and 

manipulation. MIPS_32 core was implemented by the authors in [6] using Virtex 7 FPGA and 

MATLAB HDL coder to achieve optimal resources and high throughput. They optimized the target 

implementation for performance and resources using the HLS directive. S. H. S. Dizaji et al., in [7], 

implemented multi-methods of steganography using two approaches of parallelism, one by using a 

Graphical Processing Unit (GPU) and the other by using Networks On Chips (NOC). They verified 

that both approaches decreased the execution time compared with the serial approach.A RISC-V 32b 

processor was designed in [8] to support many additional commands, including hardware loop, save 

instructions, additional ALU instructions, and downloading transferring and transferring PS data 

instructions; the authors concentrated on speed and power consumption of the design by using the 

correct clock method and design low power RISC processor respectively. H. S. Mahmood and S. S. 

Omran in [9] implemented a dynamic branch predictor using VHDL-FPGA. They used the MIPS 

processor to implement their work because of its ability to increase prediction accuracy. They 

combined gshare and biomodel branch techniques by dividing the pattern history table into two 

branches corresponding to taken and not-taken. The result of using this predictor is to increase the 

MIPS performance.Ionel Zagan and Vasile Gheorghiţă Găitan in [10] implemented a soft-core 

processor using FPGA based on different instruction sets to enhance the performance of the real-time 

system through producing dedicated hardware threads contexed and a real-time operating 

system.Shobhit Shrivastav and colleagues [11] implemented a MIPS_32 processor with five pipeline 

stages. They compared their design against a simulation of a processor without pipeline stages 

regarding timing and power consumption. They found that the MIPS_32 processor operated thrice 

with less power than the processor without pipeline stages. The authors in [12] used an approximate 

adder to decrease the delay in the cost of the design area, and this design was implemented for the 

MIPS_32 processor. As a result, the timing performance was improved by 253.4% compared to the 

lookahead adder. The MIPS_32 processor was implemented using FPGA-Verilog. Al-Sudany Sarah 

and co-workers used MIPS_32 with multi-core architecture to implement SIMD multimedia extension 

architecture and speed up multimedia and DSP applications [13]. They introduced the advantages and 

disadvantages of using array and vector-processing architecture in SIMD architecture. The authors in 

[14,15] presented a design and implementation for a multi-core processor using MIPS_32 

architecture. They introduced commands based on SIMD architecture, including addition, subtraction, 

multiplication, and memory read and write instructions. They suggest the proposed design be used in 

multimedia and big data processing.Daniel Castaino, et al. in [16] compare GPU with CPU 

performance by exploiting the GPU and CPU with simple and complex functions operation and 

measuring the performance of each case. The result presented in this work is that the GPU is better 

than the CPU, especially when working on extensive data and complex operations.P. Indira, M. 

Kamaraju, and Ved Vyas Dwivedi in [17] implemented a 32-bit MIPS processor based on FPGA 

fabric with a 6-stage pipeline. This design is compared with others regarding area, power, and 

frequency. It performs the power consumed equal to 0.129 W and LUT utilization of 421 using a 

gatting power technique that makes the circuits get turn-off which state of these circuits 

inactive.Fahad Siddiqui, et al. in [18] used k-mean clustering and traffic sign recognition algorithms 
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 implemented on the 16 cores of a soft processor (IPPRO) to evaluate the processor performance 

regarding power consumption and area.  

II.  STANDARD MIPS_32 OVERVIEW 

The architecture of MIPS_32 is shown in Fig. 1, while the main components of MIPS_32 are as 

follows [19, 20]: 

 

FIG. 1. MIPS_32 ARCHITECTURE [20]. 

(1) Program Counter (PC): is responsible for giving the instruction memory the address location of 

the specific instruction. (2) Instruction Memory and Data Memory: MIPS_32 design splits the 

instruction and data memory into two memories, one for instructions and the other for data. (3) 

Registers file (RF): contains 32 general-purpose registers; each register has 32 bits. (4) Arithmetic 

Logic Unit (ALU): is used to perform the arithmetic and logical operation. As well as this unit is 

responsible for calculating the physical address of the data memory. (5) Pipeline registers: these 

registers forward information from one stage to another. (6) Hazard Detection Unit: this unit checks 

any hazards and decides whether to forward or stall the pipeline. MIPS_32 was designed to exploit the 

pipeline technique, one of the parallel processing techniques in which multiple instructions are 

executed in sequential and overlapped order [20], [21]. MIPS_32 has three instruction formats shown 

in Fig. 2: (1) R-Type (Register type instructions): This type of instructions format includes all 

arithmetic and logical instructions. (2) I-Type (Immediate type instructions include store, load, and 

conditional jump instructions. This type of instruction uses two operand registers (rs and rt) and 16 

bits of immediate address. The rs, and immediate value is used to calculate the physical address of the 

memory (base register) in load and store instructions. In contrast, the rt is used as a source that 

contains the register number in RF, which holds the data required to store in memory, or the number 

in RF that stores the value loaded from memory. On the other side, I-Type format, when used in jump 

instruction, the fields rs and rt are the source registers that are compared for equality. (3) J-Type 

(Unconditional jump instruction): This instruction only needs an opcode value and a 26-bit address 

[22].  

 

FIG. 2. MIPS_32 INSTRUCTION FORMATS [20]. 
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 III. PROPOSED MIPS_32 FOR IMAGE PROCESSING 

This section presents the design of the Customized MIPS_32 (CMIPS_32) that highly 

supports image processing and standard instructions (IPI and SI). Generally, in its standard 

version, CMIPS_32 was introduced to execute instructions similar to any other 32-bit 

processor, using a basic Datapath, control unit, and ALU, considering the RISC architecture 

properties. Image data consist of many identical data units called pixels, and most image 

processing instructions affect these pixels. Therefore, any image processing instructions 

need to read all image pixels in sequential order, which means a group of certain 

instructions must be executed with iterations equal to the number of pixels. In this work, 

particular instructions are built-up to operate with image pixels brilliantly. Basically, the 

architecture of the Datapath, control unit, and ALU of the standard MIPS_32 needs to be 

reformulated to provide the capability for implementing an extra set of instructions related 

to image processing. However, the modified Datapath, which includes modified RF and the 

modified CU, will be presented in the next sections.    

A. Pipeline Stages of CMIPS_32 

CMIPS_32, which enhances the image processing instructions, also uses a pipeline 

structure with five-to-six stages depending on the operation required by the instruction. 

Essentially, the significant stages are reformulated in their function to have the ability to 

execute the IPIs. The CMIPS_32 processor may configure a single execution stage for 

particular image instructions; hence, the pipeline will have five pipeline stages. In contrast, 

the same processor may configure two sequential execution units to accomplish other 

instructions so that it will have six pipeline stages. The motivation for making the number 

of pipeline stages configurable and extendable according to the complexity of IPI is to keep 

the design of ALU for any of the execution stages of the pipeline as simple as possible and 

less the power consumption and to keep the number of clock cycles as less as possible. This 

method ensures that each of these extended execution units consumes no more than one 

machine clock. Fig. 3 shows the conceptual block diagram of the configurable pipeline of 

the CMIPS_32. The figure illustrates that the basic construction of the pipeline comprises 

six stages which are Instruction Fetch (IF), Instruction Decode and Register Read (ID), 

Execution 1 (EX1), Execution 2 (EX2), Memory Access (MA), and Write Back (WR). The 

jumper line between EX1 and EX2 stages indicates that EX2 may be involved within the 

other five stages or just jumped without any effect on the other stages, depending on the 

intensity of the operation of the IPI. 

 

FIG. 3. CONCEPTUAL DIAGRAM FOR PIPELINE STAGES OF THE CMIPS_32. 

The detailed architecture for the pipeline stages of the CMIPS_32 is illustrated in Fig. 4. 

This pipeline starts at the IF stage. In IF, the instruction is fetched from the instruction 

memory because it is well known that the instructions are stored in a separate memory 
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 called instruction memory, compared with the data memory that stores the operands and 

other related data that the instructions may need.The next stage of the pipeline is the ID 

stage which decodes the instruction type if it is SI or IPI, through the instruction type field 

and accesses the register file to assign the registers determined in the instruction format. In 

its core operation, instruction decoding involves setting up the control signals for the rest of 

the pipeline components. The third stage of the CMIPS_32 pipeline is EX1. This stage has 

been redesigned to treat both SI and IPI. Addresses Calculation Unit (ACU) is proposed to 

be added to the EX1 stage of the MIPS_32 pipeline to deal with the IPIs. ACU will be 

disabled when the instruction is of SI type, and EX1 will return to work as a standard 

execution unit within the MIPS_32 pipeline. The redesigned EX1 stage has three significant 

calculation phases when the instruction is decoded as an IPI; the first phase performs the 

arithmetic operation determined by the IPI using the available ALU-1. The following two 

phases exploit the proposed ACU to calculate the memory address required to store the 

output of the first phase and calculate the memory address to read the next pixel of the 

assigned image stored in block and kernel memories. Stage EX2, the fourth pipeline stage, 

is activated only when the image processing instruction needs more than one operation, 

such as gamma correction and edge detection instructions, to obtain the final result for the 

calculated image pixel. Otherwise, if the instruction can be accomplished by EX1 only, this 

stage will be passed without any activity and without consuming any machine clock, and 

the result of the EX1 stage will be forwarded to the MA stage directly. The decision to 

involve EX2 within the proposed pipeline or not is determined by the CU, which is 

illustrated in Fig. 6. 

 

FIG. 4. CMIPS_32 BLOCK DIAGRAM. 

The next stage of the proposed CMIPS_32 belongs to the memory access, MA. The 

function of this stage differs from the standard MIPS_32. For the CMIPS_32, the reading 

from and writing to the memory is done during the positive and negative clock edges, 

respectively. The result of ALU-1 or ALU-2 is written to the memory, and the subsequent 

image pixels are read from the block and kernel memories. However, the memory function 

of SI is to read new data from memory or write data values to the memory, but not both. 

Finally, in the last stage of the pipeline of the proposed CMIPS_32 is the write-back, WB. 

The values that were read from block and kernel memories are returned to the RF to prepare 

for use in the next iteration of the current IPI. On the other side, either the reading value of 

the block memory or the resulting value of the ALU-1 is returned to the RF when SI is 

executed. 
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 B. CMIPS_32 Instruction Formats 

The CMIPS_32 is presented with assembly instructions that deal with image 

processing applications. To realize what is required by such applications, two instruction 

formats are suggested that have the necessary fields to store the instruction type, operation 

code, source and destination registers, and image size. The proposed instruction formats for 

CMIPS_32 consist of 32-bit word lengths and are compatible with instruction word lengths 

for the standard MIPS_32. Fig. 5 shows the format of the two instruction words for image 

processing to execute ten assembly instructions. These instructions represent common 

image processing operations such as adjusting the brightness of a certain image, ANDing 

two images, inverting an image, and gamma correction. The details of the ten instructions 

are explained in subsection E. From the left side, the two instruction formats shown in    

Fig. 5 share the same field called instruction type with a size of 6 bits. This field is assigned 

to decode the type of instruction format to distinguish between IPI and SI formats. If the six 

bits of this field are all one, the control unit will decode and assign this instruction as IPI; 

otherwise, it is SI. The second field is the opcode of a 6-bit size that stores the opcode of a 

specific IPI. The third field, named rs, stores the register number that holds the starting 

address of the source image; however, if the instruction uses two images to be processed or 

needs an immediate value to accomplish the required operation, the following field, which 

is named rt (Fig. 5, type a) can be exploited for that purpose. The rt field is unset or unused 

when the IPI operates with a single image. The rd field (Fig. 5, type a and b) stores the 

register number that holds the starting address of the memory where the resulting image 

will be stored. The last field (the first one on the right side), named rz, is of 5 bits and 

specifies the register number that holds the number of pixels of the specified image. 

 
FIG. 5. IPI INSTRUCTIONS FORMATS FOR CMIPS_32. 

C. Instruction Flow of CMIPS_32 

In general, for SI, the standard MIPS_32 executes the instructions in sequential and 

overlapping order by passing them via the whole five stages of the pipeline. Thus, to 

perform simple image processing operations such as ANDing or ADDing, the standard 

MIPS_32 needs to execute a program with a set of SIs that will be iterated for times equal 

to the number of pixels the image consists of. On the other hand, for the CMIPS_32 

structure, a single IPI will be executed, and that IPI will process the image pixels in 

sequential and overlapped order. Furthermore, the CMIPS_32 will overlap some pipeline 

stages for the IPI type to process the whole image pixels and leave others. As a result, the 

number of machine clocks needed to execute a single IPI for a certain image size will be 

lower than that needed to process the same image by a program containing a set of SIs.  

Fig. 6 shows the instruction flow for the CMIPS_32 pipeline executing both SI and IPI 

types. 

Fig. 6 illustrates that the IF stage of the pipeline will be involved only once at the 

beginning of executing the IPI for fetching instructions. In contrast, ID, EX1, EX2, MA, 

and WB stages will be involved repeatedly for n times, where n is the number of image 

pixels required to be processed. Section IV presents an evaluation to calculate the clocks 

required to execute SIs and IPIs types. To ensure all the image data will be processed and to 
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 avoid any structured hazards, the program counter (PC) remains constant until the last 

image pixel is processed, then, the PC will be increased by four to fetch the next instruction. 

D. CMIPS_32 Datapath 

The CMIPS_32 is designed to operate with SI and IPI types. This subsection illustrates 

the modification of datapath units required to make the standard MIPS_32 work with the 

proposed image processing instructions with the highest degree of pipeline exploitation. 

The modified units are RF and CU, and new basic units were inserted into the datapath: the 

Addresses Calculation Unit (ACU) and the Last Image Pixel Detection Unit (LPDU).  

i. Registers File (RF) and Control Unit (CU) 

The proposed CMIPS_32 is suggested to contain 32 general-purpose registers, each 

32-bit size, and one special register called SR. The data in the SR register is used mainly for 

IPI, which requires the pipeline to have six stages to accomplish its task. The RF of 

CMIPS_32 is modified to meet the requirements of both SI and IPI, which need different 

information to accomplish their tasks. RF outputs supply the ALU_1 operands in SI and IPI 

by the value of the fields rs and rt and the starting addresses for ACU and LPDU (fields rd 

and rz) in IPI. Fig. 7 shows the block diagram of RF. The block diagram shows that RF has 

two 32-bit ports (Write_data_1 and Write_data_2) for data retrieved from the WB stage. 

That is because the data returned from the WB stage is either read from the block memory 

or both block and kernel memories in the case of IPI. While for SI, so single port is used for 

data returned from the block or ALU_1. Table I shows the RF inputs and outputs and their 

function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 6. INSTRUCTION FLOWS FOR THE CMIPS_32. 
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 The CU generates the multiple lines of signal that control most parts of the datapath of 

CMIPS_32. The CU unit generates these control signals according to instruction type. The 

inputs of this unit are the opcodes of SI or IPI and a 1-bit signal named Reset&update. The 

latter acts as a reset signal that re-initializes the whole CU output to decode the next 

instruction. The output signals of the CU are illustrated in Fig. 8. It is worth noting that 

signals Lo and St regulate the work of the ACU, which is responsible for calculating the 

addresses of reading and writing of the memories in IPI. The functions of the rest of the 

control unit output signals and their function are illustrated in Table II. 

 

 
FIG. 7. BLOCK DIAGRAM OF THE RF.                                                              FIG. 8. BLOCK DIAGRAM OF THE CU. 

TABLE I. RF INPUTS & OUTPUTS AND THEIR FUNCTION 

Control or Data State #Bits Function 

Read_Reg_1, Read_Reg_2 input 5 
Specify the registers containing the value of rs and rt in SI 

and IPI. 

Read_Reg_3, Read_Reg_4 input 5 
Specify the registers containing the information of rd and rz 

in IPI. 

Write_Data_1, Write_Data_2 input 32 Data retrieved by the WB stage. 

Writr_Reg_1, Write_Reg_2 input 5 Specify the register number that stores the data retrieved. 

Reg_Write_1, Reg_Write_2 input 1 Enabling the data written to the specified registers. 

Read_Data_1, Read_Data_2 output 32 

Supply rs and rt values to the two inputs of ALU_1 in SI and 

IPI. Also, supply the starting address of the image read from 

block and kernel memories to the ACU in IPI. 

Read_Data_3 output 32 
Supply the starting address (rd) to store the operation result 

of the IPI to ACU. 

Read_Data_4 output 32 Supply the size of the image under the process to the LPDU. 

Read_Data_SR output 32 
Supply the value of the second operand of ALU_2 in the 

EX2 stage. 

 

TABLE II. CU OUTPUT SIGNALS AND THEIR FUNCTION 

CU Output Signals #Bits Function 

Br 1 Branch indicator. 

Im 1 IPI indicator. 

Mr, Mw 1 Enabling read-from and write to block memory. 

Kr 1 Enabling read from kernel memory. 

Lo, St 1 Signals operate with ACU and LPDU for regular operations. 

ALU1-OP, ALU2-OP 5 ALU-1 and ALU-2 operation codes. 

RegWrite_1, RegWrite_2 1 Enabling data to be written to the RF. 

MemtoReg 1 Activated at load instruction to write the memory output to the RF. 

ALU_EXE_St2 1 Enabling the EX2 pipeline stage. 

ALUscr 1 Specify the second ALU-1 input from the RF register or the Sign-Extended unit. 

RegDist 1 Specify the rd of SI type either from inst[20:16] or inst[15:11] 
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 ii. Addresses Calculation Unit (ACU) 

This unit calculates the addresses to write to and read from block and kernel memories instead of 

ALU-1 as in a standard MIPS_32. The RF unit supplies three addresses: the two beginning addresses 

to read from block and kernel memories (Ad1 and Ad2) and the beginning address to store the data in 

the block memory (Ad3). The ACU contains three temporary registers, A, B, and C, which store the 

last three values of the calculated memory addresses. These values are later used to determine the 

addresses of the next iteration to process new pixel(s). The block and circuit diagram of ACU is 

shown in Fig. 9. The control signals Lo, St, and Kr organize the three 32-bit outputs, BMAr, BMAw, 

and KMAr, of this unit according to the following expressions: 

𝐵𝑀𝐴𝑟 =  {
𝐴𝑑1 = 𝐴                           𝑊ℎ𝑒𝑛 𝐿𝑜 = 0
𝐴 + 4                                 𝑊ℎ𝑒𝑛 𝐿𝑜 = 1

                                                       (1) 

𝐵𝑀𝐴𝑤 =  {
𝐴𝑑2 = 𝐵                           𝑊ℎ𝑒𝑛 𝑆𝑡 = 0
𝐵 + 4                                 𝑊ℎ𝑒𝑛 𝑆𝑡 = 1

                                                       (2) 

𝐾𝑀𝐴𝑟 =  { 
𝐴𝑑3 = 𝐶                              𝑊ℎ𝑒𝑛 𝐿𝑜 𝑜𝑟 𝐾𝑟 = 0
𝐶 + 4                                  𝑊ℎ𝑒𝑛 𝐿𝑜 𝑎𝑛𝑑 𝐾𝑟 = 1

                                      (3) 

       

 

 

 

 

 

FIG. 9. ACU BLOCK AND CIRCUIT DIAGRAMS FOR CMIPS_32. 

iii. Last Pixel Detection Unit (LPDU) 

Image size is defined as the number of pixels in the image. The register number containing the 

size of the is stored in the 5-bit rz field of the proposed format instructions for image processing, 

shown in Fig. 5. The LPDU uses rz and BMAr, which is the current address of the read operation of 

block memory supplied by ACU, to detect the last pixel of the image under process. Afterward, this 

unit sends logic 1 to the CU through Reset&Update to finish executing the current IPI and fetching 

the next instruction. The circuit diagram of the LPDU is illustrated in Fig. 10. 

 

 

 

 

FIG. 10. LPDU BLOCK AND CIRCUIT DIAGRAMS FOR CMIPS_32. 

At the first time and when the Lo signal is equal to zero, the LPDU accomplishes operations. 

Firstly, adds the address of the first pixel stored in block memory, Ad1, with the value image size, SZ, 

to determine the last address of the image. Secondly, compares the 32-bit current address, BMAr, with 

(b) ACU CIRCUIT DIAGRAM 

(a) LPDU BLOCK DIAGRAM 

(a) ACU BLOCK DIAGRAM 

(b) LPDU CIRCUIT DIAGRAM 
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 the result of the addition process done by the first operation stored in the SZR register. Conversely, 

for the Lo signal being 1, the LPDU compares the contents of the SZR register with BMAr only. After 

that, the output of LPDU will be set to 1 when the BMAr address equals the SZR register value that 

indicates the end of the currently processed image. 

E. Proposed Instruction Set for Image Processing 

This work presents ten instructions for image processing that deal with image enhancement and 

edge detection. Table III shows these instructions with a description for each. 

TABLE III. INSTRUCTION SET FOR IMAGE PROCESSING 

No Instruction Description Operation 

1 IncBri   rs, rt, rd, rz [R(rd)] =[R(rs)]+R(rt) 

Increase the pixel's brightness addressed by rs 

with rt value and store the result in the rd 

address. 

2 DecBri  rs, rt, rd, rz [R(rd)] =[R(rs)]-R(rt) 

Decrease the pixel's brightness addressed by rs 

with rt value and store the result in the rd 

address. 

3 AndIm  rs, rt, rd, rz [R(rd)] =[R(rs)]&[R(rt)] 
And two pixels addressed by rs and rt and 

store the result in the rd address. 

4 AddIm  rs, rt, rd, rz [R(rd)] =[R(rs)]+[R(rt)] 
Add two pixels addressed by rs and rt and 

store the result in the rd address. 

5 SubIm   rs, rt, rd, rz [R(rd)] =[R(rs)]-[R(rt)] 
Subtract two pixels addressed by rs and rt and 

store the result in the rd address. 

6 ThIm1   rs, rt, rd, rz 

[R(rd)] =255 … if [R(rs)] ≥ R(rt). 

Else 

[R(rd)] =0 

Convert grayscale to binary for pixel 

addressed by rs, and store the result in the rd 

address. 

7 NagIm   rs, rd, rz [R(rd)] =255-[R(rs)] 

Convert grayscale to negative for pixel 

addressed by rs, and store the result in the rd 

address. 

8 ThIm2   rs, rt, rd, rz 

[R(rd)] =[R(rs)] … if [R(rs)] ≥ R(rt) 

Else 

[R(rd)] =0 

Threshold function by value rt to pixel 

addressed by rs, and store the result in the rd 

address. 

9 GamIm  rs, rt, rd, rz [R(rd)] =[R(rt)]*[R(rs)]^R(SR) 

Gamma Correction of pixel addressed by rs 

for Gamma factor SR, and store the result in 

the rd address. 

10 EdgIm   rs, rt, rd, rz 

[R(rd)] =[R(rs)] … if |[R(rs)]-[R(rt)]| 

≥ R(SR) 

Else 

[R(rd)] =0 

Edge detection of pixel addressed by rs with 

threshold rt, and store the result in the rd 

address. 

 

IV. IMPLEMENTATION, SIMULATION RESULTS, AND COMPARATIVE ANALYSIS 

A. Implementation and Simulation Results  

This section presents the implementation and simulation results for the proposed CMIPS_32. 

CMIPS_32 and the standard MIPS_32 from the sides of resource utilization and power consumption 

have also been compared. CMIPS_32 is implemented using Verilog language in Xilinx ZedBoard 

XC7Z020CLG484-1 FPGA and MATLAB HDL. The implemented model of CMIPS_32 is shown in 

Fig. 11. The CMIPS_32 model comprises six stages: IF, ID, EX1, EX2, MA, and WB. The modified 

RF and CU, as well as the proposed ACU and LPDU, are shown in Fig. 11. 

Fig. 12 shows the simulation results in the waveform for executing SI and IPI-type. In Fig. 12-a, 

the following SI of R-type instruction is executed: Add $R1, $R2, $R3, with values of R1=70, R2=20. 
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 The register number of rs, rt, and rd are (00000b), (00001b), and (00010b), respectively, So rs = R1, 

rt = R2, and rd = R3=90. The image instruction indicator (Im) and control signals (Lo and St) are zero. 

Fig. 12-b illustrates the simulation waveform of the following IPI: AndIm $R1, $R2, $R3, $R4, 

which requires five pipeline stages. First, registers R1, R2, R3, and R4 values are set to 10, 10, 3500, 

and 3025, respectively. This instruction reads two sets of pixels from the block and kernel memories 

which leads to setting the memories read signal (Mr, Kr) to 1, and the ANDing operator is performed 

between them. The result of this operator is stored in the block memory with the starting address rd, 

which means the (Mw) signal is set to 1. However, the registers rs=(00000b), rt=(00001b), 

rd=(00010b), and rz=(00100b), which means rs=R1, rt=R2, rd=R3, and rz=R4.  

Fig. 12-c shows the IPI-type simulation waveform result, which calculates the edge detection 

between two images. This IPI is complete with two execution stages of the pipeline (EX1 and EX2), 

meaning the ALU-EXE-2 signal is set to 1, and the ALU-2 operator does not equal zero. That means 

two different operators will be applied to complete the execution of this instruction on the same image 

pixels. 

 

FIG. 11. CMIPS_32 IMPLEMENTATION DIAGRAM. 

This work uses Matlab tools to read and resize the image (Lena.jpeg) to 55x55 pixels 

and convert it to a hexadecimal file. The hexadecimal file is loaded to the memory of the 

proposal as initial data. Fig. 13-a shows the original image, while Fig. 13-b and Fig. 13-c 

displays the binary and negative versions of the image, respectively, created using 

instructions 6 and 7 from Table III. 

 

(A) SI OF R-TYPE INSTRUCTION WAVEFORM. 
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(B) IPI-TYPE INSTRUCTION WITH FIVE STAGES PIPELINE WAVEFORM. 

 

(C) IPI-TYPE INSTRUCTION WITH SIX STAGES PIPELINE. 

FIG. 12. WAVEFORM FOR THE SIMULATION OF CMIPS_32. 

 

 

 

(A) ORIGINAL IMAGE                              (B) BINARY IMAGE                               (C) NEGATIVE IMAGE 

FIG. 13. TEST IMAGE AFTER EXECUTING BINARY AND NEGATIVE INSTRUCTIONS. 

B. Comparative Analysis and Evaluation 

Table IV show the utilization summary and power consumed by the CMIPS_32.   

Table V. compares CMIPS_32 with standard MIPS_32 implemented with different FPGA 

platforms regarding resource utilization and power consumption. Table V shows that the 

power consumption of the proposal is less than the major of other types of the standard 

MIPS_32 implemented with different FPGA platforms. The power improvement obtained 

was 9.58% compared with the nearest model one, which consumes 0.144 W even though 

one model consumes less power than the proposed one. The significant reasons behind the 

other work consuming high power compared with CMIPS_32 are: firstly, the LUTs and FFs 

used in other works are greater than those used in CMIPS_32. Secondly, The static power 

of Xilinx 7, 6, and 5 series is greater than that of ZedBoard XC7Z020CLG484. 
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 TABLE IV. RESOURCE UTILIZATION AND POWER CONSUMPTION OF THE CMIPS_32 

LUTs FFs BRAMs I/Os Dynamic Power (W) Static Power (W) 
Total Power 

(W) 

75 414 9 33 0.0242 0.106 0.1302 

 

TABLE V. COMPARE THE CMIPS_32 WITH THE STANDARD MIPS_32 IMPLEMENTED WITH DIFFERENT FPGA PLATFORMS 

FPGA Platforms LUT Frequency (MHz) Power (W) 
Power enhancement 

% 

MIPS_32 (Spartan3: XC3S1500L) 

[17] 
417 98.090 0.144 9.58 

MIPS_32 (Virtex5: XC5VFX30T) 

[17] 
300 321.048 0.777 83.24 

MIPS_32 (Virtex6: XC6VLX75T) 

[17] 
307 401.881 1.440 90.96 

MIPS_32 (Virtex6Low Power: 

XC6VLX75TL) [17] 
307 335.233 0.920 85.85 

MIPS_32 (Spartan3: XC3 1600e-

FG484) [17] 
421 285.583 0.129 -0.9 

Proposed CMIPS_32 (ZedBoard 

XC7Z020CLG484) 
75 100 0.1302 -------- 

Furthermore, CMIPS_32 is compared with other models, IPPRO, GPU, and eGPU, from 

the side of the power consumption. Table VI lists the result of that comparison. The results 

showed that the power consumption by the proposal improved by 58% compared with 

IPPRO and by 91.65% compared with eGPU. 

TABLE VI. COMPARE THE CMIPS_32 WITH THE MODIFIED MIPS_32 AND GPU 

Processor 
Frequency 

(MHz) 

Static Power 

(W) 

Dynamic Power 

(W) 

Total Power 

(W) 

Power 

enhancement % 

      

IPPRO [18] 337 0.15 0.03 0.31 58 

GPU [18] 1127 37 27 64 99.80 

eGPU [18] 600 0.12 ---- 1.56 91.65 

CMIPS_32 100 0.106 0.0242 0.1302 -------- 

Speedup is an important factor in measuring computer performance. In general, the 

archived speedup of computer (A) that executes (P) instruction in contrast to computer (B), 

which executes the same (P) instructions, can be calculated as the following equation (4). 

𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑃 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑢𝑠𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝐴 

𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑃 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑢𝑠𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝐵 
         (4)[22] 

CMIPS_32 performance is evaluated in contrast to the standard MIPS_32 by picking 

up one of the proposed IPIs listed in Table III to be executed on a particular image(s) with a 

determined number of pixels, then suggesting a sequence of instructions of SI type to 

perform the same operation on the same image(s). First, the number of machine clocks 

required by both cases is calculated, and then, using equation (5), the obtained speedup ratio 

between CMIPS_32 and MIPS_32 is determined. 

𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑁𝑜. 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑜𝑓 𝑆𝐼 𝑡𝑦𝑝𝑒

𝑁𝑜. 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐼𝑃𝐼
                            (5) 
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 For instance, the instruction AddIm $R1,$R2,$R3,$R4 of type IPI is selected to 

calculate the achieved speedup when it is used. This instruction performs an ADDing 

operation for two images with the beginning address stored in R1 and R2, respectively. The 

code in U is a sequence of instructions of SI type, which perform the same operation that 

AddIm performs. This work assumes that completing each ALU operation and pipeline 

stage consumes only one clock and assumes an image size of 3028 pixels (55*55), where 

each pixel equals one byte. Then, using the standard MIPS_32 architecture with a pipeline 

of five stages, the number of clocks required to execute the first instruction shown in      

Fig. 14 is five. The first instruction is executed only once. After that, one instruction per 

clock is executed for the rest of the instructions (six SI-type instructions). It is important to 

notice that these six instructions are looped for times equal to the number of pixels divided 

by four since four pixels will be read from the memories at every clock. So, the number of 

clocks required to execute the six instructions is 6*757 + 5 = 4547. The number of clocks 

needed to execute the instruction AddIm is equal to the number of pixels of the image 

divided by four, which equals 757. So, the achieved speedup through using AddIm 

instruction (IPI type) instead of the sequence of SI instructions shown in Fig. 14 via 

equation (5) is: 

 

FIG. 14. SI INSTRUCTION SET TO PERFORM ADDING BETWEEN TWO IMAGES. 

Achieved Speedup using CMIPS_32 = 4546 / 762 = 6 which is the same number of 

instructions executed during each code loop shown in Fig. 14. Essentially, the main reason 

behind improving the speedup for CMIP_32 in contrast to the standard MIPS_32 is the 

large number of SIs that must be executed to perform a certain image processing operation 

compared with a single instruction of IPI type for the same operation. As a general formula, 

For code consists of j of SI instructions within a loop size of i, where i represents the 

number of image pixels divided by 4, then, the number of clocks required to execute j * i 

instructions of SI type will be n (n = j*i) + k representing the number of pipeline stages for 

CMIPS_32. Conversely, the number of clocks to execute a single IPI on an image consists 

of i pixels using CMIPS_32 comprising a pipeline of k stages is i/4 + k. By assuming that k 

might be neglected since j and i >> k as the number of SIs increases when performing more 

complicated image processing operations or the image size becomes large, then the 

maximum speedup achieved by CMIPS-32 is: Maximum speedup for CMIPS_32 = 

(j*i/4)/(i/4) <= j. That means that as the number of instructions of SI type within the main 

loop becomes high to represent certain image processing operations, the achieved speedup 

also becomes high. Moreover, the value of k, the number of stages of the CMIPS_32 

pipeline, does not significantly affect the achieved speedup. Still, any growth of k will be 

reflected in resource utilization. 
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 C. Discussion Result 

Central processing units (CPUs) and Graphics processing units (GPUs) are the 

processors often most used for image processing. GPUs are characterized by high speed, 

high power consumption, and high cost compared to CPUs. So, it is very attractive to 

improve the performance of the available processors characterized by low power 

consumption and reasonable cost, such as MIPS_32, to operate in specific situations 

requiring low power consumption and reasonable computational power. CMIPS 32, which 

improves image processing instructions, employs a pipeline structure with five to six stages, 

depending on the operation required by the instruction. The CMIPS 32 processor can 

configure a single execution stage for some image instructions; thus, the pipeline will have 

five stages. In contrast, the same processor can configure two sequential execution units to 

execute additional operations, resulting in six pipeline stages. The obtained results showed 

the performance of the proposed CMIPS_32 model is better than the other MIPS_32-based 

models that were suggested for the same purposes regarding power consumption and 

resource utilization. Improving the computation capabilities for the two execution stages of 

the pipeline, EX1 and EX2, to perform more complicated IPIs can be recommended as 

future work. 

V. CONCLUSIONS 

This paper presents an enhancement to the MIPS 32 architecture to allow more 

effective image processing (IP) tasks. This work proposes a design for a Customized 

MIPS_32 (CMIPS_32) capable of executing image processing and standard assembly 

instructions to increase throughput by compressing the number of iteratively fetched 

instructions needed for a specific IP operation into a single specialized IP instruction. The 

development of MIPS_32 architecture is built in two phases. The IP operations data is first 

manipulated by adjusting the Register File, control unit, and ALU. Second, a couple of new 

pieces of hardware, an address calculation unit and a last pixel detection unit, were 

proposed for finding the beginning and ending addresses of the image under process, 

respectively. Also, the pipeline of MIPS_32 was reconfigured to have five to six stages 

depending on the complexity of the arithmetic operation required by specific image 

processing instructions to reduce the number of clocks and power consumption. CMIPS_32 

was implemented using Zed-Board XC7Z020CLG484-1 FPGA. An evaluation is done by 

measuring the number of machine clocks consumed by executing a specific image 

processing operation using CMIPS_32 compared to that consumed by the standard 

MIPS_32. The results show that the computation speedup for CMIPS_32 is increased by a 

factor equal to the number of standard instructions of MIPS_32 required to perform the 

same operation. Furthermore, CMIPS_32 consumed less power than the standard MIPS_32 

implemented on Spartan3-XC3S1500L, Virtex5-XC5VFX30T, Virtex6-XC6VLX75T, 

Virtex6-Low-Power-XC6VLX75TL by 9.58%, 83.24%, 90.96%, and 85.85%, respectively. 

In addition, CMIPS_32 is better than the NVIDIA-GPU-GTX980 in terms of power 

consumption by 99.80%. 
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