

Wasit Journal of Engineering Sciences

Journal homepage: https://ejuow.uowasit.edu.iq

Parallel Processing Distributed-Memory Approach

Influences on Performance of Multicomputer-Multicore

Systems Using Single-Process Single-Thread

Dildar Masood Abdulqader1 | Subhi R. M. Zeebaree2 | Rizgar R. Zebari3 | Mohammed A.

M.Sadeeq2 | Umed H. Jader4 | Mohammed Mahmood Delzy4

Affiliations
1Information Technology Dept.,

Akre University for Applied

Science, Duhok, Iraq

2 Energy Eng. Dept., Duhok

Polytechnic University

Duhok, Iraq

3Computer Science Dept.,

Knowledge University, Duhok,

Iraq

4Information Technology Dept.,

Erbil Polytechnic University,

Erbil, Iraq

Abstract
Based on client/server architecture concepts, this research suggests a method

for creating a multicomputer-multicore distributed memory system that can be

implemented on distributed-shared memory systems. Both of number of the

participated computers and number of existed processors for each of these

computers, this research was depended with the specific design and its

implementation. The suggested system has two primary phases: monitoring

and managing the programmes that may be executed on multiple distributed-

multi-core architectures with (2, 4, and 8) CPUs to perform a certain job.

There might be a single client and unlimited servers in the network. The

implementation phase relies on three separate scenarios covering most of the

design space. The suggested system can determine the start time, duration,

CPU use, kernel time, user time, waiting time, and end time for each server in

the system. Single-Process Single-Thread (SPST) is considered a possible

situation while developing User Programmes (UPs). The findings confirmed

that more processing power (more servers and more processors on each

server) increases the speed at which tasks can be solved. There was a 2.877-

fold gain in task processing speed after considering three different possible

SPST UPs situations. The C# programming language is used to create this

system.

Correspondence
Subhi R. M. Zeebaree,
Energy Eng. Dept., Duhok
Polytechnic University
Duhok, Iraq

Email:subhi.rafeeq@dpu.edu.krd

Accepted
5-January-2024
Doi: 10.31185/ejuow.Vol12.Iss1.533

Keywords: distributed system, parallel processing, process/threads monitoring, process/threads controlling

يقترح هذا البحث منهجًا لإنشاء نظام ذاكرة موزعة متعدد الحواسيب متعدد النوى يعتمد على مفاهيم بنية عميل/خادم، والذي يمكن تنفيذه :صةخلاال

في كل يعتمد تصميم وتنفيذ هذا البحث على عدد أجهزة الكمبيوتر المشاركة وعدد المعالجات الموجودةة. ى أنظمة الذاكرة المشتركة الموزععل

و 4و 2مراقبة وإدارة البرامج التي يمكن تنفيذها على بنيات متعددة النوى موزعة متعددة)بـ :يتكون النظام المقترح من مرحلتين رئيسيتين .منها

نفيذ على ثلاثة تعتمد مرحلة الت .يمكن أن يكون هناك عميل واحد وعدد غير محدود من الخوادم في الشبكة .معالجات(لأداء مهمة معينة 8

يمكن للنظام المقترح تحديد وقت البدء والمدة واستخدام وحدة المعالجة المركزية ووقت النواة .سيناريوهات منفصلة تغطي معظم مجال التصميم

كنة عند حالة مم Single-Process Single-Thread (SPST) يعتبر .ووقت المستخدم ووقت الانتظار ووقت الانتهاء لكل خادم في النظام

أكدت النتائج أن قوة المعالجة الأكبر)مزيد من الخوادم والمزيد من المعالجات على كل خادم(تزيد من سرعة . (UPs) تطوير برامج المستخدم

تم . UP SPST ضعفاً في سرعة معالجة المهام بعد النظر في ثلاثة مواقف مختلفة محتملة لبرامج(2.877) كان هناك ربح بمقدار .حل المهام

 .لإنشاء هذا النظام #C استخدام لغة البرمجة

1. INTRODUCTION

The computer component, which we shall refer to as a "node," may either be a hardware device or a software

process, necessitating some kind of cooperation between the independent nodes [1-3]. High-performance

computing workloads are other important types of distributed systems. In cluster computing, central machines

https://ejuow.uowasit.edu.iq/

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.31

are made up of a collection of workstations or other comparable computers that are fast-connected to a local

area network. Moreover, the same operating system is used by each node [4], [5]. Since it is used virtually every

day for a range of applications, client-server systems have gained a lot of popularity. A software architecture

consisting of a client and a server, in which clients always issue requests when the server replies to the requests

provided, is referred to as a client-server system. Due to the data interchange between the client and server, each

doing a distinct job, the client server facilitates inter-process communication. [6], [7].

Multi-core CPUs are already giving PCs, laptops, and business servers a new level of performance. Several of

these systems must also adhere to strict guidelines for low weight, low power use, and low heat dissipation [8],

[9]. These needs are directly met by multi-core processors, which provide much greater computing power per

ounce, per watt, and per square inch than traditional processors [10], [11]. The performance and fairness of the

system are significantly impacted by the efficient distribution of resources across the various accounts that fight

for shared resources in multi-core systems [12], [13].

One CPU is insufficient for various applications, which leads to several issues with these systems, including

poor operation and lengthy reaction times. We efficiently spread the computational load among the current

CPUs, but sometimes a multiprocessor system is necessary. Thus, it is essential to break the overall work down

into smaller tasks and properly arrange the execution sequence of these smaller activities [14], [15].

Multiprocessor computers, on the other hand, provide a supportive environment and are more potent than single

processor systems for running particular programs. As a result, research into planning in a multiprocessor

system is ongoing. Similar to single processor layout, multiprocessor central scheduling, and distributed

scheduling, each job in such systems executes on a multiprocessor system. Real-time planning involves intricate

load calculations. This implies that compared to single processor algorithms, planning algorithms in

multiprocessor systems are substantially more difficult [16], [17]. A technique called multithreading enables a

program or process to carry out many tasks concurrently. It enables the process to run in parallel mode on a

system with only one CPU [18], [19]. Multithreading expands the idea of multi-tasking in applications, where

you can split specific processes into individual threads within a single application. The operating system

allocates processing time between different applications and between each thread within the application. Using

proprietary hardware that provides multiple threads increases CPU usage and thus reduces overall program

execution time [20], [21].

By gathering information on the performance of an application or a system, performance monitoring may be

used to identify bottlenecks. The single-core or multi-core design of the processor unit determines how thread

(process) monitoring systems operate [22]. Data placement, process affinity, or load balancing are a few

performance challenges where this knowledge is crucial. The analysis is crucial for performance improvement.

A utility is presented to execute thread (process) migrations and monitor program performance. This tool

gathers data about all system threads and processes in order to optimize a shared memory program with parallel

aims [23]. The need to executing complex problems with as minimum as possible of processing time benefiting

from the system’s resources, was depended as a motivation for this research.

2. LITERATURE REVIEW

In 2022, Z. N. Rashid et al. [24] presented a system to assist users in doing composite tasks interactively with

the least processing time. Distributed-Parallel-Processing and Cloud Computing are the two most great

technologies, can process and answer the user problem quickly. Hash codes are generated on the client-side and

sent towards the webserver. The webserver delivers these does to cracking servers that have been specified. It

has been verified that while employing light load (single hash-code) with multi-servers and multiprocessors, the

suggested system gives improved efficiency (in terms of Kernel-burst, User-bust, and Total-execution) timings.

Although it has been demonstrated that employing large loads (many under-testing codes) with many computing

machines using multiprocessors improves the system's performance.

The CPU taking too long to employ computational marine hydrodynamics tokens with restricted cloud resources

through private clouds in containers was a brand-new and significant problem that was solved by Y. Xu, et. al.

[25] in 2019. A fresh match with the task resource is suggested by the proposed scheduling algorithm to

promote efficient communication between service providers and end users. The simulation results demonstrate

that, in terms of quick scheduling, resource use, and overall performance, our technique provides advantages

over the underlying algorithms.

In 2020, Bianco et al. [26] presented the architecture and how it was implemented using open-source operating

systems (OS) and Ethernet network interface cards (NICs). As this design can provide high-speed packet

transmission, it has drawn growing attention from the research community. They suggested that by expanding

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.32

the number of potential pathways and priority classes for each path, their system might be adjusted. In order to

implement a more sophisticated justice policy, it was also feasible to change the unit that distributes resources in

the NIC's output during the scheduling algorithm's response phase.

integrated link and attribute, lexicographic breadth first search, approximation algorithm for shortest route

length based on center-division zone distance, and axis-vertex for area and principal highway are some of the

methods used by Z. Lv, D. Chen, and A. K. Singh [27] in 2021. The findings demonstrate that the calculation

time for the framework is the fastest with 4 CPU threads (514.63 ms). The total computation time of the

framework continuously lowers as the number of CPU cores rises. The number of jobs rises by one for every

extra two CPU cores. The algorithm's arithmetic scale factor may be adjusted to 0.06 for less complicated

networks and 0.2 for more common networks. The processing time, average query time, and total query time of

the method are the shortest when compared to other algorithms in various datasets; they are 49.67 ms and 5.12

ms, respectively.

L. M. Haji,et. al. [28] in 2021, focused on developing a shared-memory parallel processing system that provided

the abilities to monitor and control the processes and threads of their system. Also, they proved that their system

could be run on number of multi-core system architectures. The algorithms associated with their work were

designed for providing the ability to: provide information from the server computer system, check the status of

all current processes with relevant information, and execute all possible threads/processes states that made up a

user program.

3. METHODOLOGY

The proposed Process/Threads Monitoring and controlling distributed system (PTMCDS) consists of two
main sides (client and servers), and working in three proposed scenarios to process the created load (by client-
side) at the servers-side. The control part of the proposed system illustrated in Figure 1. Also, the data message is
shown in Figure 2 and the mechanism of the proposed system operation is demonstrated in Figure 2. There are
two main types of the messages transferred between client-side and servers-side witch are (control and data)
messages. The complete system is shown in figure 3.

Figure 1 Block Diagram of control message.

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.33

Figure 2 Block Diagram of data-messages.

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.34

Figure 2 General diagram of proposed mechanism.

3. 1. Scenarios of Proposed System

Researchers often use one or more scenarios that explain these algorithms and get answers faster than a single

processing technology to demonstrate the value of parallel processing approaches. Also, the techniques of

numbers-sorting can be a suitable scenario study as an application to display the effects of Parallel Processing

on the time consuming of execution and efficiency of processing approach. Four techniques of numbers-sorting

are depended in this paper, which need multi server-computers to explain the advantages of Parallel Processing

approach upon single processing approach. These techniques are: Selection Sort, Insertion Sort, Bubble Sort and

Shakar Sort.

The sorting operations will be repeated for different orders to illustrate the effects of the mixed parallel

processing approach as the load increases. In this study, the same client-host been depended with core i7 (8

processer). So, only features of the server-hosts is explained:

S1: Two servers core two duo (2 processors) and core i3 (4 processors) used for 2 UP, SPST.

S2: Two servers core i3 (4 processors) and core i7 (8 processors) used for 2 UP, SPST.

S3: Two servers both of them core i7 (8 processors) used for 2 UP, SPST.

3.2. Monitoring Implementation and Results

The proposed system was implemented using one UP until a hundred UPs, with single or multi processes, and
each process considered to be single or multi threads. The MI component is applicable to cover all of the
essential aspects of system. There are three different scenarios that are put into action, and their outcomes are
tracked and analyzed before being presented in proper formats (Tables and Plots), such as those shown in Tables
(1 to 3) and Figures 4, 5, and 6.

 Scenario-1: Two servers core 2 duo (2 processors) and core i3 (4 processors) used for (SPST).

TABLE 1 Results of Scenario-1, two servers core two duo and core i3

 Client Server1 Server2

IP 192.168.1.1 192.168.1.2 192.168.1.3

N_core 8 2 4

Proccess_Name startproccess SPST11 SPST12

Start_time 17:46:33:359 16:44:44:623 15:19:31:169

Elapsed_Time (ms) 1222923 1222813 1141714

Kernel_Time (ms) 116031 31 171

User_Time (ms) 360125 1220489 1120165

Total_CPU Time (ms) 476156 1220520 1120336

Waiting_Time (ms) 746767 2293 21378

End_time 18:06:56:280 17:05:07:474 15:38:32:895

The server's properties are (CPU-Type= 2Duo, RAM=4 GB, No. of Core=2, CPU-Frequency=2.2 GHz) and
(CPU-Type= i3-2350, RAM=4 GB, No. of Core=4, CPU-Frequency=2.3 GHz). Table I illustrates the obtained

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.35

results related to monitoring total running of one UP, single process, and single thread. While elapsed, user,
kernel, total CPU and waiting times are plotted as shown in Figure 4. Where 11 in SPST11 means that it is
process-1 in UP-1.

Figure 4 Plotted results of scenario-1 (SPST).

Scenario-2: Two servers core i3 (4 processors) and Corei7 (8 processors) used for (SPST).

The server's properties are (CPU-Type= i3-2350, RAM=4 GB, No. of Core=4, CPU-Frequency=2.3 GHz) and
(CPU-Type= i7-6600, RAM=8 GB, No. of Core=8, CPU-Frequency=2.7 GHz).

Table 2 illustrates the obtained results related to monitoring total running of one UP, single process, and single
thread. While elapsed, user, kernel, total CPU and waiting times are plotted as shown in Figure 5.

Table 2 Results of Scenario-2, two servers' core i3 and core i7 (SPST)

 Client Server1 Server2

IP 192.168.1.1 192.168.1.3 192.168.1.4

N_core 8 4 8

Proccess_Name startproccess SPST11 SPST21

Start_time 01:19:31:232 14:19:31:169 09:34:44:998

Elapsed_Time (ms) 1141846 1141714 425203

Kernel_Time (ms) 88734 171 62

User_Time (ms) 279359 1120165 414447

Total_CPU_Time (ms) 368093 1120336 414509

Waiting_Time (ms) 773753 21378 10694

End_time 01:38:33:083 14:38:32:895 09:41:50:339

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.36

Scenario-3: Two servers both of them core i7 (8 processors) used for (SPST). The server's properties are (CPU-
Type= i7-10700, RAM=8 GB, No. of Core=8, CPU-Frequency=3.8 GHz) and (CPU-Type= i7-6600, RAM=8
GB, No. of Core=8, CPU-Frequency=2.7 GHz). Table 3 illustrates the obtained results related to monitoring
total running of one UP, single process, and single thread. While elapsed, user, kernel, total CPU and waiting
times are plotted as shown in Figure 6.

Table 3 Results of Scenario-3, two servers both of them core i7 (SPST)

 Client Server 1 Server 2

IP 192.168.1.1 192.168.1.4 192.168.1.5

N_core 8 8 8

Proccess_Name startproccess SPST11 SPST21

Start_time 09:24:53:652 09:34:44:998 01:50:20:998

Elapsed_Time (ms) 425062 425203 421341

Kernel_Time (ms) 42390 62 46

User_Time (ms) 138234 410447 402342

Total_CPU_Time

(ms)

180625 410509 402388

Waiting_Time (ms) 244437 14694 18953

End_time 09:31:58:718 09:41:50:339 01:57:22:339

Figure 5 Plotted results of scenario-2 (SPST).

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.37

Figure 6 Plotted results of scenario-3 (SPST).

4. DISCUSSION OF OBTAINED RESULTS FROM PTMCDS SCENARIOS

Tables (1, 2, and 3) show that when using one server the Total-Task-Time (TTT) of single UP for SPST is

reduced with increasing number of cores. For Scenario-1, when using a server of core two due type, the TTT

was 1,222,923 ms. While, for Scenario-2, when using a server of core i3 type, the TTT was 1,141,846 ms.

Finally, for Scenario-3, when using a server of core i7 type, the TTT was 425,062 ms. Hence, the TTT (from

Scenario-1 to Scenario-3) is decreased by 797,861 ms (i.e. the processing speed increased by 2.877 times) as

shown in Figure 5.

5. COMPARISON WITH PREVIOUS WORKS

Table 4 Comparison with Previous Works

Ref. Technique
Operating System

And Cores

Programing

Language
Significant Results

[24]

sorting

Algorithm and

Hash-Codes

Windows (server, 7

,10)
Visual C#

The result Consumed less time than other expected

scenarios (minimal breaking-time besides cost effective

usage of computer resources).

[25]
scheduling

algorithm

Windows server2016,

Core (4 processor)
java

The result is a 6 times improvement, a 44% volume

reduction, and an average defined satisfaction rate,

respectively

[26]
scheduling

algorithm
Linux, PCI-X core

LOGIC

design

It is processed and managed by the operating system in

software, reducing load performance.

[27]
N-SPFA

algorithm

Linux,

PCI-X core
C# language

The processing time, average query time, and total

query time of the algorithm are the shortest,

being 49.67 ms, 5.12 ms, and 94.720 ms, respectively.

[28]
sorting

Algorithm

Windows 10,

core i5, core i7
C# language

Controlling and monitoring Single/Multiple

Processes/Threads in multicomputer parallel

processing system.

Reduce the execution time for CPU.

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.38

Depending on the properties shown in Table 4, the following important distinctions can be extracted:

- Load Type: The proposed PTMCDS deals with four sorting algorithms (which can be extendable to any

number of sorting algorithms), giving it unlimited workload possibilities.

- Operating System: Microsoft Windows is not an open-source operating system and this was the biggest

challenge for the proposed PTMCDS system. However, this problem was fixed and the system was designed

to run under this operating system, while many of previous works mentioned above were done with open-

source operating systems.

- Core Types: PTMCDS worked with four types of cores (i7, i5, i3 and core 2due), while others worked with

one or two cores. In addition, PTMCDS can automatically work with any number of servers to participate in

the task-processing automatically, and any core types without restrictions.

Another important point of the proposed PTMCDS that differs from all the previous works addressed is that

PTMCDS uses the power of the distributed systems for parallel processing, and at the same time utilizing the

efficiency of shared memory systems for each server individually. While none of the previous works treated

in this style, which gives PTMCDS more performance power. Remember that parallel processing is a very

important technology today to speed up the solution of very complex problems, so it is very important to

address the performance measurement of this technology.

6. CONCLUSION

In this research, the use of a Process/Threads Monitoring Controlling Distributed System (PTMCDS) is

recommended as a means of providing such monitoring and controlling for UPs. The following

paragraphs provide a summary of the most important findings of this article:

1) First: The CPU impact and real-time event recording are included into the integrated control choices for

all procedures. Because of the restriction of using just one flavour of operating system and one version of

that operating system, the problem was solved. It is anticipated that this technique would work well with

all Windows OS variants.

2) To facilitate efficient parallel processing: The proposed system made use of OpenMP Communication as

(shared memory) and MPI Communication as (distributed memory), two popular parallel processing

methodologies.

3) According to the results: There is an increase in client-side task processing performance of a factor of

2.877 between Scenario 1 and Scenario 3.

As a future work, it is suggested to depend on Multicomputer-Multicore Systems Using Multi-Process

Multi-Thread.

REFERENCES

[1] Z. N. Rashid, S. R. Zeebaree, R. R. Zebari, S. H. Ahmed, H. M. Shukur, and A. Alkhayyat, “Distributed

and Parallel Computing System Using Single-Client Multi-Hash Multi-Server Multi-Thread,” in 2021 1st

Babylon International Conference on Information Technology and Science (BICITS), 2021, pp. 222–227.

[2] Z. N. Rashid, S. R. Zeebaree, M. A. Sadeeq, R. R. Zebari, H. M. Shukur, and A. Alkhayyat, “Cloud-based

Parallel Computing System Via Single-Client Multi-Hash Single-Server Multi-Thread,” in 2021

International Conference on Advance of Sustainable Engineering and its Application (ICASEA), 2021, pp.

59–64.

[3] H. Shukur, S. Zeebaree, R. Zebari, D. Zeebaree, O. Ahmed, and A. Salih, “Cloud Computing

Virtualization of Resources Allocation for Distributed Systems,” Journal of Applied Science and

Technology Trends, vol. 1, no. 3, pp. 98–105, 2020.

Propo

sed

Syste

m

sorting

Algorithm

Windows 10,

Core 2 Duo,

core i3, core i7

C# language

Controlling and monitoring Single/Multiple

Processes/Threads in multicomputer parallel

processing distributed system.

Reduce the Client Total-Task-Time, server (elapsed and

CPU) times.

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.39

[4] Z. N. Rashid, S. R. Zeebaree, and A. Shengul, “Design and Analysis of Proposed Remote Controlling

Distributed Parallel Computing System Over the Cloud,” in 2019 International Conference on Advanced

Science and Engineering (ICOASE), 2019, pp. 118–123.

[5] S. R. Zeebaree, K. Jacksi, and R. R. Zebari, “Impact analysis of SYN flood DDoS attack on HAProxy and

NLB cluster-based web servers,” Indonesian Journal of Electrical Engineering and Computer Science, vol.

19, no. 1, pp. 510–517, 2020.

[6] O. Alzakholi, L. Haji, H. Shukur, R. Zebari, S. Abas, and M. Sadeeq, “Comparison Among Cloud

Technologies and Cloud Performance,” Journal of Applied Science and Technology Trends, vol. 1, no. 2,

Art. no. 2, Apr. 2020, doi: 10.38094/jastt1219.

[7] H. S. Oluwatosin, “Client-server model,” IOSR Journal of Computer Engineering, vol. 16, no. 1, pp. 67–

71, 2014.

[8] H. Shukur et al., “A State of Art Survey for Concurrent Computation and Clustering of Parallel Computing

for Distributed Systems,” Journal of Applied Science and Technology Trends, vol. 1, no. 4, pp. 148–154,

2020.

[9] H. Shukur, S. Zeebaree, R. Zebari, O. Ahmed, L. Haji, and D. Abdulqader, “Cache Coherence Protocols in

Distributed Systems,” Journal of Applied Science and Technology Trends, vol. 1, no. 3, pp. 92–97, 2020.

[10] R. Craig and P. N. Leroux, “Case study-making a successful transition to multi-core processors,” QNX

Software Systems GmbH & Co, 2006.

[11] Z. N. Rashid, K. H. Sharif, and S. Zeebaree, “Client/Servers Clustering Effects on CPU Execution-Time,

CPU Usage and CPU Idle Depending on Activities of Parallel-Processing-Technique Operations “,”

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, vol. 7, no. 8, pp. 106–

111, 2018.

[12] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip multiprocessors,” in ACM International

Conference on Supercomputing 25th Anniversary Volume, 2007, pp. 402–412.

[13] S. Zeebaree and I. M. Zebari, “Multilevel Client/Server Peer-to-Peer Video Broadcasting System,”

International Journal of Scientific & Engineering Research, vol. 5, no. 8, Art. no. 8, 2014.

[14] G. P. Acharya and M. A. Rani, “FPGA Prototyping of Micro-Blaze soft-processor based Multi-core

System on Chip,” International Journal of Engineering & Technology, vol. 7, no. 2.16, pp. 57–60, 2018.

[15] A. A. Yazdeen, S. R. Zeebaree, M. M. Sadeeq, S. F. Kak, O. M. Ahmed, and R. R. Zebari, “FPGA

implementations for data encryption and decryption via concurrent and parallel computation: A review,”

Qubahan Academic Journal, vol. 1, no. 2, pp. 8–16, 2021.

[16] M. Ababneh, S. Hassan, and S. Bani-Ahmad, “On Static Scheduling of Tasks in Real Time Multiprocessor

Systems: An Improved GA-Based Approach.,” International Arab Journal of Information Technology

(IAJIT), vol. 11, no. 6, 2014.

[17] S. R. M. Zeebaree et al., “Multicomputer Multicore System Influence on Maximum Multi-Processes

Execution Time,” TEST Engineering & Management, vol. 83, no. May-June 2020, pp. 14921–14931, May

2020.

[18] A. S. Y. Subhi Rafeeq Mohammed Zebari, “Improved Approach for Unbalanced Load-Division

Operations Implementation on Hybrid Parallel Processing Systems,” Journal of University of Zakho, vol.

1, no. (A) No.2, Art. no. (A) No.2, 2013.

[19] D. M. Abdulqader and S. R. Zeebaree, “Impact of Distributed-Memory Parallel Processing Approach on

Performance Enhancing of Multicomputer-Multicore Systems: A Review,” QALAAI ZANIST

JOURNAL, vol. 6, no. 4, pp. 1137–1140, 2021.

[20] N. Goel, V. Laxmi, and A. Saxena, “Handling multithreading approach using java,” International Journal

of Computer Science Trends and Technology (IJCST), vol. 3, no. 2, pp. 24–31, 2015.

S. R. M. Zeebaree et al.

Wasit Journal of Engineering Sciences.2024, 12 (1) a special issue pg.40

[21] L. Haji, R. R. Zebari, S. R. M. Zeebaree, W. M. Abduallah, H. M. Shukur, and O. Ahmed, “GPUs Impact

on Parallel Shared Memory Systems Performance,” International Journal of Psychosocial Rehabilitation,

vol. 24, no. 08, pp. 8030–8038, 21, May, doi: 10.37200/IJPR/V2418/PR280814.

[22] O. H. Jader et al., “Ultra-Dense Request Impact on Cluster-Based Web Server Performance,” in 2021 4th

International Iraqi Conference on Engineering Technology and Their Applications (IICETA), 2021, pp.

252–257.

[23] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, and F. F. Rivera, “Multiobjective optimization

technique based on monitoring information to increase the performance of thread migration on

multicores,” in 2014 IEEE International Conference on Cluster Computing (CLUSTER), 2014, pp. 416–

423.

[24] Z. N. Rashid, S. R. M. Zeebaree, M. A. M. Sadeeq, R. R. Zebari, H. M. Shukur, and A. Alkhayyat,

“Cloud-based Parallel Computing System Via Single-Client Multi-Hash Single-Server Multi-Thread,” in

2021 International Conference on Advance of Sustainable Engineering and its Application (ICASEA),

2022, pp. 59–64.

 [25] Y. Xu, P. Liu, I. Penesis, and G. He, “A task-resource mapping algorithm for large-scale batch-mode

computational marine hydrodynamics codes on containerized private cloud,” IEEE Access, vol. 7, pp.

127943–127955, 2019.

[26] M. P. R. B. A. Bianco, “HERO: High-speed Enhanced Routing Operation in Ethernet NICs for Software

Routers⋆,” 2020.

[27] Z. Lv, D. Chen, and A. K. Singh, “Big data processing on volunteer computing,” ACM Transactions on

Internet Technology, vol. 21, no. 4, pp. 1–20, 2021.

[28] L. M. Haji, S. R. M. Zeebaree, O. M. Ahmed, M. A. M. Sadeeq, H. M. Shukur, and A. Alkhavvat,

“Performance Monitoring for Processes and Threads Execution-Controlling,” in 2021 International

Conference on Communication & Information Technology (ICICT), 2021, pp. 161–166.

