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Abstract

Beamforming (BF) is a critical technology for large antenna arrays, enabling
precise control over beam steering. This research presents an innovative
approach to enhance millimeter-wave transmission by integrating BF with a
long short-term memory (LSTM)-based deep learning system. The system
leverages digital signal processing and LSTM networks to optimize
beamforming parameters, offering an alternative to traditional analog
techniques and aiming for high spectral efficiency. Implemented in MATLAB,
the methodology shows substantial improvements in performance metrics,
underscoring the potential of combining BF with LSTM for advanced
communication systems. To validate the approach, several illustrative
examples are provided, guiding the beam pattern toward the desired

direction. Initially, the model achieves a Mini-batch RMSE of 5.80 and a

556-(;;32;3024 Validation RMSE of 4.19. By Epoch 40, these values improve significantly to a
Revised Mini-batch RMSE of 0.60 and a Validation RMSE of 2.14, highlighting the
12-Auguest-2024 effectiveness of the LSTM-based BF method. Furthermore, the research
Accepted

compares this LSTM-based approach with artificial neural networks (ANN) and
the least mean square (LMS) algorithm, confirming the robustness of the
technique.

26-Auguest-2024

Doi: https://doi.org/10.31185/ejuow.Vol12.1ss4.564

Keywords: Deep Learning” Beamforming” Artificial Neural Networks (ANN)” Least Mean Squares (LSM)”
Long Short-Term Memory (LSTM)”.

“Aadald)

Dm0 g Cand) 138y ol LY oladl (3 (581 aSal i a3yl L) sl il sl Al 438 g Ledl) 4 5 A 25
Aalles o Uil 138 aainy g2l Bzl 5 Al sha 5 ,SIN o aaing (Baee aled ol e g ladll g 55 4005 ad IS (e A yiaglall s sl Jis
Alle 3US (Gaiad ) Cargy s epanliil) Ay Ll lill Sy i 53 Laa cpladll dan 55 yulas Gpeandl e lihaiaV) oIS Sl 5 daad ) ol HLEY)
Al o 2 Lea oY) G pdine 8 1508 G i) &jelily « MATLABgeb 1 aladiuly dagiall o2 3855 23 Cadall aladial 8
A il Aymgi 5 ALl Bae A ol Agllad (e (3N VLAY Aadail a8 (3aa) (el Byl s AL sha 3 SIA 5 ¢ Ll i 55 G pand)
Cuivat 40 Ua yall Jolay (38810 4,19 5 5 guall Ciladall 5.8() 5 28 Uad Jas gia zasaill @i gl 8 gllaall olat) i 3 LEY) ol
UlaYl el oS3 o sadieal) ¢ ladll 4 5348 )l 4llad 5 Lae (38l 2,14 55 psuall iladall 0,60 ) Joall S IS5 ail) 028
il daa 153 5 Aol Apnmal) SN (i 5 AT L 5 (53l 8 juaad y AL gl 8 SIU) o daiandl) el 138 Cndl () lly )

@)H\a&@&dﬂﬁw«w)ﬁku)h


mailto:anaji@uowasit.edu.iq
https://ejuow.uowasit.edu.iq/

Ali A. Naji et al.

1.INTRODUCTION

With the rising demand for enhanced capacity in mobile and personal communication systems, along with
emerging applications in satellite and MIMO networks, researchers are actively developing algorithms to exploit
spatial selectivity. These efforts extend to fields such as biomedical imaging, remote sensing, radio astronomy, and
radar technology [1]. A crucial aspect in this context is determining the precise orientation of antennas to achieve the
desired beam direction. Initially, mechanical phased arrays with motors were used in military applications; however,
these systems presented limitations due to their size, weight, and vulnerability to weather conditions, alongside
mechanical wear and failure. As a result, electronic beam steering systems have become preferred, eliminating the
need for moving parts and enabling faster response times, particularly for dynamic environments [2].

Beamforming is an essential process in wireless communication and radar systems, concentrating the signal
in a desired direction rather than dispersing it. This approach typically produces a main lobe oriented toward the target
signal, while creating nulls that suppress interference signals, making it especially valuable in reducing the high
propagation loss experienced in mm-wave communication systems. Popular adaptive beamforming techniques include
minimum variance distortion-less response (MVDR) and null steering beamforming (NSB). While NSB aims to
suppress interference while preserving the desired signal, MVDR minimizes interference and noise while maintaining
signal quality [3].

However, these methods are computationally intensive and less effective in dynamic environments, where
continuously recalculating optimal weights can be challenging due to the large number of antenna elements. Recently,
deep learning (DL) has shown considerable potential in applications like direction of arrival (DOA) estimation and
adaptive beamforming, offering flexibility and efficiency in dynamic and complex environments.

2.Related works

Numerous studies have explored the development of antenna arrays using various optimization techniques.
These include hybrid methods [5,8,13], genetic algorithms [9], particle swarm optimization [10,11], central force
optimization [11,12], and gravitational search algorithms. However, as the number of antenna elements increases, the
computational time to find optimal weights also grows. For time-sensitive applications, deep neural networks (DNNSs)
offer crucial computational efficiency.

Neural networks (NNs) have generated significant interest, with many studies examining their applications
[5,6]. A robust adaptive beamforming approach based on NNs, for instance, has been used to address signal steering
vector mismatches [7], while in DOA estimation, NNs have achieved low mean square errors [8]. In large MIMO
systems, sum-rate maximization (SRM) remains a key challenge. To address this, a neural network-based algorithm
was developed to maximize SRM by discarding less optimal users [9]. Deep learning (DL) applications have extended
beyond just determining optimal weights [10] and estimating arrival angles [11,12], greatly enhancing MIMO
beamforming performance and capacity [13]. It has also been applied in ultrasound beamforming and radiofrequency
data processing to improve speed and accuracy in imaging tasks [15,16].

Research has demonstrated that combining forced-zero and maximum transmission ratio beamforming
techniques significantly increases data transmission rates. Similarly, prior studies comparing interference cancellation
methods in large-scale MIMO downlinks found that large-scale MIMO offers superior quality in small-scale fading
environments compared to network MIMO, though the theory model remains complex. Other research has utilized
antenna selection algorithms to optimize capacity transmission [10,15,18,19] and explored multi-cell coordinated
beamforming to enhance cell-edge communication quality [17,20]. Finally, a hybrid large-scale MIMO beam
assignment scheme was proposed to improve user spectrum usage and cater to multiple users, addressing a limitation
in prior single-user schemes [20,22].

3.System model

Beamforming (BF) has been extensively studied in wireless communications for its ability to reduce
interference and boost spectral efficiency. Researchers have explored various architectures and algorithms to optimize
BF parameters, noting the simplicity and energy efficiency of analog beamformers [8,9]. However, as millimeter-
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wave systems become more prevalent, the limitations of analog BF such as hardware complexity and sensitivity to
inaccurate Channel State Information (CSI) are increasingly apparent. To address these issues, recent research
suggests integrating BF with digital signal processing, as digital BF offers added flexibility for advanced data
processing and adaptation to changing channel conditions [10,11]. Replacing traditional analog components with
field-programmable gate arrays (FPGAs) or digital signal processing (DSP) modules enables more efficient, compact,
and programmable BF systems [18,19].

Ddeveloped a structured linear antenna array and compared its performance using three algorithms: Least
Mean Square (LMS), Artificial Neural Network (ANN), and Long Short-Term Memory (LSTM), incorporating
adaptive beamforming components.

Functional Components:
o Algorithms: LMS algorithm, deep learning with LSTM and artificial neural networks (ANN).

e Visualization:
o A plot of the array factor based on the calculated weights.

\

Data Exploration Data Prepration for
Start = Data Splitti > 4 ;
and Preprocessing IO LSTM

A

Model Prediction & — Train the Model Building LSTM

Evaluation Model

Fig.1 Data preprocessing until training the model steps

During the training phase, the LSTM model learns from the temporal dependencies inherent in the logged
dataset, enabling it to capture complex patterns within the channel. The trained model subsequently plays a crucial
role in the proposed adaptive beamforming system by effectively adjusting beamforming weights based on both
current Channel State Information (CSI) and historical context derived from the dataset.

4.Research Methodology

Beamforming is a signal processing technique used in sensor arrays for directional signal transmission or
reception. The study aims to explore and compare various machine learning algorithms, such as Least Mean Squares
(LMS), Deep Learning using LSTM and Artificial Neural Networks (ANN), to enhance the performance of adaptive
beamforming in uniform linear antenna arrays.

e Design and Implementation of the MATLAB GUI Application

Graphical User Interface (GUI) was developed to simulate and visualize the performance of different
beamforming algorithms. The GUI consists of: "Uniform Linear Array". In tab allows to input parameters such as the
number of antennas, distance between antennas, desired angle, and interference angle.

e Algorithmic Approach
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Least Mean Squares (LMS) Algorithm: This algorithm adapts the weights of the antenna array to minimize the
error between the desired and actual output. Deep Learning with LSTM: Long Short-Term Memory (LSTM) networks
are employed to model the relationship between input parameters and the resulting beamforming patterns. Artificial
Neural Networks (ANN): ANN is used to approximate the optimal weights for the antenna elements.

e Simulation Process

For each algorithm, the array factor (AF) is calculated based on the input parameters provided. The AF represents
the radiation pattern of the antenna array.

The GUI plots the array factor, allowing a visual comparison of the effectiveness of each algorithm in steering the
antenna beam toward the desired direction while minimizing interference.

e Analysis and Evaluation

The performance of each algorithm is evaluated based on the resulting beam patterns, particularly focusing on the
ability to minimize interference and accurately target the desired direction.

Table 1: Beamforming Parameters and Their Impact.

Parameter Description Impact on Beamforming
Number of Antennas (N) Total antennas in the array Higher N improves resolution and
reduces beamwidth
Distance Between Antennas Spacing between adjacent Affects grating lobes and array
(d) antennas aperture
Desired Angle (0_desired) Target angle for beamforming Determines main lobe direction
Interference Angle (0_interf) Angle of interfering signals Determines null directions
Lambda (1) Wavelength of the signal Affects the operational frequency and
beamwidth

4.1.1 Artificial Neural Network (ANN)

Artificial Neural Networks (ANNSs) are Al models inspired by the human brain's structure, made up of
interconnected nodes or neurons. These networks process information by receiving inputs, transforming them through
weighted connections, and generating outputs. During training, the weights are adjusted, enabling the network to learn
and improve [30].

DOA estimation network

detection network
A

estimated
DOA values]

incident

waves

estimated
DOA values]

input hidden output/input
layer  layer layer

hidden layers output layer

Fig.2 Beamforming Antenna Array [35].
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An algorithm was applied ANN as the figure (2), Artificial Neural Networks (ANNSs) can be used in antenna
design to address beamforming problems in communication networks. To clarify the parameters and settings used in
the (ANN), it is important to understand the network configuration, including the number of hidden layers and neurons,
the learning rate, and the number of training epochs. These settings play a critical role in defining the network’s
performance and tuning its learning process

e  Number of Layers: The network has two hidden layers.

e Number of Neurons: Each of the two hidden layers has 7 neurons.

Learning Rate: The learning rate used (0.01).

Number of Epochs: The number of epochs for training ANNSs is 1000 epochs.

Table 2: (ANN)Training parameters

Unit Initial value Stopped value Target

epoch 0 376 1000
Elapsed time - 00:01:39 -
performance 0.465 0.0138 0

4.1.2 Result and Discussion

The algorithm uses 16 antennas, with a distance of half the wavelength 0.5A between each of element and
interference angle (20 Deg.), to enhance beam accuracy and minimize interference. A higher number of antennas
improves beam accuracy and the network’s ability to train effectively, reducing error in beamforming. Broadcast
power can be focused where it is most needed. and the Plot of Array Factor for ANN algorithm is shown in figure (3).

1 Plot of Array Factor
- ooy TELIOR
| x 0.527332
Y 0.992294
0.8 - | I
06
=
L
<<
0.4 -
0.2 -
0 I 1 1 1
-100 -50 0 50 100
AOA (deg)

Fig.3 Array Factor for ANN algorithm

In Figure (4) shows: An Error Histogram is a graphical tool that displays the distribution of errors made by a predictive
model, an (ANN). These errors represent the difference between the predicted outputs and the actual target values. It
shows how prediction errors are spread, indicating whether they are centred around zero or biased.
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Fig.4 Error Histogram

The system's performance is evaluated by calculating the Root Mean Square Error (RMSE) to determine the
accuracy of predictions made by the (ANN). RMSE measures the difference between actual and predicted values, with
lower RMSE indicating better model performance.To optimize the ANN, the model is trained multiple times, adjusting
weights to minimize RMSE. The training process includes dividing data into training (70%) and validation (30%) sets.
The best model configuration or number of epochs is chosen based on the lowest RMSE observed during validation,
ensuring accurate predictions.

Best Validation Performance is 0.013191 at epoch 370

Train
Validation
Best

Mean Squared Error (mse)
)

L .

o 50 100 150 200 250 300 350
376 Epochs

Fig.5 Mean Squared Error (MSE)

4.2.1 Least Mean Square (LMS)

Least Mean Squares (LMS) algorithm for adaptive beamforming. The LMS algorithm is typically used for
adaptive filter design, where the goal is to minimize the error between a desired signal and the actual output signal. In
the context of beamforming, it helps to adjust the weights of the antenna array to steer the beam towards the desired
direction while minimizing interference.

Antenna

Y W

Xo -

Interferer Y: X: '\\g\( W,

Y Xa-1 ‘ngl

Adaptive
Algorithm |

Desired User

e(n)

Adaptive Beam of
Smart Antenna

Fig.6 Least Mean Square (LMS)Algorithm [35]
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Weights Calculation
The weights (w) updated iteratively using the LMS algorithm :
w(n+1) =w(n)+p-X-(d(n)—X"w(n))

Where:

. w(n) is the weight vector at step n.

. pu s the learning rate.

. X s the input vector.

. d(n) is the desired output at step n.

. X' is the transpose of the input vector X.

. w(n+1) is the updated weight vector after step n.

4.2.2 Result and Discussion

LMS algorithm can be employed to enhance signal reception and optimize beam direction, thereby improving
the overall performance of wireless communication and data transmission. In the figure below we used the algorithm
LMS. Figure (7) provides information about the antennas used. The number of antennas is specified as the total number
of elements, which is 16 in this case. The distance between the antennas is indicated as 0.5 A, and the desired antenna
angle, interference angle, and desired wavelength are all provided. We used to direct the beam at zero angle, as show
at the table below, to illustrate the direction of the beam.

Table 3: The information for Plot of Array Factor for LMS (casel)

Number of Distance Desired Interference Desired
antennas between angle of | angle of lambda
antennas antenna antenna
16 elements 0.51 0 Deg. 30 Deg . 1
1 Plot of Array Factor
[ -
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s 08 0.987884
=
=
& 0.6 |
=
=]
[«})
N pat
[1+]
E
o
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O 1 1
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Theta (degrees)

Fig.7 Plot of Array Factor for LMS algorithm (casel).

Figure (8) showcases a reduced number of antennas to depict the shape and direction of the beam. Use fewer antennas
to clarify the beam's shape and direction. The greater the number of antennas, the greater the accuracy and direction
of the wave. As shown in Figure 11, we notice that the beam routing is less accurate.
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Fig.8 Array Factor for LMS algorithm with four element antennas (case2)

4.3.1 Long Short-Term Memory (LSTM)

LSTM is an advanced type of recurrent neural network (RNN) designed to process sequential data and overcome the
challenges of long-term dependencies. LSTMs are particularly effective for tasks such as language translation, speech
recognition, and time series forecasting [31].

h
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,’ LSTM Memory Cell .
1
C l Forget ?ate Input gate Output gate e C
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: —% v |
1 D
! == ||
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Fig.9 LSTM (long short-term memory) Algorithm [33]

LSTM cells are designed to capture long-term dependencies in sequences. Each LSTM cell uses several gates to
update its cell state [32].

4.3.2 LSTM model

The following details outline the configuration and parameters of the LSTM model used. This includes the
number of layers, neurons in each LSTM cell, learning rate, number of epochs, and the structure of the training
instances. Understanding these parameters is crucial for evaluating the model's performance and optimizing its
application in beamforming tasks for antenna systems. The specific details from regarding the LSTM model:

e  Number of Layers: The LSTM model includes the following layers:
- Sequence Input Layer
- Batch Normalization Layer
- LSTM Layer
- Fully Connected Layer
- Regression Layer
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e Number of Neurons in Each LSTM Cell: The LSTM layer (LSTM Layer) has 100 hidden units (neurons).
e Learning Rate: Learning rate is set to 0.01.

e  Number of Epochs: The model is trained for 40 epochs.
e Number of LSTM Cells: The LSTM layer consists of 100 LSTM cells.

4.3.3 Results and Discussion

To direct the beam more accurately, use a linear array consisting of 16 antennas arranged in a straight line,
and the distance between each antenna is 0.5 A half the wavelength. In this case, we chose the required angle of (Odeg.)

zero to direct the beam and an interference angle (20 deg.). The figure (10) shows the beamforming more precisely
using the LSTM algorithm.

A: casel Plot of Array Factor
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|| Y 0.994391 =
08} L P
| =]
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< | '\ =
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Fig.10 Plot of Array Factor for LSTM algorithm

Training Progress (10-Dec-2023 22:41:26)

Fig.11 Training Progress (trained LSTM Model)

TABLE 4: Training on LSTM Model.

| Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Learning |

| | | (hh:imm:ss) | RMSE | RMSE | Loss | Loss | Rate |
| 1 | 1 |  00:00:05 | 580 | 419 | 16.8290 | 8.7952 | 0.0100 |
| 40 | 40 | 00:00:24 | 0.60 | 214 | 01779 | 22949 | 0.0020 |
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« Epoch 1, Iteration 1: At the initial stage, the model shows a Mini-batch Root Mean square Error RMSE of 5.80
and a Validation RMSE of 4.19, indicating a rough start in model accuracy.

* Epoch 40, Iteration 40: After training, the model significantly improves with a Mini-batch RMSE of 0.60 and a
Validation RMSE of 2.14, demonstrating the effectiveness of the LSTM-based DBF method.

« Loss Reduction: The Mini-batch and Validation Losses also decrease substantially from 16.829 and 8.7952 to
0.1779 and 2.2949, respectively, highlighting the model's learning efficiency.

« Learning Rate: The base learning rate is adjusted from 0.0100 initially to 0.0020 by the end, reflecting the fine-
tuning of the learning process as the model progresses.

The results from training the LSTM model indicate significant improvement in performance over the training
epochs. Initially, the RMSE and loss values for both mini-batch and validation were high, suggesting a considerable
discrepancy between the predictions and actual data. As training progressed, these values decreased markedly,
indicating that the model became more accurate in its predictions.

5. CONCLUSION

This work presents a detailed approach to enhancing millimeter-wave transmission by combining Long
Short-Term Memory (LSTM) deep learning with Beamforming (BF). To address challenges from imprecise Channel
State Information (CSlI), the proposed system leverages digital signal processing and LSTM’s memory capabilities to
optimize beamforming parameters. Implemented in MATLAB, the results show improved spectral efficiency and
resilience to channel variations. Analyzing the beam patterns reveals the spatial properties and directionality the
LSTM-based BF algorithm achieves. While current findings demonstrate the system’s feasibility, future research
could explore deployment scenarios, expand training features, and experiment with alternative deep learning
architectures. Integrating BF with LSTM is a promising strategy for advancing communication systems. Our results
validate this method’s potential to enhance spectral efficiency and robustness, making a valuable contribution to
wireless communication. Comparative analysis of beamforming algorithms highlights that the LSTM-based approach
achieves the best side lobe suppression, suitable for precision-critical applications, despite its slower computation
time. The LMS algorithm offers a balance of main lobe sharpness and efficiency but lacks in side lobe suppression.
At the same time, ANN provides the fastest computation with a balanced main lobe and side lobe performance, ideal
for speed-sensitive scenarios.
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