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 : الخلاصة 

ا لتعزيز  تعد تقنية توجيه الشعاع تقنية أساسية لمصفوفات الهوائيات الكبيرة، حيث تتيح التحكم الدقيق في اتجاه الإشارات. يقدم هذا البحث نهج    ا مبتكر 

ى معالجة  الموجات المليمترية من خلال دمج تقنية توجيه الشعاع مع نظام تعلم عميق يعتمد على الذاكرة طويلة وقصيرة المدى. يعتمد هذا النظام علنقل 

لى تحقيق كفاءة عالية  الإشارات الرقمية وشبكات الذكاء الاصطناعي لتحسين معايير توجيه الشعاع، مما يوفر بديلا  للتقنيات التناظرية التقليدية، ويهدف إ

ا في مؤشرات الأداء، مما يؤكد على إمكانية  MATLAB في استخدام الطيف. تم تنفيذ هذه المنهجية باستخدام برنامج ، وأظهرت النتائج تحسن ا كبير 

فعالية النهج، تم تقديم عدة أمثلة توضيحية لتوجيه  الجمع بين توجيه الشعاع والذاكرة طويلة وقصيرة المدى لتحقيق تقدم في أنظمة الاتصالات. للتحقق من  

، تحسنت  40للتحقق. بحلول المرحلة    4.19للدفعات الصغيرة و  5.80نمط الإشارة نحو الاتجاه المطلوب. في البداية، حقق النموذج متوسط خطأ قدره  

ية طريقة توجيه الشعاع المعتمدة على الذكاء الاصطناعي. بالإضافة  للتحقق، مما يبرز فعال  2.14للدفعات الصغيرة و  0.60هذه القيم بشكل كبير لتصل إلى  

ية أقل  إلى ذلك، يقارن البحث بين هذا النهج المعتمد على الذاكرة طويلة وقصيرة المدى وتقنيات أخرى مثل الشبكات العصبية الاصطناعية وخوارزم

 .متوسط تربيعي، مما يؤكد متانة هذه الطريقة
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Abstract  

Beamforming (BF) is a critical technology for large antenna arrays, enabling 
precise control over beam steering. This research presents an innovative 
approach to enhance millimeter-wave transmission by integrating BF with a 
long short-term memory (LSTM)-based deep learning system. The system 
leverages digital signal processing and LSTM networks to optimize 
beamforming parameters, offering an alternative to traditional analog 
techniques and aiming for high spectral efficiency. Implemented in MATLAB, 
the methodology shows substantial improvements in performance metrics, 
underscoring the potential of combining BF with LSTM for advanced 
communication systems. To validate the approach, several illustrative 
examples are provided, guiding the beam pattern toward the desired 
direction. Initially, the model achieves a Mini-batch RMSE of 5.80 and a 
Validation RMSE of 4.19. By Epoch 40, these values improve significantly to a 
Mini-batch RMSE of 0.60 and a Validation RMSE of 2.14, highlighting the 
effectiveness of the LSTM-based BF method. Furthermore, the research 
compares this LSTM-based approach with artificial neural networks (ANN) and 
the least mean square (LMS) algorithm, confirming the robustness of the 
technique. 

Keywords: Deep Learning” Beamforming” Artificial Neural Networks (ANN)” Least Mean Squares (LSM)” 

Long Short-Term Memory (LSTM)”. 
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1.INTRODUCTION 
With the rising demand for enhanced capacity in mobile and personal communication systems, along with 

emerging applications in satellite and MIMO networks, researchers are actively developing algorithms to exploit 

spatial selectivity. These efforts extend to fields such as biomedical imaging, remote sensing, radio astronomy, and 

radar technology [1]. A crucial aspect in this context is determining the precise orientation of antennas to achieve the 

desired beam direction. Initially, mechanical phased arrays with motors were used in military applications; however, 

these systems presented limitations due to their size, weight, and vulnerability to weather conditions, alongside 

mechanical wear and failure. As a result, electronic beam steering systems have become preferred, eliminating the 

need for moving parts and enabling faster response times, particularly for dynamic environments [2]. 

Beamforming is an essential process in wireless communication and radar systems, concentrating the signal 

in a desired direction rather than dispersing it. This approach typically produces a main lobe oriented toward the target 

signal, while creating nulls that suppress interference signals, making it especially valuable in reducing the high 

propagation loss experienced in mm-wave communication systems. Popular adaptive beamforming techniques include 

minimum variance distortion-less response (MVDR) and null steering beamforming (NSB). While NSB aims to 

suppress interference while preserving the desired signal, MVDR minimizes interference and noise while maintaining 

signal quality [3].  

However, these methods are computationally intensive and less effective in dynamic environments, where 

continuously recalculating optimal weights can be challenging due to the large number of antenna elements. Recently, 

deep learning (DL) has shown considerable potential in applications like direction of arrival (DOA) estimation and 

adaptive beamforming, offering flexibility and efficiency in dynamic and complex environments. 

2.Related works 

Numerous studies have explored the development of antenna arrays using various optimization techniques. 

These include hybrid methods [5,8,13], genetic algorithms [9], particle swarm optimization [10,11], central force 

optimization [11,12], and gravitational search algorithms. However, as the number of antenna elements increases, the 

computational time to find optimal weights also grows. For time-sensitive applications, deep neural networks (DNNs) 

offer crucial computational efficiency. 

Neural networks (NNs) have generated significant interest, with many studies examining their applications 

[5,6]. A robust adaptive beamforming approach based on NNs, for instance, has been used to address signal steering 

vector mismatches [7], while in DOA estimation, NNs have achieved low mean square errors [8]. In large MIMO 

systems, sum-rate maximization (SRM) remains a key challenge. To address this, a neural network-based algorithm 

was developed to maximize SRM by discarding less optimal users [9]. Deep learning (DL) applications have extended 

beyond just determining optimal weights [10] and estimating arrival angles [11,12], greatly enhancing MIMO 

beamforming performance and capacity [13]. It has also been applied in ultrasound beamforming and radiofrequency 

data processing to improve speed and accuracy in imaging tasks [15,16]. 

Research has demonstrated that combining forced-zero and maximum transmission ratio beamforming 

techniques significantly increases data transmission rates. Similarly, prior studies comparing interference cancellation 

methods in large-scale MIMO downlinks found that large-scale MIMO offers superior quality in small-scale fading 

environments compared to network MIMO, though the theory model remains complex. Other research has utilized 

antenna selection algorithms to optimize capacity transmission [10,15,18,19] and explored multi-cell coordinated 

beamforming to enhance cell-edge communication quality [17,20]. Finally, a hybrid large-scale MIMO beam 

assignment scheme was proposed to improve user spectrum usage and cater to multiple users, addressing a limitation 

in prior single-user schemes [20,22]. 

3.System model 

 Beamforming (BF) has been extensively studied in wireless communications for its ability to reduce 

interference and boost spectral efficiency. Researchers have explored various architectures and algorithms to optimize 

BF parameters, noting the simplicity and energy efficiency of analog beamformers [8,9]. However, as millimeter-
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wave systems become more prevalent, the limitations of analog BF such as hardware complexity and sensitivity to 

inaccurate Channel State Information (CSI) are increasingly apparent. To address these issues, recent research 

suggests integrating BF with digital signal processing, as digital BF offers added flexibility for advanced data 

processing and adaptation to changing channel conditions [10,11]. Replacing traditional analog components with 

field-programmable gate arrays (FPGAs) or digital signal processing (DSP) modules enables more efficient, compact, 

and programmable BF systems [18,19]. 

 Ddeveloped a structured linear antenna array and compared its performance using three algorithms: Least 

Mean Square (LMS), Artificial Neural Network (ANN), and Long Short-Term Memory (LSTM), incorporating 

adaptive beamforming components. 

Functional Components: 

o Algorithms: LMS algorithm, deep learning with LSTM and artificial neural networks (ANN). 

• Visualization: 

o A plot of the array factor based on the calculated weights. 

          Fig.1 Data preprocessing until training the model steps  

During the training phase, the LSTM model learns from the temporal dependencies inherent in the logged 

dataset, enabling it to capture complex patterns within the channel. The trained model subsequently plays a crucial 

role in the proposed adaptive beamforming system by effectively adjusting beamforming weights based on both 

current Channel State Information (CSI) and historical context derived from the dataset. 

4.Research Methodology 

Beamforming is a signal processing technique used in sensor arrays for directional signal transmission or 

reception. The study aims to explore and compare various machine learning algorithms, such as Least Mean Squares 

(LMS), Deep Learning using LSTM and Artificial Neural Networks (ANN), to enhance the performance of adaptive 

beamforming in uniform linear antenna arrays. 

• Design and Implementation of the MATLAB GUI Application 

Graphical User Interface (GUI) was developed to simulate and visualize the performance of different 

beamforming algorithms. The GUI consists of: "Uniform Linear Array". In tab allows to input parameters such as the 

number of antennas, distance between antennas, desired angle, and interference angle. 

• Algorithmic Approach 
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Least Mean Squares (LMS) Algorithm: This algorithm adapts the weights of the antenna array to minimize the 

error between the desired and actual output. Deep Learning with LSTM: Long Short-Term Memory (LSTM) networks 

are employed to model the relationship between input parameters and the resulting beamforming patterns. Artificial 

Neural Networks (ANN): ANN is used to approximate the optimal weights for the antenna elements. 

• Simulation Process 

For each algorithm, the array factor (AF) is calculated based on the input parameters provided. The AF represents 

the radiation pattern of the antenna array. 

The GUI plots the array factor, allowing a visual comparison of the effectiveness of each algorithm in steering the 

antenna beam toward the desired direction while minimizing interference. 

•  Analysis and Evaluation 

The performance of each algorithm is evaluated based on the resulting beam patterns, particularly focusing on the 

ability to minimize interference and accurately target the desired direction. 

Table 1: Beamforming Parameters and Their Impact. 

 

 

 

 

 

 

 

4.1.1 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) are AI models inspired by the human brain's structure, made up of 

interconnected nodes or neurons. These networks process information by receiving inputs, transforming them through 

weighted connections, and generating outputs. During training, the weights are adjusted, enabling the network to learn 

and improve [30].  

 
Fig.2 Beamforming Antenna Array [35]. 

Parameter Description Impact on Beamforming 

Number of Antennas (N) Total antennas in the array Higher N improves resolution and 

reduces beamwidth 
Distance Between Antennas 

(d) 
Spacing between adjacent 

antennas 
Affects grating lobes and array 

aperture 
Desired Angle (θ_desired) Target angle for beamforming Determines main lobe direction 

Interference Angle (θ_interf) Angle of interfering signals Determines null directions 

Lambda (λ) Wavelength of the signal Affects the operational frequency and 

beamwidth 
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An algorithm was applied  ANN as the figure  (2), Artificial Neural Networks (ANNs) can be used in antenna 

design to address beamforming problems in communication networks. To clarify the parameters and settings used in 

the (ANN), it is important to understand the network configuration, including the number of hidden layers and neurons, 

the learning rate, and the number of training epochs. These settings play a critical role in defining the network's 

performance and tuning its learning process 

• Number of Layers: The network has two hidden layers. 

• Number of Neurons: Each of the two hidden layers has 7 neurons. 

• Learning Rate: The learning rate used (0.01).  

• Number of Epochs: The number of epochs for training ANNs is 1000 epochs. 

Table 2: (ANN)Training parameters 

Unit Initial value Stopped value Target 

epoch 0 376 1000 

Elapsed time - 00:01:39 - 

performance 0.465 0.0138 0 

 

4.1.2 Result and Discussion  
The algorithm uses 16 antennas, with a distance of half the wavelength 0.5λ between each of element and 

interference angle (20 Deg.), to enhance beam accuracy and minimize interference. A higher number of antennas 

improves beam accuracy and the network's ability to train effectively, reducing error in beamforming. Broadcast 

power can be focused where it is most needed. and the Plot of Array Factor for ANN algorithm is shown in figure (3). 

 

 

 

 
 

 

 

Fig.3 Array Factor for ANN algorithm 

In Figure (4) shows:  An Error Histogram is a graphical tool that displays the distribution of errors made by a predictive 

model, an (ANN). These errors represent the difference between the predicted outputs and the actual target values. It 

shows how prediction errors are spread, indicating whether they are centred around zero or biased. 
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Fig.4 Error Histogram  

The system's performance is evaluated by calculating the Root Mean Square Error (RMSE) to determine the 

accuracy of predictions made by the (ANN). RMSE measures the difference between actual and predicted values, with 

lower RMSE indicating better model performance.To optimize the ANN, the model is trained multiple times, adjusting 

weights to minimize RMSE. The training process includes dividing data into training (70%) and validation (30%) sets. 

The best model configuration or number of epochs is chosen based on the lowest RMSE observed during validation, 

ensuring accurate predictions . 

 

Fig.5 Mean Squared Error (MSE) 

4.2.1 Least Mean Square (LMS) 

Least Mean Squares (LMS) algorithm for adaptive beamforming. The LMS algorithm is typically used for 

adaptive filter design, where the goal is to minimize the error between a desired signal and the actual output signal. In 

the context of beamforming, it helps to adjust the weights of the antenna array to steer the beam towards the desired 

direction while minimizing interference. 

 
Fig.6 Least Mean Square (LMS)Algorithm [35]  
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Weights Calculation 

The weights (w) updated iteratively using the LMS algorithm : 

                                          w(n+1) =w(n)+μ⋅X⋅(d(n)−X′⋅w(n))       

Where: 

• w(n) is the weight vector at step n.  

• μ       is the learning rate. 

• X     is the input vector. 

• d(n) is the desired output at step n. 

• X′ is the transpose of the input vector X. 

• w(n+1)    is the updated weight vector after step n. 

4.2.2 Result and Discussion  

LMS algorithm can be employed to enhance signal reception and optimize beam direction, thereby improving 

the overall performance of wireless communication and data transmission. In the figure below we used the algorithm 

LMS. Figure (7) provides information about the antennas used. The number of antennas is specified as the total number 

of elements, which is 16 in this case. The distance between the antennas is indicated as 0.5 λ, and the desired antenna 

angle, interference angle, and desired wavelength are all provided. We used to direct the beam at zero angle, as show 

at the table below, to illustrate the direction of the beam. 

Table 3: The information for Plot of Array Factor for LMS (case1) 

 

 

 

 

 

 

 
                                               

 

Fig.7 Plot of Array Factor for LMS algorithm (case1). 

Figure (8) showcases a reduced number of antennas to depict the shape and direction of the beam. Use fewer antennas 

to clarify the beam's shape and direction. The greater the number of antennas, the greater the accuracy and direction 

of the wave. As shown in Figure 11, we notice that the beam routing is less accurate. 

Number of 

antennas  

Distance 

between 

antennas  

Desired 

angle of 

antenna  

Interference 

angle of 

antenna  

Desired 

lambda  

16 elements  0.5λ 0 Deg. 30 Deg . 1 
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Fig.8 Array Factor for LMS algorithm with four element antennas (case2) 

 

4.3.1 Long Short-Term Memory (LSTM) 
LSTM is an advanced type of recurrent neural network (RNN) designed to process sequential data and overcome the 

challenges of long-term dependencies.  LSTMs are particularly effective for tasks such as language translation, speech 

recognition, and time series forecasting [31]. 

Fig.9 LSTM (long short-term memory) Algorithm [33] 

LSTM cells are designed to capture long-term dependencies in sequences. Each LSTM cell uses several gates to 

update its cell state [32].  

 

4.3.2 LSTM model 

The following details outline the configuration and parameters of the LSTM model used. This includes the 

number of layers, neurons in each LSTM cell, learning rate, number of epochs, and the structure of the training 

instances. Understanding these parameters is crucial for evaluating the model's performance and optimizing its 

application in beamforming tasks for antenna systems. The specific details from regarding the LSTM model: 

• Number of Layers: The LSTM model includes the following layers: 

- Sequence Input Layer 

- Batch Normalization Layer 

- LSTM Layer 

- Fully Connected Layer 

- Regression Layer 
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• Number of Neurons in Each LSTM Cell: The LSTM layer (LSTM Layer) has 100 hidden units (neurons). 

• Learning Rate: Learning rate is set to 0.01. 

• Number of Epochs: The model is trained for 40 epochs. 

• Number of LSTM Cells: The LSTM layer consists of 100 LSTM cells. 

4.3.3 Results and Discussion  

To direct the beam more accurately, use a linear array consisting of 16 antennas arranged in a straight line, 

and the distance between each antenna is 0.5 λ half the wavelength. In this case, we chose the required angle of (0deg.)  

zero to direct the beam and an interference angle  (20 deg.). The figure (10) shows the beamforming more precisely 

using the LSTM algorithm. 

 

Fig.10 Plot of Array Factor for LSTM algorithm  

 
Fig.11 Training Progress (trained LSTM Model) 

 

TABLE 4: Training on LSTM Model. 

================================================================================= 

| Epoch  |  Iteration    | Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch     |  Validation  |     Learning        | 

|             |                  |    (hh:mm:ss)   |     RMSE      |     RMSE     |     Loss           |     Loss         |       Rate            | 

|       1    |          1       |       00:00:05    |         5.80      |         4.19    |      16.8290     |       8.7952    |          0.0100     | 

|      40   |         40      |       00:00:24    |         0.60      |         2.14    |       0.1779      |       2.2949    |          0.0020     | 

================================================================================= 
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• Epoch 1, Iteration 1: At the initial stage, the model shows a Mini-batch Root Mean square Error RMSE of 5.80   

and a Validation RMSE of 4.19, indicating a rough start in model accuracy. 

• Epoch 40, Iteration 40: After training, the model significantly improves with a Mini-batch RMSE of 0.60 and a 

Validation RMSE of 2.14, demonstrating the effectiveness of the LSTM-based DBF method. 

• Loss Reduction: The Mini-batch and Validation Losses also decrease substantially from 16.829 and 8.7952 to 

0.1779 and 2.2949, respectively, highlighting the model's learning efficiency. 

• Learning Rate: The base learning rate is adjusted from 0.0100 initially to 0.0020 by the end, reflecting the fine-

tuning of the learning process as the model progresses. 

The results from training the LSTM model indicate significant improvement in performance over the training 

epochs. Initially, the RMSE and loss values for both mini-batch and validation were high, suggesting a considerable 

discrepancy between the predictions and actual data. As training progressed, these values decreased markedly, 

indicating that the model became more accurate in its predictions.  

5. CONCLUSION 

This work presents a detailed approach to enhancing millimeter-wave transmission by combining Long 

Short-Term Memory (LSTM) deep learning with Beamforming (BF). To address challenges from imprecise Channel 

State Information (CSI), the proposed system leverages digital signal processing and LSTM’s memory capabilities to 

optimize beamforming parameters. Implemented in MATLAB, the results show improved spectral efficiency and 

resilience to channel variations. Analyzing the beam patterns reveals the spatial properties and directionality the 

LSTM-based BF algorithm achieves. While current findings demonstrate the system’s feasibility, future research 

could explore deployment scenarios, expand training features, and experiment with alternative deep learning 

architectures. Integrating BF with LSTM is a promising strategy for advancing communication systems. Our results 

validate this method’s potential to enhance spectral efficiency and robustness, making a valuable contribution to 

wireless communication. Comparative analysis of beamforming algorithms highlights that the LSTM-based approach 

achieves the best side lobe suppression, suitable for precision-critical applications, despite its slower computation 

time. The LMS algorithm offers a balance of main lobe sharpness and efficiency but lacks in side lobe suppression. 

At the same time, ANN provides the fastest computation with a balanced main lobe and side lobe performance, ideal 

for speed-sensitive scenarios. 
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