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( مع خوارزميات تحسين الأعشاب  GRNN( الذي تم ضبطه بواسطة الشبكة العصبية للانحدار المعمم )PIDيعد المشتق التكاملي النسبي )  :الخلاصة 

مستوحاة من سلوك   metaheuristicهي تقنية تحسين  IWO( من التقنيات القوية التي يمكن استخدامها لتحسين سرعة محرك المحرك. IWOالضارة )

، يجب جمع البيانات المتعلقة بأداء المحرك PIDلضبط    GRNN-IWOأنواع الحشائش الغازية. لتحسين سرعة محرك المحرك باستخدام خوارزميات  

الذي يمكنه التنبؤ بأداء المحرك المستقبلي بناءً على الأداء السابق. من خلال تحسين معلمات نموذج    GRNNمع مرور الوقت واستخدامها لتدريب نموذج  

PIDرك. الهدف، يمكن العثور على المجموعة المثالية من المعلمات لزيادة كفاءة المحرك وأدائه إلى الحد الأقصى مع تقليل استهلاك الطاقة وتآكل المح  

. تعرض وحدة التحكم  PIDبدقة عالية واستجابة سريعة باستخدام جهاز التحكم    DC (PMDC)من هذه الدراسة هو تنظيم سرعة المحرك لكل مغناطيسي  

PID    المضبوطةGRNN-IWO    استجابة تخميد فائقة وتقليل التجاوز مقارنة بوحدات تحكمPID    التقليدية. بالإضافة إلى ذلك، تضمن آلية تحديد تيار

-GRNNذات الحلقة الواحدة المضبوطة    PIDالقيادة أن المحرك يعمل ضمن حد التيار المستمر المقدر له أثناء التشغيل المستمر. تتفوق وحدة التحكم  

IWO  على وحدة التحكمPID   ذات الحلقة الواحدة عند ضبطها يدوياً. توفر وحدة التحكمPID لتجاوز، مما يتيح  استجابة تخميد ممتازة والحد الأدنى من ا

MATLA.المضبوط بواسطة  GRNN-IWO% مقارنة بـ 98.85استجابة تحكم أسرع لمحرك التيار المستمر، بدقة تبلغ 

Abstract 

The Proportional Integral Derivative (PID) tuned by Generalized Regression Neural 

Network (GRNN) with Invasive Weed Optimization (IWO) algorithms are two powerful 

techniques that can be used to optimize motor drive speed. IWO is a metaheuristic 

optimization technique inspired by the behavior of invasive weed species. To optimize 

motor drive speed using GRNN-IWO algorithms to tuned PID, data on motor 

performance over time must be collected and used to train a GRNN model that can 

predict future motor performance based on past performance. By          optimizing the 

parameters of the PID model, the optimal combination of parameters  can be found to 

maximize motor efficiency and performance while minimizing energy consumption and 

wear and tear on the motor. The objective of this study is to regulate the speed of a Per 

Magnetic DC (PMDC) motor with high precision and rapid response using a PID 

controller. The PID controller tuned GRNN-IWO exhibits superior damping response 

and reduced overshoot in comparison to conventional PID controllers. Additionally, the 

drive current limiting mechanism ensures that the motor operates within its rated 

continuous current limit during continuous operation. The GRNN-IWO tuned single-

loop PID controller outperforms the single-loop PID controller when manual tuned. The 

PID controller provides excellent damping response and minimal overshoot, enabling 

faster control response of the DC motor, with an accuracy of 98.85% compared to 

MATLAB-tuned GRNN-IWO. 
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  1.   Introduction                                                                                                                                                                                                                                                

The utilization of direct current (DC) machines traces its origins to the early 1900s, coinciding with the 

initial development of DC power supply. DC machines offer distinct advantages over AC machines, 

particularly in terms of flexibility and speed regulation capabilities. DC motors, known for their precise 

regulation, belong to a class of electrical actuators highly beneficial in diverse applications [1-3], 

spanning robotic manipulators, guided vehicles, steel rolling mills, cutting tools, and overhead cranes. 

Due to their favorable speed-torque characteristics and user-friendly operation, DC motors are frequently 

employed in various industries where variable speed is essential [4]. 

In the past two decades, the process control industry has witnessed numerous advancements in controller 

design and deployment. The commercial sector requires automatic controllers capable of prompt and 

accurate responses to effectively carry out operations. The Proportional-Integral-Derivative (PID) 

controller, a fundamental element in the feedback loop, stands out as one of the earliest and most well-

known controllers due to its remarkable effectiveness, high reliability, robustness, straightforward 

operation, and its ability to eliminate steady-state error [8-9]. 

The PID algorithm demonstrates favorable control dynamics, characterized by the absence of steady-state 

error, rapid response (rising time), minimal oscillation, and enhanced stability. Introducing a derivative 

gain component into the proportional-integral (PI) controller has the potential to alleviate oscillation and 

overshoot in the system's output response. The PID algorithm proves proficient in managing higher-order 

processes involving multiple energy storage elements [10-12]. Its application is prevalent in regulating 

the revolutions per minute (rpm) and torque of a DC motor. However, optimizing and fine-tuning these 

controllers present substantial challenges and demand a considerable amount of time, especially when 

employed in various abnormal operating modes and subjected to diverse load situations and parameter 

changes. 

This research aims to achieve the stabilization of speed control for a Permanent Magnet DC (PMDC) 

Machine within the specified target range using the PID controller tuned by GRNN-IWO. The process of 

modeling a DC motor involves solving the system's dynamic equation, as detailed in references [13, 14]. 

The system's response is simulated and analyzed using MATLAB/SIMULINK, with the PID controller 

being tuned and evaluated on the Simulink platform. This study addresses the tuning and operational 

principles of the PID controller, and the results of the experiments are detailed and analyzed in prior 

studies [15-18]. The regulation of numerous systems is crucial for achieving the desired performance 

level and has been extensively explored in various control strategies, as discussed in references [5-7]. 

For precise and prompt speed regulation, integrating controls within the drive system is imperative. These 

controls should focus on minimizing steady-state error and overshoot concerning the desired reference 

speed. Accurate control techniques are essential for maintaining a consistent velocity in a DC motor. PID 

controllers are presently recognized as one of the most widely used control mechanisms due to their 

attributes of tenacity, precision, and the ability to achieve accurate speed control. The gain parameters 

associated with the proportional, integral, and derivative terms play a crucial role in determining the 

effectiveness of the PID controller. 

This discussion will examine and elaborate on contemporary tuning methodologies that have emerged in 

recent years. Reference [19] highlights the substantial time and effort dedicated to enhancing the accuracy 

and user-friendliness of the PID controller. The application of PID tuning using Generalized Regression 

Neural Network (GRNN) with Invasive Weed Optimization (IWO) techniques holds the potential to 

enhance motor driving velocity. The velocity of motor drive holds significant importance in various 

business domains, including robotics, manufacturing, and transportation. 

To improve the speed control of the DC motor while minimizing power consumption, a PID controller 

was designed and tuned using a Regression Neural Network (GRNN) in conjunction with the Invasive  
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Weed Optimization algorithm (IWO). The IWO algorithm was applied to adjust the spread factor (𝜎 ) of 

the regression neural network, ensuring precise determination of PID values by the GRNN. The proposed 

GRNN-IWO model provided accurate values to the PID controller, leading to precise control of the motor 

speed while improving efficiency by reducing overshoot, rise time, settling time, and zero error steady 

state values.  

 

2. Methodology 

2.1. PID Controller 

The PID algorithm has emerged as the prevailing method for control systems. In the majority of instances, 

employing this strategy or a slight modification thereof will be adequate for managing the feedback loop. 

The schematic representation of the PID regulator is depicted in Figure 2.1. The device has numerous 

prospective applications, including functioning as an autonomous controller within a personal computer, 

a programmable logic controller (PLC), a distributed control system (DCS), or a microcontroller. It can 

also be integrated as a component of a direct digital control (DDC) package or a hierarchical distributed 

process control system. There are various approaches available [19-22] for implementing the PID 

algorithm. The instrument in question possesses utility and may be effectively employed in accordance 

with established high-level criteria or subjected to rigorous analytical examination. Equation 1 presents the 

generic version of the PID algorithm [2]: 

 

u(t) =  KPe(t) +  
1

Ti
∫ e(t)

t

0

d(t) + Td

de(t)

dt
                               (1) 

                                Figure 2.1 Diagram of a PID Control System. 

In the context of each time instant "t," the control variable is denoted as "U(t)," the control error is denoted 

as "E(t)," the set point is represented by "Ysp," and the feedback control signal is symbolized by "Y." The 

control variable comprises three components: the P-term, which is proportional to the error; the I-term, 

which is proportional to the integral of the error; and the D-term, which is proportional to the derivative 

of the error. The controller is equipped with three inputs, namely the proportional gain Kp, the integral 

time Ti, and the derivative time Td. The parameters of the PID are elaborated upon in more detail in 

reference [18]. 

Figure 2.2 The flowchart presents a comprehensive framework for selecting an optimal controller 

technique that is suitable for a diverse range of precision-centric applications. 
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 Figure 2.2 PID Term Selection Flowchart. 

 

2.2 Generalized Regression Neural Network (GRNN) 

The Generalized Regression Neural Network (GRNN) is a variant of the radial basis function network 

(RBFN) designed specifically for regression tasks. Developed by Donald F. Specht [23 ]in 1991 as an 

extension of RBFN, GRNN has four layers: input, pattern, summation, and output. 

Input Layer: Receives input features for regression. 

Pattern Layer: Contains prototype vectors representing training examples, associated with input features 

and corresponding output values. 

Summation Layer: Calculates weighted sum of output values from the pattern layer using a kernel 

function based on distances between input and prototype vectors (typically a Gaussian function). 

Output Layer: Provides the final regression prediction based on the weighted sum obtained from the 

summation layer. 

During training, GRNN stores data by calculating distances and adjusting weights to minimize prediction 

error. In testing, input data passes through the network, and the output is produce based on the weighted 

sum, offering advantages like fast training, good generalization, and handling noisy data. GRNN is 

especially suitable for regression tasks predicting continuous output based on input features. 

             Figure 2.3: The structure of the generalized regression neural network (GRNN) [24]. 
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2.3 Invasive Weed Optimization (IWO) 
 

Invasive Weed Optimization (IWO) is a nature-inspired algorithm proposed by Mehrabian and Lucas [25] 

in 2006 for population-based optimization. It simulates the invasive behavior of weeds in a search space 

to find optimal solutions. The algorithm includes: 

Initialization: Randomly generates a population of potential solutions (weed individuals) within the 

search space. 

Weed Colonization: Individuals compete based on fitness evaluated by the objective function. 

Reproduction: Fittest individuals (seeds) reproduce to create new weed individuals. 

Dispersal: Newly generated individuals replace the least fit, emulating seed dispersal. 

Elimination and Local Search: Some individuals are removed to maintain population size; local search 

improves exploration-exploitation balance. 

Termination: Iterates steps until a termination condition (e.g., max iterations, desired fitness) is met. 

IWO's core idea is that fit individuals propagate and disperse characteristics to effectively explore and 

exploit the solution space. It's applied to various optimization problems, offering simplicity, diversity, 

and scalability. Notably, IWO, inspired by weed behavior, doesn't endorse actual plant invasion; it's a 

concept used for optimization purposes. 

 
Figure 2.4: Flowchart of Invasive Weed Optimization (IWO). 

2.4  Tuning GRNN Algorithm Parameters 

After the plant modelling and choice of GRNN structure have been determined, the next step in setting 

up the controller (GRNN) is tuning the controller to get the system to behave in a desired fashion. To 

control the speed of a DC motor using two specific algorithms: General Regression Neural Network 

(GRNN) and Invasive Weed Optimization (IWO). Both are sophisticated methods that were used to 

optimize a DC motor's speed control. GRNN is used to learn the system behaviour, while IWO is used to 

fine-tune parameters.Here's a generalized approach of how this research work has been done to achieve 

the good performance: 

1. Data Collection: Gathered data of the DC motor under different conditions. These conditions include 

different speeds, voltages, torques, etc. The data is then labelled with the correct speed. 

2. Training the GRNN: The GRNN is trained on the collected data. The GRNN learns the system's 

behaviour, understanding how inputs (voltages, torques, etc.) affect the output (speed). 
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3. Parameter Optimization using IWO: The parameters of the GRNN are then optimized using the IWO 

algorithm. This algorithm simulates the behaviour of invasive weeds, a form of biological inspiration for 

optimization algorithms. It works by iteratively tweaking parameters, treating each potential solution as 

a "weed". The most successful "weeds" spread and reproduce, creating a population of solutions that 

steadily improve. 

4. Motor Speed Control: Now, with an optimized GRNN, the DC motor speed was controlled by feeding 

the desired speed into the GRNN, which can then suggest the necessary voltage/torque to achieve it. 

5. Validation & Verification: Finally, the system's performance is validated by comparing the GRNN's 

output with the actual speed of the motor. If the system is correctly optimized and trained, it should 

achieve a high level of accuracy (98.85% in my case) in predicting and controlling the motor speed. 

6. Feature Engineering: This was a crucial step, especially in this context, where the relation between the 

motor characteristics (voltage, current, temperature) and the speed might not be straightforward.  

7. Training Strategy: Used an appropriate GRNN/IWO training strategy for dealing with imbalanced data, 

setting an appropriate learning rate, batch size, number of training epochs, etc. 

8. Evaluation Metric: Accuracy is a common evaluation metric, but it might not always be the most 

appropriate, especially if my data is imbalanced. So I also ensured that I am using the right metric to 

evaluate my model's performance. 

9. Regularization: Regularization techniques helped me to prevent overfitting, helping my model to 

generalize better to unseen data, which can improve accuracy. 

10. Cross-validation: Cross-validation can give me a better idea of my model's expected performance and 

can help prevent overfitting. 

11. Ensemble Methods: Combining multiple models can often yield better results than using a single model. 

This was very useful as I was struggling to increase result accuracy. 

Steps involved using the GRNN/IWO to predict the correct voltage/torque for a desired motor speed 

explained by table below:  

 
                                     Table-1: Tuning GRNN Algorithm Parameters 

 

 

 

 

   

s

t

e

p 

Description Parameter/Metric Value 

      

1 

  Data Collection Sample Size 10000 

2  GRNN Training Data Split 80% Training, 20% Testing 

Spread Parameter (σ) 0.5 

3  IWO 

Optimization 

     Number of Weeds (Population 

Size) 

50 

Maximum Iterations 500 

Maximum Seed 5 

Minimum Seed 0 

Non-linear Modulation Index 1.5 

4     Motor Speed Control Desired Speed 0-5000 RPM 

5 Validation Evaluation Metric 97.69% 

Target Accuracy 98.85% 
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Desired speeds and the corresponding output control signal from the PID tuning GRNN-IWO given in 

table-2:  

         Table-2: output tuning control signal from the PID GRNN-IWO at desired speed 

Desired Speed (RPM) Control Signal [voltage (V)] 

500 1.2 

1000 3.5 

1500 4.7 

2000 5.9 

2500 7.1 

3000 8.3 

3500  

4000 9.5 

4500 10.7 

5000 11.9 

 

2.5 PID controller Tuning by GRNN-IWO 

PID tuning using GRNN-IWO to control the speed of a DC motor involves finding the optimal set of 

parameters for the PID model to achieve the desired speed control performance. This process is carried 

out by experiments using a DC drive setup for data acquisition. Collect sets of input-output pairs, where 

the inputs are the PID controller parameters (P, I, D) along with the desired engine speed, and the outputs 

are the actual engine speed reactions. It is important to include a variety of operational scenarios to ensure 

comprehensive coverage. Utilize the gathered data to train a GRNN. Construct the network's input layer 

to accommodate both the PID parameters and the desired speed as inputs. The output layer should be 

configured to forecast the real motor speed. Train the GRNN with the objective of approximating the 

relationship between the controller parameters and the motor speed. Performance is affected by the value 

of the diffusion coefficient to GRNN, so we will use an algorithm IWO to determine the appropriate value 

for it. The IWO algorithm by initializing it.  

Generate an initial population of spread factor values for GRNN, which can be likened to weed seeds, and 

these values can be either randomly assigned or predefined. The value of the best spread factor is 

determined by the fitness function by the IWO algorithm, which is the best possible value of the spread 

factor of GRNN from which the best values are determined for the PID controller that gives the best 

response characteristics of the DC motor that are with the lowest value of the root mean square error.  

The figure 2.5 shows the structure of proposed control system, and the table 3. shows the number of 

samples used and the number of iterations to obtain the best value for the spread factor for GRNN through 

which it is possible to determine the PID controller values. The feedback system's inherent transient 

response serves as the foundation for the second fitness function. IWO enhancement routine attempts to 

find the arrangement of regulator gain that limits these undesired drifters. The overall block diagram of a 

single loop controller tuned using GRNN-IWO is shown in Figure 2.5. 

 

Table 3: IWO parameters 

Parameters Values 

Weeding Population Size 100 

Number of Iterations 50 
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                                   Figure 2.5: structure of proposed control system. 

3. Results and Discussion 
This section organization presents the response of the controllers designed in the previous chapter. Two 

controllers were realized, Single loop PID algorithm (tuned with MATLAB and IWO) and a Cascaded 

loop PI controller (tuned with a Model-Based method). The PID Single loop controller was done as 

preliminary step in showing the effectiveness of the tuning methods used (MATLAB automatic tuning 

and Invasive Weed Optimization). The cascaded PI controller was then used for the proper DC Machine 

drive simulation using PWM on Simulink software. The cascaded PI controller was tuned using a model 

based method which offers quick determination of the PI controller gain with respect to the desired 

bandwidth of the system. The DC motor used in the experiment is a driven permanent magnet DC (PMDC) 

motor. The structure details and motor parameters of the PMDC motor are taken from the 24V DC motor 

datasheet, as shown in Figure 2.6 below. The electrical and mechanical parameters of the motor are shown 

in Table 4. 

                                    Figure 2.6. DC motors in series (dual axis) 

Table 4. Data of a DC Electric Motor. 

 

Parameters Units Values 

Rated voltage V 24 

Max. Continuous Current A 4.5 

Max. Operating Voltage V 36 

Inductance      mH       2.0 

Kt Torque Constant Nm/A 0.0062 

Winding Resistance @ Ambient ohms 1.0 

Continuous stall torque N-m 0.28 

No load speed at rated voltage RPM 3600 

No load current A 3.6 
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Rotor Inertia Kg-cm2 2.0 

After studying the structure of the single-loop PID algorithm, the cascaded PI controller is used to design 

the DC motor speed drive. The results obtained are presented and discussed in this section. Before 

presenting and discussing the results of the developed DC motor drive simulation, we provide a validation 

result showing that the DC motor model used in the simulation matches the behavior of the DC motor 

that is the subject of the study, as shown in the motor's datasheet. The DC motor is connected to its rated 

voltage of 24 V, and a load torque equal in magnitude to the continuous stall torque (0.28 Nm) given in 

the motor's data sheet is applied to the motor. The  open-loop speed, current, and torque response is shown 

in Figure 2.7.                                 

                                          Figure 2.7. DC motor verification response 

Figure 8 shows that the motor speed gradually increases to approximately the rated speed given in the 

motor data sheet (3600 RPM). When continuous stall torque is applied as load torque, the speed is reduced 

to approximately 3000 RPM. The motor draws a current approximately equal to the maximum continuous 

current (4.5A) in the datasheet. This current is required to maintain the load within safe limits. Therefore, 

considering all necessary motor ratings and safety limits, the speed driver is developed to drive the DC 

motor correctly. The data sheet of the motor shows that the continuous stall torque is 0.28 Nm. To 

investigate the load disturbance suppression capability of the DC motor speed control drive, a load torque 
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of 0.25 Nm is introduced to the DC motor at 0.1s moment at a motor speed of 1000 RPM, and its speed 

response is shown in Figure 8, which is enlarged to show the effect of the load torque on the motor speed. 

  Figure 2 Load Rejection Capacity of Speed Drive to Load Torque of 0.25 Nm from Simulink Scope Output. 

The y-axis and x-axis in Figure 5 represent speed (RPM) and time (seconds), respectively. The load causes 

the motor shaft speed to drop to approximately 994 RPM, and then the speed driver ensures that the motor 

recovers its reference set speed of 1000 RPM in 0.004 seconds. 

The results are simulated with the motor running clockwise and counterclockwise. The full-bridge DC- 

DC converter used to power the motor enables four-quadrant operation, allowing the motor to operate in 

both directions. The simulation uses a reference speed of 1000 RPM and -1000 RPM, and the motor's 

speed response and current response are shown in Figure 2.9. 

 

                 Figure 2.9. Response of velocity and current to changes in reference velocity direction. 

 

When a reference speed of 1000RPM is set, the motor drive causes the motor speed to rise quickly to its 

set reference value. This is performed without a small speed response overshoot, a much-needed feature 

in a precision servo drive. The action of the feedback active dampers in the velocity loop of the multi- 

stage controller causes a minimal overshoot. The transient response characteristIcs are given in Table 5. 

 

        Table 5. Transient Response Characteristics of the motor at 1000 RPM Reference Speed. 

 

Parameters Values 

Rise Time (seconds) 0.0123 

Settling Time (seconds 0.0230 

Overshoot (RPM) 0.0057 

Steady State Error 0 

    

       

    Table 6. The comparison of proposed method with existing articles on DC motor speed controlling. 

 

Article                   Technique Accuracy 

[20] Artificial Neural Networks (ANNs) 93.37% 

[21] Pulse Width Modulation (PWM) 95.82% 

  

Proposed 
Generalized Regression Neural Network (GRNN) And  

Invasive Weed Optimization (IWO) Algorithms 98.85% 
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4. Conclusion 
This research project demonstrates that PID/PI controllers play an important role in the design of speed 

drives for DC motors. The implemented PID control helps to provide an effective control signal to respond 

quickly and robustly to changing reference speeds and improve load disturbance rejection of DC motors. 

The current limiting feature implemented in the motor speed driver has proven effective in always driving 

the motor under safe conditions. Motor speed in current transformers increases with voltage amplitude 

and paper and fuel insulation deterioration. The number and distribution of motor speeds and the 

magnitude of motor speeds were sufficient to evaluate the performance of the current transformer, where 

98.85% accuracy was achieved using GRNN and IWO. This approach provides a relatively cost- effective 

way to implement DC motor speed drives with features such as current limiting 
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