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          Abstract 

The polarization mode dispersion,

, and birefringence, 


 , vectors have the 

same meaning in a certain cases, but in general they are different. In this paper, we 

introduce a new theoretical comparison between these two vectors through the 

propagation in optical fibers. The parameters; the angle between 

 and 


, and the 

value of  


 depend on the adopted form of the vector 


. In addition, the value of 

 

depend on the number of orders that is used to for account the vector 

. We 

introduce also a new formula of the dynamical polarization mode dispersion 

equation which contains the circular birefringence and the higher orders of the 

vector 

.  

 

 الخلاصة

 رٌتماثل المعنى لمتجهً ثنائً الانكسا         


 وتشتت نمط الاستقطاب   

فً مجموعة محددة من  الحنالات   

جهننٌ  لنن ل ولكنهمننا ملتانننا  فننً اللننورة العامننةه نقنندح فننً ةننقا ال حنند دراسننة مقارنننة جدٌنندة  ننٌ  ةننقٌ  المت

فً الألٌاف ال لرٌةه ا  كل م : الزاوٌة  نٌ  المتجهنٌ ق مٌمنة ثننائً الانكسنارق ومٌمنة التنزلٌر الزمننً  رالانتشا

المت نناة  اضانافة  رعانى لنٌ ة متجنن ثننائً الانكسنا  الأساس)مٌمة تشتت نمط الاستقطاب( ةً معام ت تعتمد 

ط الاسننتقطابه منندح ال حنند يٌاننا لننٌ ة جدٌنندة لامعادلننة إلننى عنندد الرتننب التننً تنندلل فننً تكننوٌ  متجننن تشننتت نمنن

الحركٌة لتشتت نمط الاستقطاب ٌدلل فً تركٌ ها كل م  ثنائً الانكسار الدائري والرتب العاٌا لمتجن تشتت نمط 

 الاستقطابه

 

الباحث مختص في موضوع البصريات اللاخطية للألياف البصرية. (*)  
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1. Introduction  

As the bit rate and distance of optical fiber transmission systems continue to increase, the 

understanding of polarization mode dispersion (PMD) and its system impairments and 

mitigation are becoming ever more important [1]. In an ideal circularly symmetric fiber, the two 

orthogonally polarized modes have the same group delay [2]. In reality, fibers have some amount 

of birefringence due to imperfections in the manufacturing process and/or mechanical stress on 

the fiber after manufacture. PMD has its origins in this optical birefringence and the random 

variation of the birefringent axes orientation along the fiber length [3]. PMD causes different 

delays for different polarizations; when the difference in these delays approaches a significant 

fraction of the bit period, pulse distortion and system penalties occur. Environmental changes, 

including temperature and stress, cause the fiber PMD to vary stochastically in time, making 

PMD particularly difficult to manage [4].  

The PMD may induce unacceptable levels of signal degradation in high optical 

communication systems. The signal degradation takes the form of pulse broadening due to the 

differential transmission time of two pulses polarized along orthogonal states of polarization 

(SOP). This kind of PMD is commonly known as first order PMD [5]. A series of PMD 

compensation methods have been proposed in order to overcome the problem [6]. Under first 

order PMD, a pulse at the input of a fiber can decompose into two pulses with the orthogonal 

SOP. Both pulses will arrive at the output of the fiber undistorted and polarized along different 

SOP, the output SOP being orthogonal. The differential transmission time between these pulses 

is referred to a differential group delay (DGD) and the input (output) SOP which allow the 

transmission (reception) of undistorted pulses are known as the principal input (output) states of 

polarization (PSP’s) [1,7]. Both of the PSP’s and the DGD are assumed to be frequency 

independent when only first order PMD is being considered [4].  

The higher order PMD effects account for the frequency dependent of the DGD and 

PSP’s. The frequency dependence of the DGD introduces an effective chromatic dispersion of 

opposite sign on the signals polarized along the output PSP’s [8]. Higher order PMD effects have 

been studied in the literature, but the distortion of specific input pulse induced by higher order 

PMD is still to be clarified [5]. 

There is frequent confusion between the terms "axes of birefringence" and "principal 

states of polarization". The former refers to a local orientation of the fast and slow axes in the 

fiber, based upon the physical geometry of the fiber, which is described by the birefringence 
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vector 


. The latter refers to the two states of polarization of (a monochromatic) input light 

pulse which pass through a birefringent medium, including a concatenation of randomly 

oriented birefringent elements, without spreading [4,8]. The two corresponding states of 

polarization of such a pulse as it exits the medium are referred to as the output PSP's, which are, 

in general, different from those of input PSP's [7]. For a constant birefringence medium, the axes 

of birefringence and the PSP's are the same, but for a complicated medium having local 

birefringence, which changes along its length, the input and output PSP's in general do not 

correspond to the axis of birefringence anywhere along the fiber [2].     

In this paper, we are introduced a novel theory to account for the relation between the 

PMD vector, 


, and the birefringence vector, 


. The theory includes the effects of these two 

vectors on the dynamical PMD equation. 

 

2. Theory  

The principal states model [9], states that; for a length of fiber, there exists for every 

frequency a special pair of polarization states, called the principal states of polarization (PSP's). 

A PSP is defined as that input SOP for which the output SOP is independent of frequency to first 

order, i.e. over a small frequency range. In the absence of polarization dependent loss (PDL), the 

PSP's are orthogonal. For each pair of input PSP's, there is a corresponding pair of orthogonal 

PSP's at the fiber output. The input and output PSP's are related by the fiber's transmission 

matrix (Jones matrix), just as any input polarization is related to a polarization at the fiber 

output [10,11]. Using the principal states model, PMD can be characterized by the vector [9] 

 

 

a vector in the three dimensional Stokes space, where the magnitude, Δτ, is the differential group 

delay (DGD). The unit vector, p̂ , points in the direction of the slower PSP, whereas the vector  

p̂  indicates the orthogonal faster PSP. The latter is 
o180  from p̂  in Stokes space.   

       In the optical fibers, the birefringence vector B


 is defined in two forms as [3,11]  
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where   is the angle of birefringence in Jones space,   is the magnitude of linear 

birefringence, i.e. || LB


  ,   is the photo-elastic coefficient of glass; it is about 0.14-0.16 [5] 

according to the dopants rate, and T is the twist rate in (rad/m). The angle   is not constant 

along the fiber; also,   and T. This means that each position of fiber has a birefringence vector 

differs from another position at random, depending on the values of  ,  , and T.   

Supposing that || LB


 ; it is rL
ˆ 


: where r̂  represents a unit vector in Stokes 

space. The vector r̂  represents a rotation axis of polarization vector, which differs from one 

section to another randomly. As a consequence, the PMD  vector, 


, can be defined as a function 

of r̂  and   [4]  

 

where z   represents the rotation angle of the polarization state vector Ŝ  around the 

birefringence vector 


, and w  and wr̂  represent their first derivatives of frequency. Eq.(3) 

obtains that the angle and direction of rotation control the resultant vector 


.  

Substituting Eq.(2 a) into (3), we can obtain the following 

 

 

 

 

where 
dw

d     represents PMD parameter, and z  is the fiber segment length. Eq.(4) 

represents the PMD vector considering the linear intrinsic birefringence. On the other hand, 


 is 

a function of w , which it may be written as a Taylor series around the central frequency ow  as 

follows 

 

 

 

By comparing Eqs.(4) and (5), then the first term on the right hand side of Eq.(4) will represent 

the first order of PMD vector, while the second term indicates all higher order of PMD vector. 

Accounting that the higher order depends on the value of dwd / .  For a very small variations of 

  (3)                                                            )1(cosˆˆsinˆˆ   rrrr www



  (4)                                                              

)cos(1

)2cos()sin(

)2sin()sin(

2

0

)sin(2 z 

)cos(2 z 

3

2

1

















































































dw

d

  (5)                                                   .................|
2

|)()(
02

22




  wwwwo
dw

dw

dw

d
www

o









 

33 

 

Journal of University of Thi-Qar            No.2           Vol.2            Sep./2006 

  with frequency, the second term on the right hand side of Eq.(4) may be neglected. Elsewhere, 

the higher order effects must be included through the determination of PMD vector.  

Neglecting the higher order effects makes the PMD vector as follows 

 

 

 

This means, 


 coincides the rotation vector r̂  (the birefringence axes coincide the PSP’s). In 

other words, 


 is coincides the birefringence vector 


 if the intrinsic birefringence is linear and 

the higher order PMD effects are neglected. Elsewhere, the two vectors are never coincided. 

 Using Eq.(6), the DGD of the fiber segment can be obtained as 

 

 

The value of DGD represents the delay time between the two components of polarization in a 

single segment of the optical fiber. Since the DGD’s of the fiber segments are random, such that 

the mean DGD can be calculated as 

 

 

 

For the case of wide frequency band, the higher order effects of the PMD must be included in 

account. The DGD of this case can be obtained using Eq.(4) as follows 

 

 

 

Looking to Eq.(9), one can notice that the DGD is related to the change of   with respect to 

frequency, and   e . This means that the higher order effects increase the DGD. Using 

Eqs.(3) and (4) one can obtain the angle between the two vectors 


 and 


 as 
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For the nonlinear intrinsic birefringence, 


 can be calculated using Eqs.(2 b) and (3) as 

follows 

 

 

 

 

 

where the parameters 1a  into 8a  are defined as 

 

 

 

 

 

 

and  22 ) ( TNL    is the nonlinear birefringence amount.  

Eq.(11) represents a new formula of the PMD vector, it  gives us the idea about the 

amount of difficulties to compensate the noise that arise due to PMD when the pulse propagates 

through optical fibers. Many scientific researches [2,6,7] of PMD compensation have been 

proposed, which deal only with the first order of PMD. This  means that the compensation 

depend upon the first term on the right hand side of Eq.(11) and assuming that the birefringence 

vector 


 is linear. 

    

3. Dynamical PMD Equation 

 The output Jones vector  s|  is related to the input one  t|  as follows [3] 
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where 


 is a Pauli vector in three dimension and  ssS ||ˆ 


 is the Stokes vector of the 

polarization. Now, one can obtain the transpose of the complex conjugate of Eq.(15) and multiply 

it from the right by s|


 to obtain  

 

 

Differentiation the definition  ssS ||ˆ 


 with respect to frequency, using Eqs.(15) and (16) 

and with help of the identity 

   

 

we can obtain 

 

 

By differentiation Eq.(13) with respect to z  and using a similar manner of the one used to drive 

Eqs.(14)-(18), we get 

   

 

 

The vectors 


 and 


 in Eqs.(18) and (19) contain the effects of higher orders of the vector 


 

and the circular birefringence of the vector 


. Accordingly, we can rewrite them as follows 
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Now, Eqs.(22) and (23) are combined by eliminating 
wz

S


 ˆ2

 , using Eqs.(20) and (21), and 

simplified the results by the identity )()()( baccabcba

  yields 

 

 

 

Eq.(24) represents a new form for the dynamical PMD equation, where h


 is the circular 

birefringence and h


 is the higher orders PMD vector. If we ignore the effects of higher order of 




 and assuming that the birefringence vector 


 is linear, then Eq.(24) will be the same as the 

form that obtained by Ref. [4]. 

The evolution of the PMD vector with fiber length is described by Eq.(24) that relating 

the PMD vector to the microscopic birefringence. Here z  is the direction along the fiber. 


 is a 

three-dimensional, local birefringence vector of the fiber, pointing in the direction of the 

birefringence axes with a magnitude NL  . This equation is the basis for the statistical theory of 

PMD. Its solution is beyond of this work. 

 

 4. Discussion and Conclusions 

 We can find out the vector 


 from 


 using Eq.(4). The vector 


 is linear only if 


 is 

linear and ignoring the higher orders of the vector 


, otherwise they are different. When we 

change the distance this implies to rotating Ŝ  around 


 by an angle  . On the other hand, the 

change of frequency causes to rotate Ŝ  around 


 by an angle  . Fig.(1-a) illustrates the relation 

among the three vectors Ŝ , 


, and 


 where the polarization vector Ŝ  is rotating a round 


 

and 


 by changing the distance and frequency, respectively. When we add the higher orders of 




 , this means that the vector 


 is nonlinear which does not coincided with the vector 


 as 

illustrated in Fig.(1-b). The general case considers the birefringence vector is nonlinear and 

assuming all orders of  


 as illustrates in Fig.(1-c), which shows that each vector rotates in 

Stokes space.  
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
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distance is fixed and the frequency is changed, then 


  remains fixed and 
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i


  ( Ni  .,,.........2  ,1   , where N is the number of individual frequencies) depending on the 

frequency. Fig.(2-a) illustrates the individual vectors i


 which represent the PMD with each 

frequency and the resultant vector tot


. This means that the final angle between 


 and 


 will 

change depending on the frequency, see Fig.(2-b). Secondly, when we fixed the frequency and 

changing the distance, then 


 remain fixed and 


 takes many forms i


 ( Ni  .,,.........2  ,1 , 

where N is the number of fiber segments) depending one the birefringence value and the length 

of optical fiber. This case is similar to the previous case with replacing 


/


  instead of 


 / 


. 
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. a) the two vectors 


 and 


 are linear 

b) 


 is linear and 


 is nonlinear, c) the two vectors 


 and 


 are nonlinear. 
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Fig.(2): a) The vector tot


 represents the resultant vector of many different vectors i


 each one 

for different frequency ,  b) the final situation of the vectors 


 and 


. 
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