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Abstract

A nonlinear finite element method is adopted for the large displacement elastic-plastic static
analysis of anisotropic plates under in-plane compressive loads. The analysis is based on the two-
dimensional layered approach with classical and higher order shear deformation theory with five,
seven, and nine degrees of freedom per node. Nine-node Lagrangian isoparametric quadrilateral
elements are used for the discretization of the laminated plates. Effects of orthotropy of individual
layers, through-thickness shear deformation, fiber’s orientation angle, and fiber waviness on the
large displacement elastic-plastic static analysis are considered. The plate is analyzed with a range
of number of sequences (k) of sine wave fiber (1-12) and with a range of the amplitude of fiber path
(A) of sine wave fiber (0.0-0.5). The conclusion it is shown that the behavior of the laminated plate
is very sensitive to the shape of fibers (straight or sine wave), also the behavior of the plate with
sine wave fiber depends on the amplitude of the fiber and the number of sequences of the fiber, and
so the capacity of the laminated plate with sine wave fiber and under in-plane compressive load in
the direction of waviness is higher than the capacity of the plate with sine wave fiber and under in-
plane compressive load orthogonal to the direction of waviness by approximate value (42%).

Keyword: Large Displacement, elastic-plastic analysis, finite element method, composite plate, in-plane
compressive loads.
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Notations
Symbol Description
a, b Plate dimensions in X and y-directions, respectively.
[B] Strain-nodal displacement matrix.
D Flexural rigidity = Et3/12(1 —v? )
E, Modulus of elasticity in i-direction.
E; Modulus of elasticity of fiber.
E. Modulus of elasticity of matrix.
Fi, Fj Strength tensors of the first and second order, respectively.
{F} External load vector.
F Yield function.
G Shear modulus.
h-h 1 Distance from plate middle surface to the upper and lower surface of L™ lamina.
h Plate thickness.
[K 0] Constant linear elastic stiffness matrix
[K L] Initial or large displacement matrix
[K o ] Initial stress stiffness matrix
[K T ]0 Tangent stiffness matrix.
MMM, iﬁét:fiégs% 'and twisting moments (per unit width) (on yz, Xz, and both yz and xz-
M.y Higher order bending and twisting moments (per unit width) (on yz, Xz, and both yz
0y and Xz-sections).

N,,N,,N,, In-plane stress resultants (per unit width) (on yz, Xz, and both yz and xz-sections).

N .N*.n-  Higher order in-plane stress resultants (per unit width) (on yz, Xz, and both yz and
2Ty Txy XzZ-sections).
Px In-plane applied load in X-direction.
Qx Qy Transverse shearing forces (per unit width) (on yz and Xz-sections).
W, Amplitude of initial imperfection.
X, )2 Coordinates.
o
7ij Shear strain in ij-plane at middle surface.
0*
Vi Higher order shear strain in ij-plane at middle surface.
{8} Strain vector.
{6‘0} Middle surface strain vector.
&; Normal strain in i-direction.
gl Normal strain in i-direction at middle surface.
g’ Higher order normal strain in i-direction at middle surface.
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&1 Curvilinear coordinates system.
0 Fiber’s orientation angle.
6.6, Rotations of transverse normals in the (xz) and (yz) planes.
0. ,0; Higher order rotations of transverse normals in the (xz) and (yz) planes.
o
Ki Bending curvature in i-plane at middle surface.
o
Kij Bending curvature in ij-plane at middle surface.
0*
Ki Higher order bending curvature in i-plane at middle surface.
0*
Kij Higher order bending curvature in ij-plane at middle surface.
Vi Poisson’s ratio in i-direction.
o, Yield stress of steel
Introduction

The composite material is made of two or more macro-constituent's materials essentially soluble or
mixable into each other, usually a reinforcing material supported in a compatible matrix, where the
sum of properties of each constituent taken separately, are assembled in prescribed amounts to
achieve specific physical and chemical properties [Jones,1999]®.

The reinforcement materials may form as continuous or discontinuous fibers, flakes, fillers
or particles embedded in the matrix material. Fibers in various forms (mat yarn, woven roving, and
chopped strands) are inherently much stiffer and stronger than the same material in bulk form. The
matrix material works as a binder material giving the composite a protection and supports its bulk
form and stress transfer when the fiber is broken. Typically, the matrix is of considerably lower
density, stiffness and strength than those of the fibers.

Layered composite material plates are extensively used in the construction of aerospace,
civil, marine, automotive and other high performance structures, and during the operation of this
structure, it is subjected to static and dynamic loads, as shown in Figure (1). Therefore, there exists
a need for investigating the response of layered (laminated) composite material plates subjected to
such types of loading.

The finite element method has been applied with great success to geometrical and material
nonlinearities in continuum and structural problems. The geometric nonlinearity is modeled by
well-known formulations, the total or updated Lagrangian coordinates, while success in modeling
the material nonlinearities depends on the validity of the constitutive models to be used. Elseifi
[1998]7 presented nonlinear finite element method for the post-buckling analysis of stiffened
composite panels with geometric imperfections. A four node, six degrees of freedom per node,
rectangular, conformal element was used. Transverse shear effects were neglected since the width
to thickness ratio of the panels under consideration is over 500. A maximum stress failure criterion
was added to the finite element code to predict the panel post-buckling failure load. A new
integration technique that mixes symbolic closed-form function manipulation and Gaussian
quadrature numerical integration had been introduced in order to reduce the required computation
time for each analysis. His study did not take the effect of fiber orientation, number of fibers, and
type of initial imperfection. Shukla and Nath [2000]"> presented a post-buckling analysis of shear
deformable cross-ply laminated rectangular plate subjected to the combination of in-plane edge
compressive mechanical loading and thermal loads due to a linearly varying temperature across the
thickness. Their formulation was based on the first order shear deformation theory and Von-
Karman type nonlinearity. They observed that their present method was quite efficient in obtaining
the buckling and post-buckling response of a laminated composite plate under thermomechanical
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loading. More recently, Zou and Qiao [2002]"'® presented a higher order finite strip method for

post-buckling behavior of imperfect composite plates subjected to progressive end shortening. The
arbitrary nature of initial geometric imperfection induced during manufacturing was accounted for
in the analysis. The nonlinear equilibrium equations were solved by Newton-Raphson method.
That study showed that the post-buckling behavior of an imperfect composite plate depends not
only on the material lay up, snap-to-thickness and anisotropy of the laminate, but also on the
direction of induced out-of-plane imperfection. From the preceding review of literature, it is clear
that there is no study which considers the nonlinear static analysis of isolated laminated plate under
axial compression load by taking into account the effect of type of fiber (straight or wavy). There is
also a little amount of literature that takes into account the higher order displacement model of nine
degrees of freedom per node with different types of lamination.

Laminated Plate Theories

A laminated plate is a series of laminas bonded together to act as an integral structural element.
Thus, a laminate is not a material but instead a structural element with essential features of both
material properties and geometry. The stiffness and strength of such a composite material with
structural configuration are obtained from the properties of the constituent laminas, and thus the
macromechanical behavior of a laminate is the main topic of this section. The lamination so
described can be considered as a single layer with "rule of mixtures" representation of the
interaction between the multiple laminas in a plate or shell [Jones, 1999]%.

There are two categories of theories, equivalent single layer and three dimensional elasticity
theories. In the first category, the material properties of the constituent layer are smeared to form a
hypothetical single layer whose properties are equivalent to through thickness integrated sum of its
constituents, and this category contains classical lamination theory, first order shear deformation
theory, and higher order shear deformation theory. The higher order shear deformation theories are
more efficient to represent the transverse shear deformation, through-thickness displacement and
strains. The assumption of a higher order plate theory can also be used within the equivalent layer
formulation [Jones, 1999]®. The strain expressions derived from the displacement field were
considered by [Ali, 2004]® with nine degrees of freedom per node as follows:

u(x,y,z,t) =u, (x,y,t)+ sz(x, y,t)+ u, (x, y,t)+ 20, (x, y,t)

v(x,y,z,t) =v, (x,y,t)+ zey(x, y,t)+ zzv: (x,y,t)+ z39; (x, y,t) 1)

w(x, Y, z,t) =w, (x,y,t)

in which the parameters (u, v, w, 0., 0,, 91, and 9;) are defined previously, uz, and vZ are the

corresponding higher order terms in Taylor's series expression and they are also defined at the
middle plane. The strain-displacement relations after differentiating Equation (1) are:

X
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Also, all the strains above are defined in the middle-plane of the laminate. By substitution
from Equation (3) into the stress-strain relations given by the following Equation:

all coefficients in A, B, D, E, F, G, and H groups are defined as follows:

A A
AL

A
: *

Oy 0, 0, 95 O 0 | &
o, 0, 0, 0 O 01 e,
Ty |=| Q6 O Q¢ O 0 |7y
Ty 0 0 0 Oss Ous | 7
| Ty 0 0 0 Qp Quf7y
follows™:
Nx _All A12 A16 Dll D12 D16 Bll BlZ
Ny A12 A22 A26 D12 DZZ D26 BlZ B22
Nx’;y A16 A26 A66 D16 D26 D66 Bl6 BZ6
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My E12 E22 E26 G12 GZZ G26 1?12 F22
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and,
Qx ASS A45 BSS B45 D55 D45 (P X
Qy As A, Bs B, Dy D, o,
Sx _ BSS B45 D55 D45 ESS E45 Y Xz
Sy B, B, Ds D, E,  E, |7,
Qx D55 D45 ESS E45 FSS F45 (PX
_Qy Ds D, Es E, Fs F,|9,

(C))

After complete integration, the stress-resultant/strain relations of the laminate are as

©))

()
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NL
Ay =20;(h, —h; ) i,j=1,2,60ri,j=4,5 (7 a)
L=1

NL ) )

B; =(1/2)20;(h; —hi_) i,j=1,2,60rij=4,5 (7b)
L=1
NL 3 3

D; =(1/3)X0;(h; —h;_,) i,j=1,2,60rij=4,5 (7 ¢)
L=1
NL 4 4

E; =(/4)X0,h; —h;_) ij=1,2,60ri,j=4,5 (7 d)
L=1
NL 5 5

F; =(/5)X0;(h; —h}_) ij=1,2,60ri,j=4,5 )
L=]1
NL 6 6

G; = (1/6)21Qij (hy —hy ) Lj=1,2,6 71
L=
M 7 7

H; = (1/7)21Qij(hL —h]_) ij=1,2,6 (72)
L=

The present study explores the idea of tailoring the profile of reinforcing fibers to improve
the buckling strength of composite plates. This study investigates the effect of waviness of fibers
on the post buckling curves, as shown in Figure (4), and this waviness is of the form:

y(x)=asin(kﬂj 8)

a
such that the angle of fiber orientation 0 varies along the longitudinal x-axis as:

tan(e) = :llx_y = ochn.cos(anx) = Akn.cos(kw?) 9

where a = plate length; k= number of half sine waves; and a= wave amplitude. Two normalized
variables, A=a/a and X = x/a, are introduced.

The main objective is to study the effect of fiber waviness, characterized by k and A, on the
static and dynamic buckling behavior of composite laminates. The fiber can also be rotated in any
direction with the x-axis, as shown in Figure (4), by using the following expression:

x,, = xcos(B)+ ysin(B) (10)
where x, represent the x-coordinate for a rotated fiber, and B is the angle of the waviness fiber.

The angle of fiber orientation in Equation (9) is variable with x-coordinate and instead of the
constant angle used for straight fibers.

Figure (5) shows the principal material directions aligned with the lamina axes by angle (B ).

Geometrical Nonlinearity

The components of the Green-Lagrangian strain vector are known in terms of local derivatives of
the displacements for the plate element as [Pica, et al., 1979]"%:

Sx
8.V P b P P
g! zE, g ¥
gl=4y., = + + + 11
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Yoz )

where the linear mid-plane strains are:
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Equation (12) represents the in-plane strain. Also:
00,
.
b ¥
&=y — ¢ 13
| @ -
09, 06,
_ + —_—
| Oy  Ox |
Equation (13) represents the bending strain. Also:

s |- {Zy} (14)

Equation (14) represents the shear strain. Moreover:
1fowY
2\ Ox
r]=11(2 ’
w
Sp =< —| — > 15
=432 as)

ow ow
Ox Oy

J

Equation (15) represents the nonlinear component of in-plane strain. Finally:

ow Ow,,
ax ox
ep]=y 2% (16)
oy Oy

owow, Ow, ow
lox oy ax )

Equation (16) represents the initial strain due to initial deflection. The vector components of
Equation (11) represent the generalized strains. It can be noted that the vector (&, +&f +&7)

reproduce the Marguerre strain expression for plate.

Variational Equation of Equilibrium

The variation of strain de due to the virtual displacements du, generally de is given as the sum of the
variation of the linear and nonlinear generalized strains as:

de=de, +de, a7
Since €, is a linear function of displacement,

de, =B, |du (18)
Also,

de, =B, |du (19)

Thus, the total strain-nodal displacement matrix for total strains is:
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B]=[8,1+[5,] 20)
in which [Bo] i1s the same matrix as in the linear strain analysis and [B L] depends on the
displacements.

[BO]{BO‘{] B,,}[ B,]= {0 Bb} @1)

where [B L] can be found by taking the variation of the nonlinear strain components {.s‘f } with

respect to the displacements. This nonlinear strain components of Equation (11) can be written in a
more convenient form as:

(6»1)) _8w . ]
ox a_x a_w

1( o G, 1
[sIL’]=< 5[6—:] b=—| 0 a—;" gg =5[A9]{e} (22)

ow [ ow ow ow|loy
(a_xjg | oy Ox |

where the displacement gradients with respect to the lateral displacements (w) are:

N | —

©1=| & 23)

Then, the variation of the nonlinear component of the in-plane strain is obtained from Equation (22)
in terms of the virtual gradients d0 as:

de? = Ay dB 24)
where. _
o
ox
ow
Ay=| 0 — 25
0 o (25)
ow ow
| Oy Ox |
in which, Ag represents the gradients of total displacements and,
w
a0 = d| % (26)
omw
oy

represents the gradients of incremental displacements.

The displacement gradients (0) of Equation (23) may now be written in terms of the nodal
displacements (#) and Cartesian derivatives of the shape functions as:

{o}=[clu} @7)
where

l¢]=]G, G, ... G,] (28)
and,
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0 0 aév,. 0 0
G, = X 29)
0 0 ON; 0 0
Oy

The above equation represents the gradient for five degrees of freedom per node. Taking the
variation of Equation (22) as follows:

alet }= dlg o)+ 14, )0} = [, 1a(0} = [ 4, 6T} @)
hence immediately, by definition
[8], =[4,][c] (1)

In order to incorporate the imperfections in the formulation, the strain due to imperfections
as given in Equation (11), thus can be written the imperfection strain components as follows:

ow,
2 » 0 ow
1 ow, 1
{sz}=§ 0 2 o 2_;‘, =5[A1]{9} (32)
26w0 26w0 oy
oy Ox |

Following the same analysis as for the nonlinear strains, the combination of the effects of
the two strains into one lBZJ is defined as:

|82 ] [4,]6] (33)
where
[A2]=[Ae]+[A1] ]
M 2O, 0
Ox Oox 5 5
w w
A, |= — 42—
[4,] 0 > 5 (34)
ow _oOw, Ow _Ow,
—+2 —+2
| Oy oy oOx Ox |

In the present study, the imperfection is assumed to be of sinusoidal function over the plate
as:

w, (x, y) =w, sinLnL—nx] sin[nLﬂ} 35)

x ¥
where Ly, and L, are the dimensions of the plate in the x, and y-direction, respectively. w, is the
maximum value of the initial imperfection at the plate center.

The variation in the potential energy of deformation for a plate element with large deflection
can be written as:
T
v = [[B] o av (36)
v
Substituting Equations (36) can give the equilibrium equations written as:

¥(u)=[[B]'5av -aw =0 37
4

where ¥ represents the sum of external and internal generalized forces.
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Clearly, the solution of Equation (37) will have to be approached iteratively. In order to use
an incremental solution procedure, the relation between du and d¥ must be found. Thus, taking
appropriate variation of Equation (37) with respect to du:

T T
ﬁﬁ@ Fav + [[B] ds .., (38)
du  du v du

where the variation of the external load with respect to displacements is equal to zero, and thus
Equation (38) can be written at another form:

jd[BL] dv +[K] (39)
du
where
T
x]- [[B] [Dl[Blia=[k,]+[x,] (40)
A
The first term of Equation (39) can be written as:
jd[BL] gdv =[K_] (41)
u

4
where [K c] is a symmetric matrix dependent on the stress level. This matrix is known as initial

stress matrix or geometric matrix. Thus,
=, J+[K, ]+ K, ]) du =K, ] du (42)
with [K T] being the total, or tangent stiffness matrix.

Tangent Stiffness Matrix

The tangent stiffness matrix can be written as:
[k, ]=[x,]+[K, ]+[K,] 43)
where [K 0] 1s the constant linear elastic stiffness matrix and can be written as:

Ix,1- ([2,] [o]z,)as @4

[K L] is the initial or large displacement matrix which is quadratically dependent upon displacement
u, and can be written as:

&, ]= I[B ['[p][B,Jaa+ J 8. ]'[D][B, ]dA+I[BL]T[D][B Jas (45)

Finally [K ] is the initial stress stiffness matrlx which has to be found by using the definition of
Equation (41). By taking the variation of Equation (20) then:

d[B,] = 0p 0 (46)
= als ] o

This on substitution into Equations (41) and (34) gives:

e Nx 3

N}’
0 0|V

K, |= ~
[ 0'] £|:[G]Td[A]T 0:|< M, r 47)

My

My |
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However, using the mathematical properties of the matrix [A4], this matrix can be written as:

N
*'[N, N
dlA]'{ N, {N" ny}[G]da (48)
N Xy y
xy

and finally one can obtain

L B [Ifg]] (49)

Thus,

[, )= ] [G]’m:y ZZVV’W}[G]da (50)

y

Failure criteria for laminated plate structure

The stresses in an individual lamina are fundamental to control the failure initiation and progression
in the laminate. The strength of each individual lamina is assessed separately by considering the
stresses acting on it along the material axes. The initial failure of a lamina is governed by
exceeding the maximum limit prescribed by a failure criterion. The determination of failure load is
very essential in understanding the failure process as well as the reliability and safety of structures.
The ultimate load that makes the plate fail is calculated based on Tsai-Wu criterion for general
comp(()9s)ite materials and on Hashin criterion for fiber composite materials as follows [Jones,
199971

F0,+F0,6;=1; Y = (51)

where F; and Fj; are strength tensors of the second and fourth order respectively and the usual
contracted tensor notation is used except that o, =7,;,05 =7,;,ando; =7;,. Equation (51) is

obviously very complicated thus it will restrict the above attention to the reduction of above
equation for an orthotropic lamina under plane stress conditions:

Fo,+F,0,+ F;6;+ Fncsl2 + +F22cs§ + F33c§ + F|,0,0, 52)

+ F|;6,065 + F,;6,06;5 + F44Gﬁ + FSSG§ + F66c§ =1

The terms that are linear in the stresses are useful in representing different strengths in tension and
in compression. The terms that are quadratic in the stresses are the more or less usual terms to
represent an ellipsoid in stress space, where F; = 0 indicates that to the shear strength of a material

in compression and in tension is similar, and o, =0 in z-direction. Also, the shear strength of a
material is equal in three dimensions and equal to S. Thus, the terms of Fj is:

() e (11 (11
Xt XE Yt YE Zt ZC
1 1 1
Fn:[X XJ’Fzzz(YYJ’FB:[Z ZJ
t" c t'"c t"“c
1 1 1
F, = (F) Fy = (F) F =(F) (53)
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where,
X,,X, = The axial or longitudinal strength in compression and tension.

Y.,Y, = The transverse strength in compression and tension.
Z.,Z, = The transverse strength in compression and tension.
R,T, S = Shear strength of the material.
Equation (52) becomes as:

F,o,+F,6,+F,c’ ++F,c;+F,0,6,+F,c. +F.c.+F,c. =1 (54)
Equation (54) is suitable for the elastic-plastic analysis of anisotropic materials.
For matrix cracking failure, two different failure criteria are used depending on whether the
transverse normal stress, 0,5, is in tension or in compression. The failure index, e,zn , 1s defined in

terms of transverse tensile strength, ¥, , transverse compressive strength, ¥., and in-plane shear
strength, R, and is expressed as:

o Y 2 o 2 T 2
2 22 ¢ 2 12
e =—=|| —=| -1|+|—=| +|—=| foro,, <0
and,
2 2
2 07 T
e, =|—=| +|—==| for o,, >0 56
" (Y] [R) N oY

where (e,,) is the failure index for matrix cracking. Matrix cracking is assumed to occur when the
failure index (e,) exceeds unity.

Fiber-matrix shear failure is assumed to be dependent on a combination of axial stress, o,
and shear stress, 712, and is expressed as follows:

2 2 2 2
2= 2| 4|22 foro>0and | L] <[ B2 57)
X, R X, R
2 2 2 2
o T o T
e3= L4220 for 0, <0 and L 22 (58)
| X, R X, R

where (e;) 1s the failure index for fiber-matrix shearing, X; is the tensile strength along the fiber
direction and X, is the compressive strength along the fiber direction. Equations (57) and (58)
predict that when the failure (e;) exceeds unity, fiber-matrix shearing dominated failure occurs.

Fiber breakage failure occurs in tension due to the combination of axial stress and shear
stress while the failure in compression is governed by buckling as expressed in terms of only axial
stress. The criterion for breakage failure is expressed as follows:

2 2
e} = (%] + [%j for oy, >0 (59)
t
and,
72
el = (%] for &7, <0 (60)

where (es) is the failure index for fiber breakage. The fiber breakage failure occurs when (e;)
exceeds unity.

12
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Applications and Discussions

In order to verify the reliability of the adopted numerical method, some case studies reported by
other researchers are utilized. The study of the composite plate will be introduced.

Comparison with experimental investigation of composite plate

The post-buckling and failure characteristics of flat, rectangular graphite-epoxy panels with and
without holes that are loaded in axial compression have been examined in an experimental study by
Starnes and Rouse [1981] and in a theoretical study by Elseifi [1998]”. The panels were
fabricated from commercially available unidirectional Thornel 300 graphite-fiber tapes
preimpregnated with 450 K cure Narmco 5208 thermosetting epoxy resin. Typical lamina properties
for this graphite-epoxy system are 131.0 GPa for the longitudinal Young’s modulus, 13.0 GPa for
the transverse Young’s modulus, 6.4 GPa for the in-plane shear modulus, 0.38 for the major
Poisson’s ratio (v)2), and 0.14 mm for the lamina thickness. The loaded ends of the panel were
clamped by fixtures during testing, and the unloaded edges were simply supported by knife-edge
restrains to prevent the panels from buckling.

In the present study, the plate is analyzed by using nine-node isoparametric Lagrangian
finite elements with nine degrees of freedom per node. The panel is 0.508 m long, 0.178 m wide,
and 24-ply orthotropic laminate with [(45°/0° /-45°),, (45° /0° /-45°),, (45° /0° /90°)4] stacking
sequence. The modeling approach of the quarter plate was based on using two elements in the short
direction, and three elements in the long direction. The finite element mesh used is shown in Figure
(7). In order to efficiently proceed beyond the critical buckling point in the post-buckling analysis
of the panel, an initial geometric imperfection in the same shape as the first buckling mode was
assumed. The amplitude of this initial imperfection is (1%) of the total laminate thickness. Figure
(8) shows the out-of-plane deflection (w) near a point of maximum deflection (node i ) normalized
by the panel thickness & as a function of the normalized load. From this figure, it can be noticed
that good agreement exists with the experimental results with a difference not more than (6%). On
the other hand, the present results are closer to the experimental investigation.

Comparison with theoretical investigation of composite plate

A square cross-ply laminated plate with simply supported edges and initial imperfection was
analyzed by Zou and Qiao [2002]"?. Lateral in-plane expansion is allowed at the loaded ends and
the unloaded edges can be moved in the plane but remain straight. The layer material and geometry
properties are presented in Figure (9). The slenderness ratio is set as (b/h=20), and it represents a
moderately thick laminate. The laminated plate contains eight equal-thickness layers in [0°/90°]4
layup. The initial imperfection (w,/h) is given by (0.0 and 0.1) by which the shape is considered to
be a sinusoidal curve. Zou and Qiao used higher order finite strip method and solved the nonlinear
equations by Newton-Raphson method. In the present study, a quarter of the laminate is modeled
with (2%2) mesh of nine-node isoparametric Lagrangian element with nine degrees of freedom per
node. Numerical results and response comparisons with Zou and Qiao [2002]"? are shown in
Figures (10) and (11) for axial load versus total deflection and axial load versus end shortening
strain (g). The present results are really close to those of Zou and Qiao [2002]"® with a difference
of not more than (15%).

Parametric Study

A parametric study is performed to assess the influence of several important parameters on the
elastic-plastic large displacement analysis of a composite laminated plate subjected to in-plane
compressive load.

The selected parametric studies are summarized as follows:

The effect of through-thickness shear deformation.

The effect of fiber’s orientation angle.

The effect of degree of orthotropy of individual layers.

The effect of fiber waviness.

b s
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Each one of the above parameters was studied individually by analyzing a type of laminated
composite plate. In all cases, a nine-node element was used and also one quadrant of the plate was
analyzed due to symmetry and (2x2) mesh is used in the cross-ply and straight fiber plates while for
angle-ply and sine wave fiber plates, were analyzed by considering the full plates with (4x4)
element mesh. Lateral in-plane expansion is allowed at the loaded ends and the unloaded edges can
be moved in the in-plane direction but remain straight. The initial imperfection shape is considered
to be a sinusoidal curve. The following geometry and layer material properties of high graphite
epoxy are used in the analysis: (E=172.5 GPa; E,=7.08 GPa; G1,=G5=3.45 GPa, G»3=1.38 GPa;
E~=341.42 GPa; E,~=3.58 GPa; V=0.5; V,=0.5; vi»=v13=v23=0.25, Xi=X.=1450 MPa, Y~=36 MPa,
Y,=230 MPa, §=62 MPa)[ Parhi, et al., 2001]®*®. The geometry properties are (a=1.0 m, a/b=1).

1. Effect of through-thickness shear deformation

To show the effect of transverse shear deformation on the large displacement elastic-plastic analysis
of laminated composite plate under in-plane compressive load, a simply supported plate with a
range of slenderness ratio (b/h) from (20) to (120), with symmetric cross-ply and antisymmetric
cross-ply arrangement and with six layers was analyzed. The initial imperfection is (w,/h= 0.1) by
which the shape is considered to be a sinusoidal curve.

Figures (12) and (13) present the load-deflection curves of the symmetric cross-ply, and the
antisymmetric cross-ply laminated composite plate under in-plane loading and with slenderness
ratio (h/h=20) by taking the effects of transverse shear deformation through the degrees of freedom
per node of the element.

Figures (14) and (15) show the effect of shear deformation of symmetric cross-ply, and
antisymmetric cross-ply laminated composite plate under in-plane loading with range of slenderness
ratio(b/h) (20-120).

2. Effect of fiber’s orientation angle

To study the effect of fiber’s orientation angle on the large displacement elastic-plastic analysis of
laminated composite plates under in-plane compressive load, a square simply supported laminated
plate with two layers was analyzed. The initial imperfection is neglected in the present study.

Figure (16) shows the effect of fiber’s orientation on the nonlinear analysis of composite
laminated plate under in-plane compressive load. From this figure, it could be noticed that the
ultimate strength of the plate with (0°/90°) gives ultimate load (651.2 kN/m). This orientation’s
fiber means that it is the optimum for a plate under in-plane compressive load.

3. Effects of fiber waviness

To show the effect of fiber waviness on the large displacement elastic-plastic analysis of laminated
composite plate, a square simply supported plate, with six layers was considered. The shape of
fiber was considered to follow a sinusoidal curve. The effects of this type are (number of sequence
(k), amplitude of wave (A), and fiber’s orientation. The initial imperfection (w,/h= 0.1) by which
the shape is considered to be sinusoidal curve. The value of amplitude of sine wave fiber is varying
(A=0.05-0.5) and the number of sequences of the sine wave fiber (k) was considered changeable in
the range of  (1-12).

Figures (17) and (18) present the load-deflection curves of laminated with symmetric cross-
ply composite plate under in-plane compressive load and with sine wave fibers with a range of
amplitude (0.05-0.5).

Figures (19)-(22) present the ultimate strength-fiber path amplitude (A) curves for the
laminated, with symmetric cross-ply, and antisymmetric cross-ply composite plates under in-plane
compressive load and with a range of number of sequences (k) (1-12), respectively.
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Conclusions

A nonlinear finite element method is adopted for the large displacement elastic-plastic static
analysis of anisotropic plates under in-plane compressive load. Many of effects were considered in
the present study such as the effect of orthotropy of individual layers, through-thickness shear
deformation, fiber’s orientation angle, and fiber waviness on the large displacement elastic-plastic
static analysis. The following conclusions are drawn with regard to the results obtained for the
anisotropic plates under in-plane static loading as follows, 1) The capacity of a laminated plate with
sine wave fiber under in-plane compressive load in the direction of waviness is more than the
capacity of the plate under in-plane compressive load orthogonal to the direction of waviness by
(42%) for a plate with sine wave fiber (k=12, A=0.4). 2) The ultimate strength of a cross-ply
laminated plate is greater than the ultimate strength of an angle-ply laminated plate with the same
laminas. 3) The ultimate strength of a symmetric cross-ply laminated plate is greater than the
ultimate strength of an antisymmetric cross-ply laminated plate with the same laminas. 4) A
symmetric cross-ply laminated plate with sine wave fiber (k=12, A=0.4) gives in-plane loading (610
kN/m) and this represents the peak capacity and this case is the best.
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Figure (1): Use of composites in the space shuttle [Kaw,2006]"'"
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Table (1): Comparison of results with experimental and theoretical studies of composite laminated
plate under in-plane compressive load in x-direction, (a/b=2.854, w,/h=0.1)
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Figure (16): Effect of orientation’s fiber on the large displacement elastic-plastic analysis of
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Figure (15): Effect of number of degrees of freedom on the
large elastic-plastic analysis of antisymmetric cross-ply
composite laminated plate under in-plane compressive
load with a range of slenderness ratio (b/h)
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Figure (20): Ultimate load-fiber path amplitude curve of
simply supported square laminated composite plate
under in-plane compressive load in y-direction and with a
range of number of sequences (1-12),(w,/h=0.1,
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Figure (22): Ultimate load-fiber path amplitude curve of
simply supported square antisymmetric cross-ply
composite plate under in-plane compressive load and
with a range of number of sequences (1-12),(w,/h=
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