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Abstract:

The modeling and control of genetic regulatory networks carries tremendous potential for
gaining a deep understanding of biological processes, and for developing effective therapeutic
intervention in diseases such as cancer. A dynamical programming control has been proposed for
determining an optimal intervention policy to shift the steady-state distribution of the network.
The dynamic programming solution is, however, computationally prohibitive for large gene
regulatory networks, as its complexity increases exponentially with the number of genes. Since
the number of genes considered is directly related to the accuracy of the model, it is imperative
to be able to design optimal intervention policies that can be reasonably implemented for large
gene regulatory networks. To this endeavor, we will design a neural dynamic programming
controller to optimize the same dynamic programming performance measure, while requiring
only a polynomial time complexity. The proposed neural dynamic programming structure
includes two networks: action and critic. The critic network is trained toward optimizing a total
reward to objective, namely to balance the Bellman equation. The action network, constrained by
the critic network, generates the optimal control strategy. Both the control strategy and the critic
output are updated according to an error function that changes from one step to another. General
theory of non-homogeneous Markov chain will be used to find the optimal strategies of non
uniform policy method.
Keywords:

Genomic Signal Processing (GSP) , Boolean Network structure, Neural Dynamic
Programming networks (NDP), Bellman Optimal Equation.
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INTRODUCTION

Genomic signal processing (GSP) is the engineering discipline that studies the processing of
genomic signals. Genomic signals must be processed to characterize their regulatory effect and
their relationship to changes at both genotype and phenotype levels. GSP contains different
methodology involving detection, prediction, classification, control, statistical, and dynamical
modeling of gene networks. Let's give the reader some basic idea about the natural operation for
human cells, and how they are replicating by cell division, and irreparably damaged cells remove
themselves by process called apoptosis. Each cell contains biological instruction called DNA and
must be replicated and handed down unchanged to the cells progeny when it divides. Each cell
could make copy from DNA, which is called RNA and the final stage generates another protein
type called the messenger MRNA. What a designer needs to figure out is that if the gene express
(it is on) there is protein, otherwise the cell does not express (the gene is off) and there is no
protein generated. These processes occur in the natural condition with the healthy person.
Control process inside the cells depends on complex interaction between the products of the cell
and those environments. As might be expected from a highly complex, efficient and survivable
system, control is highly distributed and redundant. Any uncontrolled process inside the cells
causes uncontrolled divide in them.

From a translational perspective, the ultimate objective of genetic regulatory network modeling
is to use the network to design different approaches for affecting network dynamics in such a
way as to avoid undesired phenotypes, such as, cancer [1]. Recently, in the hardware side there
are new equipments, they did convert the information code from the genotype to binary
information, one of those strategies is the micro-array strategy used to obtain the binary and
ternary gene expression in discrete case (quantization process) is generically called Probabilistic
Boolean Networks (PBNSs), [2-4]. The basic PBNs structure introduced by Kauffman [5-7] to
allow the incorporation of uncertainty into the inter-gene relationships. Any given PBN should
have a state transition matrix or transition probability to move from one state to another. The
process control for this dynamic state matrix can be studied in the context of homogeneous
Markov chains with finite state space. Basically, the major goal of functional genomics is to
screen for genes that determine specific cellular phenotype (disease) and model their activity.
Engineering therapeutic tools involves nonlinear dynamical networks, to characterize gene
regulation, and developing intervention strategies to modify dynamical behavior.

Intervention studies have used three different approaches to deal with problem: (i) resetting the
state of the PBN to a more desirable initial state [3] ; (ii) changing the steady-state (long run)
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behavior of the network by minimally altering its predicator function[4]; (iii) manipulating
external (control) variables that alter the transition probabilities of the network[8]. In [8]they
proposed control method, dynamic programming is employed to finite a finite horizon control
sequence intervention. In [9], they solved the Bellman dynamic programming using infinite
horizon control (there was not needed to know the terminal state information). Basically, in the
two methods of [8] and [9] is well known that the direct application of optimal control methods
is limited by the size of the state space-the curse of dimensionality. For larger biological models
involving interactions among many genes, a stochastic control method has been polynomial time
complexity. Recently, there is a group in university of Texas [13], they formulated the problem
of controlling a context sensitive PBN as a Markov chain with reward. The refinement learning
method (Q learning) was used to find the optimal strategies. Although the Q learning method
deals with a larger genetic problem, it is still suffering from lengthy calculation time. It took two
days to find the optimal strategies for a problem had 15 genes coded in binary form. Nidhal and
at el [14-17], have been proposed an optimal perturbation control scheme to solve the dynamic
equation, we thought this scheme still consuming a lot of time to do the calculation.

In this paper, we proposed a novel method using neural dynamic programming controller to
optimize the same dynamic programming performance measure, while requiring only a
polynomial time complexity. The proposed neural dynamic programming structure includes two
networks: action and critic. The critic network is trained toward optimizing a total reward to
objective, namely to balance the Bellman equation. The action network, constrained by the critic
network, generates the optimal control strategy. Both the control strategy and the critic output are
updated according to an error function that changes from one step to another. General theory of
non-homogeneous Markov chain will be used to find the optimal strategies of non uniform
policy method. Simulation has been conducted to examine the effectiveness of the proposed
scheme.

The remainder of the paper is organized as follows. Problem formulation: the definition of
Boolean networks, general control process strategies, and solution using dynamic programming
in section 2. Dynamic Neural Programming (DNP) structure was described in section 3. Section
4, contains the results of the control strategies process. Finally, section 5 Conclusion.

PROBLEM FORMULATION
Boolean Network Structure

The Context-sensitive Probabilistic Boolean networks PBN consists of a set V = {Xi,..., Xn}, of n

nodes ,where x; € {0,1,...,d-1}, and a set {fif,,...,fu} of vector-valued functions, called
predictor functions. In the framework of gene regulation, each x;, for i= 1... n, represents the
expression value of a gene. It is common to mix terminology by referring to x; as the i gene.
Each vector valued function f; which has the form of f; = (fi1,...,f1n), determines a constituent
network of the context-sensitive PBN. The context sensitive PBN with control can be modeled as
a stationary discrete time dynamic system:

X(k+1) = f (X, , U, W, ) (1)
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Where for all k, the state x is an element of a space S, the control input uy is an element of space
C, the wy is disturbance in the space D. finally, f: S xC xD — S.

In the particular case of context sensitive PBNs of n genes composed of N Boolean networks
with perturbation probability p and network transition probability q, S =[ 0,1,2,...,2"-1], where n
numbers of gene. The control signal ux should be in space C =[0,1,2,...,2"-1],where m is the
number of control inputs. Another equivalent way to represent the dynamical system in (1) is as
a finite state Markov Chain described by the control dependent one step transition probability

pij(ux), where for any k =0,1,2,...,N;i,j €Sand u €C:
pij (U) =P(Xyy = j|Xk =i, u, =u) . (2

The one-step evolution of the probability distribution in the case of a PBN containing 2" states
with control inputs can be described with following equation [8, 9]:

pdk+1 = pdkA(uk) . (3)
Where pd is the 2" dimensional state probability distribution vector at time k, and A(uy) is the 2"
x 2" matrix of control dependent transition probabilities ,i.e., A(uy) is the matrix whose ij™
element is Pj.1 .1 (uk). Equation (3) represented the main point in our work, because if the system
starts with any initial state probability vector, it could end with the desired one depends on the
probability transition matrix and the input control.
Solution Using Dynamic Programming

The optimal control problem can now be stated as follows: Given an initial state x(0),
find a control law 7 ={Uo,us,...,um-1} that minimizes the cost functional

M -1
J.(x(0)) = E[ZCK (X, U (%)) +Cyy (X(M))} :
k=0
Subject to the constraint
Prix., = ix, =i}=a, ). (4)
Where ajj(uy) is the i row, j™ column entry of the matrix A(uy). Optimal control problems of the
described by equation (4) can be solved using the technique of dynamic programming. The

dynamic programming solution to eq.(4) was derived in [10, 11]:

Iy (X(M)) =Cy, (x(M)),

J (%)= in }{Ck(xk,uk)+iaij(uk).JkH},k=0,1, 2,..M-1;i=12,..,2" (5)

ucel,2,..., 2m j=
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Where Cy (x(M)) is the terminal cost at terminal state x(M), M is the finite number of steps. Note
that the expectation on the right hand side of equation (5) for each x, and k:

E[‘]k+l(xk+1|xk'uk)]=zaij (U - (6)

Thus, the final solution of the dynamic programming system (equation (4)), which is known as
Bellman equation is given as [10, 11]

Ju (x(M)) =Cy, (x(M)),

2n
J. (x)= in }{Ck (X, U,) +Zaij (uk).JM}, k=012,..,M-%i=12,..,2"
j=L

u.ell2,..., 2m

(7)

Neural Dynamic Programming

The objective of a dynamic neural programming controller is to optimize a desired performance
measure by learning to create appropriate control action through interaction with the
environment the controller is designed to learn to perform better over time using only sampled
measurement and with no prior knowledge about the system. Figure 1 shown as a schematic
diagram of Neural Dynamic Programming (NDP) online learning control scheme, which has two
main neural networks, the Action and the Critic networks.

To be more quantitative, consider the critic network shown in Figure 2, the output of the critic

element is the objective function J, which represented approximates the discounted total reward-
to-go. Specifically, it approximates R at time k. It can be calculated as:

Ry =T+ o+ (8)

Where Ry is the future accumulative reward-to-go value at time k, y is a discount factor for
infinite horizon problem (0 <y <1), since the exact value for the discount factor is given by:

y=—7" ©)

Where r is the external reinforcement value at time k, rx+1 is the external reinforcement value at
time k+1. Before go deeply in critic and action networks details, let's defined the Ultimate
function U and reinforcement ry.

The ultimate function is the only source of information the Adaptive Process (ADP) has about

the task for which it is designing the controller. When the statement is made that dynamic
programming designs an optimal controller, optimality is defined strictly in terms of the ultimate
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function. It is important to recognize that a different U function will (typically) yield a different
controller. So that, in our case we defined it as:

-1 if u
U= 10
{O if u (10)

Il
[EEN

As we mentioned before, the reinforcement signal r is used to find the critic error which referred
the adaptive error the adjusted the weights of critic network depend upon the back propagation
principle. If deal with state probability vector we can define the following reward per stage
function

M *
pdk —pd «
r=-Y kPR (11)
‘ ; pdn']a)(

Where pd’ is a desired probability distribution vector, pdy current distribution vector. In practice,
the reward values will have to mathematically capture the benefits and costs of intervention and
the relative preference of probability state, and have to set by physicians in accordance with their
clinical judgment, [9].

Action-Critic Neural Networks Structure

Generally, the neural dynamic programming provides a suitable structure to solve the dynamic

programming equation exactly like the Bellman equation. So that NDP aims to find the optimal
objective function:

Ik =1+ a (12)
Based on Figure 2, the predication error of the critic network is calculated as:

e.(K)=my —(Jpa—N) (13)
1
E. (k)= Eec(k) , (14)

where E_ is the mean square error for critic network. This error provides the desired objective
function for critic network to minimize by tuning critic weights. Principles used in the weight
update for the critic can be derived through gradient decent as below:

J :bzc(k)+iwzci Pi, (15)

where
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1
1+e™’

D, i=12,..,H, (16)

and
q; =b; +Zw§[ij]x[j]; i=12,...,H. @17

The weight and bias update in critic networks are given as:

b, (k +1) = b, (k) + Ab, (K),
w, (k +1) = w, (K) + Aw, (K). (18)

Depending on back propagation algorithm, we have driven the exact values of the following
biases and weights:

e Hidden to output bias and weights

bcz[j]k+l = bcz[J]k - Ic?’ec k),

. . _ _ (19)
Wcz[J]k+1 :WCZ[J]k =16 (K)pLils; 1=12,...,H,
e Input to hidden bias and weights
be[1s = bELilk —orec ()W Tl (Pl 2 - PLil,)) (20)

Wi i1 = Wl il = 1ore. (WLl (PLil = PLiT KD, i=1,2,..,n+1,j=1,2,...,H.

Now, we investigate the adaptation in the action network shown in Figure 3.

In action neural network the input layer has n input (probability distributed state vector) and one
output node which represent the control ux. The associated equations for the action network are:

e, (k)= J, -U, 1)
EK)= e, )

ufi], =T i=12,..,m, (23)
viil, =b§[i]+gw§[u]g[j]k; i=12,.,m, (24)
25)
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. 1 .
olil = m+ 1=12-H,
[il, =b2Li1+ Y waljilxil,; j=12...H (26)
i=1
The weight and bias update in action networks are given as:
b, (k+1) =b, (k) + Ab, (k),
w, (k +1) = w, (k) +Aw, (k) . (27)

The update rule for the nonlinear MLP action network also contains two sets of equations:
e Hidden to the output nodes in output layer bias and weights

|‘J |L—1 —FJ |i —laea (k) [u (B) (1 — u;(k) Z”n'j‘ [pa(k L—p;::.f.'j::u‘:_”_l(k:::j:L_E._...m

H
u;f”L 1) —r,!ﬁ”I. laea(k) [ui ()1 — u;i(k))] g,uhZar (K [pa(B) (1 — pa(k))w! peq (K5 =1,2,...,m (28)

i=1

e Input to hidden layer

n‘J”n‘. +1) _Erq (k) — laea (k) [ui (k) (1 — w;(k))wi[gs(k)(1 — ga(k Zur,nﬂlpz (1 — pa(k))]w} niq (K);

(k+1) = wy;; (k) — laea (k) [uz (k)1 — uz(k))]w?[g: (k) (1 — g(K))]x; (k)
H
Z .!r"f! (k) [p: (k)1 — p:(k) ;.:u-}_”_] (k):i=1,2,...,m

i=1

fu,l

SIMULATION RESULTS

We apply the proposed neural dynamic programming control to a probabilistic Boolean
network derived from gene expression data collected in a study of metastatic melanoma [8]. The
abundance of mRNA for the gene WNT5A was found to be highly discriminating between cells
with properties typically associated with high versus low metastatic competence. Furthermore, it
was found that an intervention that blocked the Wnt5a protein from activating its receptor, the
use of an antibody that binds the Wnt5a protein, could substantially reduce Wnt5A’s ability to
induce a metastatic phenotype [8]. This suggests a control strategy that reduces the WNT5A
genes action in affecting biological regulation. A seven-gene probabilistic Boolean network
(PBN) model of the melanoma network containing the genesWNT5A, pirin, S100P, RETL1,
MART1, HADHB, and STC2 was derived in [8-10]. Figure 4, derived in [8-10], illustrate the
relationship between genes in the Human melanoma regulatory network. Note that the Human
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melanoma Boolean network consists of 27 = 128 states ranging from 00 ... 0 to 11 ...1, where
the states are ordered as WNT5A, pirin, S100P, RET1, MART1, HADHB, and STC2, with
WNT5A and STC2 denoted by the most significant bit (MSB) and least significant bit (LSB),
respectively. We observer that the states from 0 to 63 have WNT5A down regulated (which
means 0) and hence are desirable states, as compared to states 64 to 127 have WNT5A up
regulated(which means 1) and hence undesirable. The steady state distribution of Human
melanoma network of the original and controlled networks is shown in Figure 5. We can observe
that the probability distributed state vector shifted from unwanted states (65-127) to the wanted
states (0-64) that was our goal. The mean square error for both action and critic network is
shown in Figure 5 (c), which is shown obviously how the action and critic weights are
convergence.

Figure 5: Simulation results : (a) 2D-steady-state distribution results; (b) Steady-state distribution
of gene-activity profile after intervention with optimal control policy using NDP method; (c)
NDP mean square error.

DISCUSSION

We have formulated the NDP strategy to find an approximate stochastic control policy for a
context sensitive PBN. NDP not only lowers computational complexity in comparison to the
optimal stochastic control, but performs virtually the same as the optimal stochastic control when
the learning duration is long enough. As shown in the melanoma case, applying suboptimal
policy has the same effect in reducing the likelihood of visiting undesirable states, the ones with
high chance of metastasis in the long run. The time complexity of the approximate control
method is polynomial, whereas the time complexity of the optimal control algorithm is
exponential in the number of genes.
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Figure 1: Schematic diagram for implementation of NDP, lines without sold represent the
forward path, sold dash lines represented the back update weight path.

Figure 2: Nonlinear (sigmoid activation function) critic neural networks structure: n+1
input nodes in input layer, H nodes in a one hidden layer, one node in the output layer.
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Figure 3: Nonlinear action neural networks structure: n input nodes in input layer, H
nodes in a one hidden layer, m nodes in the output layer.

Figure 4: The probabilistic Boolean networks of the seven genes, [8].
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