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1. INTRODUCTION  

In today's interconnected world, the use of internet services and communication has become pervasive, offering 

unprecedented convenience and opportunities. However, it also comes with its share of risks that users need to be aware 

of [1]. The threats such as hacking and malware, pose considerable risks to internet services and communication 

platforms. The significant increase in the number of intrusions over the years is indicating a continuous upward trend[2]. 

Solving the risks associated with digital communication is not only about individual protection but also about creating a 

secure, trustworthy, and resilient digital ecosystem that underpins modern society. It involves a collective effort from 

specialized researchers, businesses, governments, and technology providers to implement effective security measures, 

policies, and practices. Intrusion detection is a critical component of cybersecurity, serving as the first line of defense 

against unauthorized access, data breaches, and malicious activities within computer networks[3]. Traditional IDSs 

typically rely on rule-based or signature-based methods to detect known threats, making them vulnerable to zero-day 

exploits and highly adaptive attackers[4]. Moreover, these systems often generate a high rate of false positives, leading 

to alert fatigue and making it challenging for security teams to identify genuine threats amidst the noise. 

 

In recent IDS, researchers have ventured into the realm of machine learning (ML) and deep learning (DL) techniques. 

Within the broader field of artificial intelligence (AI), ML and DL are complementary approaches that share the goal of 

extracting meaningful insights from large datasets. [5]. These approaches have gained significant traction in the field of 

network security, particularly in the past decade, largely owing to the advent of highly potent graphics processing units 

(GPUs). ML-based IDS relies heavily on feature engineering to glean insights from network data, while DL-based IDS 

stands out for its capacity to automatically extract intricate patterns from raw data due to its deep architecture[6]. In IDS, 

Striking a balance between capturing genuine patterns and avoiding over-fitting can be challenging. This challenge cannot 

be addressed by combining ML techniques with conventional data analysis methods. Conventional ML techniques may 

struggle when faced with large and complex dataset. As well as, it is not being well-suited to capture and understand 
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intricate, non-linear patterns or relationships within the data. To tackle the identified limitations and enhance the IDS 

performance, we propose a strategy that integrates deep learning with statistical data analysis. Deep learning is crucial 

for extracting intricate patterns and representations from complex data, enabling advanced solutions in tasks such as 

image recognition [7], [8], natural language processing[9], [10], and in recent times, it has been utilized in 

cybersecurity[11], [12]. 

In this work, we incorporate an autoencoder-based classifier to improve intrusion detection. Autoencoder technology 

combined with a classification layer accomplishes two things: it learns from the data at first to improve the input 

representation, and second, it classifies instances into two different classes (normal and abnormal). The model is applied 

to features statistically selected from the NSL-KDD dataset. 

 

 

2. RELATED WORKS 

 

Intrusion detection systems (IDSs) are pivotal for securing network environments by identifying and mitigating 

potential threats. While several studies have delved into the development and evaluation of IDSs, there exists a need for 

a more comprehensive analysis and comparison of existing methodologies. In particular, the use of the NSL-KDD dataset 

has been prevalent as a benchmark in this domain. 

 

In the realm of ensemble methods, [13] introduced an ensemble IDS for machine learning, employing PCA for 

feature extraction. The presented ensemble method, combining Decision Tree, Random Forest, KNN, DNN, and 

MultiTree, demonstrated an accuracy of 85.2%, surpassing the performance of individual algorithms. Similarly, Kumar 

proposed a novel approach in [14] that integrates a multi-objective genetic algorithm with neural networks to form an 

ensemble of solutions for efficient network intrusion detection. Their evaluation, conducted on benchmark datasets such 

as NSL_KDD and ISCX-2012, yielded a detection accuracy of 97% for ISCX-2012 and 88% for NSL_KDD datasets. 

Building on fuzzy and ensemble learning theories, [15] developed a semi-supervised learning technique, achieving an 

accuracy of 84.54% using the NSL-KDD dataset. In a dual ensemble approach, [16] fused bagging and gradient boosting 

decision tree (GBDT) algorithms to address network anomaly detection challenges. Experimental findings from various 

intrusion detection datasets showcased the effectiveness of combining bagging with finely-tuned gradient boosting. 

 

 Instead, [17] applied an efficient Deep Neural Network (DNN) architecture on six datasets, including NSL-KDD, 

demonstrating the superiority of their suggested DNN over conventional classifiers. [18] Introduced a 5-layer 

autoencoder (AE) model tailored for improved detection of anomalous network traffic, achieving a peak accuracy of 

90.61% on the NSL-KDD dataset. This innovative model enhances the landscape of anomaly detection. Moving beyond 

traditional datasets, [19] employed eight machine learning algorithms to identify DDoS attacks in the context of IoT. 

Their experimental findings favored the BiLSTM architecture, exhibiting the highest accuracy and suitability for 

diagnosing DDoS attacks in IoT. Yu et al. [20] leveraged Few-Shot Learning (FSL) in their IDS model, incorporating 

CNN and DNN for feature extraction. Impressively, the model achieved accuracy rates of 92.34% and 92% on the 

UNSW-NB15 and NSL-KDD datasets, respectively, demonstrating its effectiveness with limited data. Kasongo's study 

[21] showcased the use of various RNN algorithms alongside the XGBoost feature selection method to construct an IDS 

framework. The XGBoost-LSTM excelled in binary classification, achieving an accuracy of 88.13% on the NSL-KDD 

dataset, while the XGBoost-Simple-RNN achieved 87.07% on the UNSW-NB15 dataset. 

 

This is how the remainder of the article is organized: The methods and materials are provided in section 3. Section 

4 provides a full overview of the proposed system outcomes and discussions. At the end, Section 5 provides a final 

summary of the work and a roadmap for the future. 

 

3. METHODOLOGY OF THE PROPOSED APPROACH 

We start this section by providing an overview of the NSL-KDD dataset. Following that, we provide a comprehensive 

outline of the suggested methodology, which consists of four fundamental steps: data preprocessing, feature selection, 

classification, and model evaluation. To enhance clarity, these steps are visually depicted in Fig. 1, offering an illustrative 

representation of the entire workflow. 

 



Abbas et al., Wasit Journal for Pure Science Vol. 2 No. 4 (2023) p. 97-105 

 

 

 99 

 
 

Figure1. Workflow of the proposed approach 

 

3.1 Description of dataset 

The NSL-KDD represents an enhanced edition of the widely used KDD Cup 1999 dataset, which is often used for 

intrusion detection and network security research. It is available in [22]. The dataset include training and testing sets, 

with 125973 and 22544 instances respectively. In the testing set, there are seventeen attack types that do not appear in 

the training set, while in the training set, two attack types are absent from the testing set. To ensure fair classification, 

these particular attack types were removed from consideration. Moreover, the dataset comprises 43 features, with two 

features ('difficulty_level', 'num_outbound_cmds') excluded from consideration as they do not have a significant impact 

on the classification process. All types of attack (DoS, R2L, U2R, and Probe) are converted to abnormal (0) output. In 

the end, the dataset comprises 41 features (1 output attribute, 37 continues attributes, and 3 symbolic attributes). Table 1 

displays the dataset details prior to the preprocessing stage. 

 

Table 1. – NSL-KDD dataset details 

NSL-KDD dataset Total Normal(1) Abnormal(0) 

Training set  125081 67343 57738 

Testing set 18794 9711 9083 

Total 143875 77054 66821 

 

 

3.2 Data pre-processing  

The initial preprocessing phase serves to prepare the data for seamless processing by subsequent modules. This step 

encompasses three key stages: an examination of outliers, data normalization, and the application of one-hot encoding. 

• Examination of outliers: z-score method is utilized in this stage to detect the outliers. It involves identifying 

data points that deviate significantly from the mean of the dataset, often indicating the presence of extreme values. 

For every data point within the dataset, determine its z-score using the formula provided in reference [23]. If the 

absolute value of the z-score for a data point surpasses a specified threshold, that data point is identified as an 

outlier. These outliers can then be managed by excluding them from the dataset. After removing the outliers, the 

number of instances in training and testing sets will be 102676 and 13168 respectively. 

 

• Data normalization: Here, the numeric values of data are rescaled using StandardScaler method. It involves 

changing data so that its mean is equal to zero and its standard deviation is equal to one. See the equation(1), 

where the xi,j value of ith feature in data transformed to zi,j. μi and σi represent to the mean and standard deviation 

of the feature respectively.  
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• One-hot encoding: In the realm of data preprocessing, This encoding is employed to depict categorical variables 

as binary vectors [24]. This process entails converting categorical data into a format that can be effortlessly 

comprehended and processed by learning models. There are three categorical attributes (protocol type, service, 

and flag) in dataset are converted to binary values using one-hot encoding. As an illustration, let's consider the 

"protocol type" attribute with three distinct values: tcp, udp, and icmp. By employing the one-hot encoding, the 

values were transformed into binary vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) respectively. Likewise, the "service" 

and "flag" attributes underwent a similar transformation into one-hot encoding vectors. Consequently, the initial 

three attributes have been expanded to a total of 84 attributes. When combined with the existing 37 continuous 

attributes, the dataset's overall attribute count now amounts to 121. 

 

 

3.3 Feature selection 

Feature selection is the procedure of picking relevant features to include in a dataset from the original set of features. 

To enhance the efficacy of machine learning models, feature selection aims to reduce dimensionality while focusing on 

the most valuable characteristics [25]. In this research, we utilize two distinct statistical feature selection methods: one 

based on Pearson correlation for selecting the top 20 continuous features from the processed data, and the other based on 

the chi-square test for selecting 20 features with binary values from the preprocessed dataset. 

• Pearson's correlation coefficient is utilized to assess the linear connection between the distance-related variables. 

In this study, we employ the Pearson's correlation for the purpose of feature selection. The values produced by 

Pearson's correlation range from -1 to 1. There is a perfect positive correlation when the value is +1, 0 indicates 

that there is no linear link between the two variables, and the value -1 refers to a perfect negative correlation [26]. 

The formula for calculating Pearson's correlation coefficient between the variables x and y is described in [27]. 

 

• If two categorical variables are significantly associated, it can be ascertained using a statistical test called the chi-

square (χ²) test. In contingency tables, where the variables are tabulated versus one another, it is frequently used 

to analyze data. With the assumption that the variables are independent, the test determines whether the observed 

data distribution significantly deviates from the expected distribution.. In [28], the Chi-square statistic is defined.  

 

 

3.4 The proposed AE based classifier 

In our research, we crafted an Autoencoder (AE) that leverages the capabilities of classifier. The features that were 

chosen in the previous stage (section 3.3) will be employed as the AE-classifier's input. The AE architecture involves 

two core operations: an encoder, which reduces the dimensionality of the input data, followed by a decoder, which strives 

to reconstruct the initial input from the compressed representation [29]. This autoencoder is trained using unsupervised 

learning, making it proficient at extracting meaningful features from unlabeled data. The main structure of AE is 

described in the Fig2. Where x is the input data, y is the encoded data, and z is the decoded data. Table 2 provides 

information on the dataset utilized as input data for the model. 

 

 

 
 

Figure2. The main structure of AE 

 

Table 2. – NSL-KDD dataset splitting details 

NSL-KDD dataset Total Normal(1) Abnormal(0) 

Training set  102676 57146 45530 

Testing set 13168 8253 4915 

Total 115844 65399 50445 

Figure 3(a) illustrates the proposed autoencoder framework (AE[40:30:40]). Specifically, this autoencoder takes a 

40-dimensional feature representation (x) and encodes it into a 30-dimensional vector (y), subsequently decoding it back 
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to the original input feature space (z). During this study, the AE[40:30:40] is trained in an unsupervised manner using 

the Root Mean Square Propagation (RMSprop) optimization algorithm, with 30 epochs and a batch size of 200. The 

quality of the encoding and decoding process is measured by the mean squared error (MSE). Following the training of 

AE[40:30:40], the reconstructed features are used as input for the classification layer based on the sigmoid activation 

function (Classification layer, Figure 3(b)). At this stage, the sigmoid layer is adapted for binary classification tasks. 

 

 

 
 

Figure 3. The proposed AE based classification, (a) The AE architecture. (b) The combined classification layer with 

AE 

 

 

3.5 Evaluation metric 

 The proposed IDS's effectiveness is evaluated using four commonly employed metrics: accuracy, recall, precision, 

and F1-score. These metrics' equations can be discribed as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

To clarify, 

True 

Positives (TP) in an intrusion detection system represent accurate intrusion detections. On the other hand, True Negatives 

(TN) indicates correct identifications of non-intrusive events. False Positives (FP) occur when the system wrongly 

classifies non-intrusive events as intrusions. Conversely, False Negatives (FN) happens when the system fails to detect 

real intrusions and incorrectly labels them as non-intrusive. These terms are integral to the understanding of the evaluation 

metrics presented in Equations (2) to (5). 
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4. Results and discussion 

To assess the classifier's capability to accurately discern between abnormal and normal attacks, we examined the 

performance of the proposed AE-classifier architectures using a binary classification approach, where instances are 

categorized as either "Normal" or "Abnormal. The experiments were conducted using a computer equipped with an Intel 

Core i5 processor from the 3rd generation running Windows 10, and the proposed model was implemented using Python 

3. In the context of accuracy (as shown in Table 3), the proposed classifier demonstrated superior performance, achieving 

a rate as high as 92.27%. This performance surpasses that of the LDA, random forest, KNN, MLP, and SVM classifiers, 

which attained accuracies of 92%, 91.86%, 91.29%, 91%, and 90.94%, respectively. 

Table 3. – The accuracy results of the propose classifier and other different classifiers 

Classifier Accuracy 

AE-classifier  92.27% 

LDA 92% 

Random forest 91.86 

KNN 91.29% 

MLP 91% 

SVM 90.94% 

 

 

 

Table 4 show the result of common performance's measures(precision, recall and F1-score) of the proposed classifier 

as well as LDA, random forest, KNN, MLP, SVM. 
 

Table 4. – The classification performance (precision, recall and F1-score) of AE based classifier, LDA, Random 
forest, KNN, MLP, SVM  

Precision 

Class of attack 
AE-

classifier 
LDA 

Random 
forest 

KNN MLP SVM 

Normal (1) 89.88 89.54 89.43 88.99 89.07 89.01 

Abnormal (0) 97.56 97.59 97.29 96.45 95.25 95.17 

avg 93.72 93.56 93.36 92.72 92.16 92.09 

Recall 

Class of attack 
AE-

classifier 
LDA 

Random 
forest 

KNN MLP SVM 

Normal (1) 98.79 98.81 98.67 98.26 97.63 97.59 

Abnormal (0) 81.32 80.61 80.43 79.59 79.88 79.78 

avg 90.06 89.71 89.55 88.92 88.75 88.68 

F1-score 

Class of attack 
AE-

classifier 
LDA 

Random 
forest 

KNN MLP SVM 

Normal (1) 94.12 93.95 93.82 93.39 93.15 93.10 

Abnormal (0) 88.70 88.29 88.06 87.21 86.89 86.80 

avg 91.41 91.12 90.94 90.30 90.02 89.95 

Concerning precision, the AE-classifier exhibited superior performance in identifying the normal class with a score 

of 89.88%. On the other hand, for detecting the abnormal class, LDA performed better with a score of 97.59%, with 

only a marginal difference of 0.03% compared to the AE-classifier. Notably, KNN obtained the lowest precision score 

in detecting the normal class at 88.99%, while SVM had the lowest precision score in detecting the abnormal class at 

95.17%. 

Moving to recall, the AE-classifier outperformed all other classifiers in detecting the abnormal class, achieving a 

score of 81.32%. Conversely, for detecting the normal class, LDA had the higher recall score at 81.81%, with a slight 

difference of 0.02% compared to the AE-classifier. In this case, SVM obtained the lowest recall score in detecting the 

normal class at 97.59%, while KNN had the lowest recall score in detecting the abnormal class at 79.59%. 
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As for the F1 measure, the AE-classifier surpassed all other classifiers in identifying classes that are abnormal and 

normal, achieving scores of 94.12% and 88.70%, respectively. In contrast, SVM had the lowest F1 scores identifying 

classes that are abnormal and normal, scoring 93.10% and 86.80%, respectively. 

Figure 4 elucidates the confusion matrix of the suggested classifier, while Figure 5 provides clarity on the confusion 

matrices for each of the following models: LDA, Random Forest, KNN, MLP, and SVM. 

 

Figure 4. The confusion matric of the proposed classifier (AE—classifier) 

 

 

Figure 5. The confusion matrices of the existing classifiers (LDA, random forest, KNN, MLP, SVM) 

Additionally, we conducted a comparative analysis of the proposed classifier against contemporary methodologies 

found in the literature that have employed the NSL-KDD dataset, as detailed in Table 5. Given that a significant portion 

of prior research has centered on distinguishing between different types of NSL-KDD attacks, our evaluation specifically 

focused on assessing the performance of the AE-classifier in a binary classification context. 

In the early stages, researchers in [18] introduced an innovative 5-layer Autoencoder (AE)-based model designed 

specifically for intrusion detection. This architectural model excelled with an accuracy rate of 90.61%. Notably, this 

accomplishment was attributed to the utilization of a novel two-sigma (95th percentile) outlier disposal technique in 

conjunction with Mean Absolute Error (MAE) as the reconstruction loss metric. Similarly, in reference [30], authors 

proposed a novel unsupervised approach for intrusion detection, capitalizing on the advantages of deep learning and an 

OC (One-Class) classifier. This approach achieved an impressive accuracy score of 91.58%. Reference [31] presented a 

different approach by employing Extreme Learning Machine (ElM) classifiers on features selected using the Differential 

Evolution (DE) technique, yielding an accuracy of 87.53%. Furthermore, reference [32] introduced an architectural 

framework that combined Autoencoders (AE) and Long Short-Term Memory (LSTM) components. The resultant system 
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achieved an accuracy level of 89%. Lastly, the study described in reference [33] integrated Convolutional Neural 

Networks (CNN) and LSTM models on data augmented through the ADASYN resampling method, achieving an 

impressive accuracy rate of 92%. Our analysis of the results indicated that the proposed AE-classifier surpasses the 

previously mentioned works regarding accuracy. 

Table 5. – The accuracy result of the proposed classifier and the prior techniques 

Method Accuracy 

AE by Xu et al.[18] 90.61% 

1D CAE & OCSVM by Binbusayyis et al, [30] 91.58% 

DE & ELM by Almasoudy et al. [31] 87.53% 

AE-LSTM by Mushtaq et al. [32] 89% 

CNN+LSTM+ ADASYN by Zakariah et al. [33] 92% 

The proposed model 92.27% 

 

5. CONCLUSION AND FUTURE DIRECTIONS 

In this study, we present a classifier based on an Autoencoder (AE) architecture, employed as an approach for 

building an intrusion detection system (IDS).  The NSL-KDD dataset was used as a bechmark for testing the suggested 

IDS. We identified the most relevant features through Pearson correlation and Chi-square tests, and these were 

subsequently used as input for our AE architecture, specifically designed with a single hidden layer containing 30 units. 

Our extensive comparative analysis involved benchmarking the AE-classifier against both traditional classifiers (Table 

3 and Table 4) and contemporary techniques (Table 5). The results of this comparison clearly demonstrate that the AE30 

classifier outperformed all other methods, achieving an impressive accuracy rate of 92.27%.  

In our forthcoming research, we plan to delve into the creation of more complex Autoencoder (AE)-based 

architectures. Our aim is to investigate how adjusting the number of hidden layers, units, and activation functions within 

the AE architecture might offer potential enhancements in intrusion detection performance. Furthermore, we aspire to 

explore methods for the seamless adaptation of the intrusion detection system to real-time monitoring and response. We 

also seek to establish mechanisms that ensure the timely notification and effective mitigation of security threats. 
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