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Abstract 

Developing novel antibiotics, traditional pharmaceuticals, and chemically altered drugs addresses medical concerns and underscores 
the need for sustained and productive implementation of metallic nanotechnology across various domains. Nanoparticles (NPs) present 
a range of advantages over bulk particles due to their targeting capabilities, wound repair characteristics, capacity for biocomposite 
preparation, and potential as a gene and drug delivery system. Silver nanoparticles (AgNPs) have garnered significant interest among 
researchers as a result of their exceptional conductivity, chemical stability, catalytic behavior, and antimicrobial properties compared 
with other metal NPs. This study aims to provide a basic understanding of AgNPs and their functions in biomedical research.
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IntroductIon
Nanotechnology is a rapidly developing science with 
wide-ranging potential applications. Particles with a 
size of 1–100 nm are called nanoparticles (NPs).[1] Silver 
nanoparticles (AgNPs) are presently extensively used 
across multiple fields, including agriculture, commerce, 
medicine, and industry.[2] The unique characteristics of 
AgNPs with smaller dimensions make them suitable for 
diverse applications. The application of nanomaterials in 
biomedicine has become more prevalent, resulting in the 
emergence of nanobiotechnology.[3] AgNPs and compounds 
containing silver are widely recognized in this area for their 
ability to eliminate microorganisms.[4] At present, AgNPs are 
mainly used in unconventional and advanced biomedical uses, 
including wound care, drug delivery systems, tissue scaffolds, 
and protective coatings. Consequently, the utilization of 
AgNPs has expanded in the fields of nanotechnologies, 
biomedical science, and ecological sustainability.[5] Therefore, 
there is a necessity to devise a cost-efficient approach for the 
bioproduction of AgNPs.

BIoproductIon (SyntheSIS) of AgnpS
Numerous techniques are currently under investigation 
for the production of  AgNPs, intending to address 

various contemporary issues faced by humanity.[6,7] 
Previously, the controlled size and shape of  AgNPs were 
concerned with their synthesis, whereas other specific 
methods, including biological, chemical, and physical 
approaches, have been established for synthesizing 
AgNPs[8] [Figure 1].

The use of hazardous chemicals and the significant 
consumption of energy can make chemical and physical 
processes expensive.[9,10]

Two techniques are mainly used in the physical realm: the 
destructive approach (top-down) and the self-assembly 
method (bottom-up) [Figure 1]. The main idea of the 
destruction approach is based on the use of physical 
power pressure on bulk material for metal NPs formation 
of size 10–100 nm, such as mechanical energy used in 
ball milling, crushing, and grinding; electrical energy 
used in the electrical arc-discharge method and laser 
ablation method; and thermal energy used in the vapor 
condensation method.[11]
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BIologIcAl Method
New research recommends different types of bacteria 
and plants for AgNP biosynthesis. The byproducts of 
microorganisms, such as metallic ions, have a tolerance 
capacity to counteract the toxic effects of heavy 
environmental silver, resulting in AgNP formation as an 
end byproduct of free Ag+.[12,13]

Varieties of  plant parts are used in AgNP biosynthesis; the 
most common ones are leaves, peel, callus, bark, flower, 
seed, fruit, and rhizome. From these extracts, dextran, 
starch, chitin, and cellulose are obtained, whereas 
microorganism components include nitrate reductase, 
polysaccharides, peptides, and c-type cytochromes.[14] 
Compared with physical or chemical approaches, 
the bioproduction of  AgNPs through plant extracts 
or microorganisms can be performed under typical 
temperature and pressure conditions. Additionally, 
it offers a more regulated dimension and form of the 
NPs without necessitating the use of  hazardous and 
deleterious materials.[10] At this point, we will discuss 
the different techniques employed in the bioproduction 
of  AgNPs by microorganisms and plants, as well as the 
chemical and biological processes that occur during these 
syntheses [Table 1].

The production of singular AgNPs with specific 
compositions was documented previously at the 
beginning by Klaus et al.[12] via Pseudomonas stutzeri 
bacteria, commonly referred to as silver mine bacteria. 
Al-Rajhi et al.[27] have recently documented the biogenesis 

of AgNPs that exhibit fewer harmful effects on healthy 
cells, a higher degree of stability, and generate fewer toxic 
byproducts. The production of AgNPs by microorganisms 
can be broken down into two distinct types: intracellular 
and extracellular. Various bacterial strains, including 
Pseudoduganella eburnea, Pseudomonas sp., Escherichia 
coli, Bacillus licheniformis, Serratia nematodiphila, 
Bacillus flexus, and Shewanella oneidensis, have been 
found to facilitate the extracellular synthesis of AgNPs, 
as reported in several studies.[28] The Shewanella genus 
is recognized for its ability to reduce metals and engage 
in biomineralization processes. Additionally, it has been 
documented for its involvement in the biofabrication of 
AgNPs.[29]

Jabbar and Hussein[30] conducted a study in which 
they utilized Lactobacillus gasseri, a Gram-positive 
bacterium that is, catalase-negative and facultatively 
anaerobic, to biosynthesize AgNPs. The resulting AgNPs 
exhibit promising potential for utilization in the realm 
of biomedical applications as effective antibacterial 
agents.[30] Another investigation has exhibited the 
bacterial production of  AgNPs using two prevalent 
Gram-negative bacterial strains, E. coli K12 MG1655, 
and Pseudomonas putida KT2440. As mentioned earlier, 
the observation can optimize and expedite the utilization 
of  green NPs for enhanced antibacterial efficacy.[31] 
AgNPs have recently been produced from an extract of 
Cuminum cyminum seeds. Cumin seeds, with their intense 
aromas, were thought to play a key role in reducing silver 
ions.[32]

Figure 1: The synthesis of AgNPs can be achieved through various methods, such as physical, chemical, and biological approaches. Physical 
synthesis methods involve a top-down approach, which entails the formation of NPs from bulk materials, whereas chemical and biological synthesis 
methods follow a bottom-up approach that involves the growth of complex clusters and molecular components to obtain NPs
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MedIcAl ApplIcAtIon of AgnpS
A combination of their widely acknowledged application 
in biological and medical domains and their extensive 
range of commercial uses, AgNPs have captured the 
scientific community and industrialists’ interest.[34] Silver 
possesses various functions in antimicrobial, catalytic, 
and biological environments [Figure 2]. The distinctive 

chemical and physical characteristics of AgNPs enhance 
the effectiveness of silver.[35]

Silver NPs as antibacterial
Since oligodynamic metals encapsulate ions that damage 
living cells, silver has been linked to both bacteriostatic 
(growth suppression) and bactericidal (eradication) 

Table 1: Bacteria-, fungi-, and algae-mediated synthesis of silver NPs

Bacteria/
fungi/algae

Responsible organic 
components/functional groups

Size 
(nm)

Precursor Operating 
conditions

Position Shape References

Streptomyces 
violaceus

Exopolysaccharide 10–60 AgNO3 37°C; shaking; pH 
7.0;

Extracellular Cubic; crystalline; 
spherical

Sivasankar 
et al.[15]

Penicillium 
polonicum

Proteins 10–15 AgNO3 Room temperature; 
shaking; light

Extracellular Spherical; near 
spherical

Neethu  
et al.[16]

Falcaria 
vulgaris

Hydroxyl group 10–30 AgNO3 50°C Extracellular Spherical Kohsari  
et al.[17]

Pseudomonas Aromatic and aliphatic amines 10–40 AgNO3 28°C; shaking Extracellular Irregular Singh  
et al.[18]

Pantoea 
ananatis

Proteins or amino acids 7–30 AgNO3 37°C; shaking Extracellular Spherical Monowar 
et al.[19]

Fusarium 
oxysporum

Proteins 21.3–
37.3

AgNO3 28°C; shaking Extracellular Spherical; oval Ahmed  
et al.[20]

Botryosphaeria 
rhodina

NADH-dependent nitrate 
reductase

Below 
20

AgNO3 Room temperature; 
dark

Extracellular Spherical Akther  
et al.[21]

Monascus lactone ring 10–30; 
15–40

AgNO3 28°C–30°C; 
shaking

Extracellular Spherical Koli et al.[22]

Aspergillus 
tamarii

NADH-dependent nitrate 
reductase

3.5 ± 3 AgNO3 25 ± 2°C; shaking Extracellular Spherical Devi and 
Joshi[23]

Nostoc linckia Phycocyanin 9.39–
25.89

AgNO3 Room temperature; 
pH 10.0

Extracellular Spherical El-Naggar 
et al.[24]

Caulerpa 
serrulata

Caulerpenyne; caulerpin 10 ± 2 AgNO3 27°C–95°C; pH 
4.1–9.5

Extracellular Crystalline; 
spherical

Aboelfetoh 
et al.[25]

Laurencia 
aldingensis

Proteins 5–10 AgNO3 Dark, shaking Extracellular Spherical Vieira  
et al.[26]

Figure 2: Biosynthetic pathway for AgNPs[33]
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effects.[36] Ionic silver exhibits a robust interaction due to 
the existence of thiol groups in crucial bacterial enzymes; 
the presence of AgNPs can result in the inactivation of 
these enzymes and consequent loss of DNA replication 
ability.[37] Considering that AgNPs are effective against a 
wide variety of harmful microbes and have antibacterial 
properties despite their low concentrations, they have 
been employed to combat the spread of antibiotic-
resistant pathogens.[38] The application of AgNPs has 
been observed to induce destabilization of membrane 
potential and reduction of intracellular ATP levels via 
targeted mechanisms, ultimately leading to bacterial 
mortality [Figure 3].[39] AgNPs exhibit greater efficacy 
against Gram-negative bacteria. Gram-negative bacterial 
cells possess a comparatively more restricted cellular 
wall in comparison to their gram-positive counterparts. 
The dense cellular wall can potentially impede the entry 
of NPs into the cellular structures.[40] Articles have 
shown that certain strains of bacteria become extremely 
susceptible to AgNPs after repeated and prolonged 
contact. In laboratory research, sublethal exposure of E. 
coli and Staphylococcus aureus to AgNPs demonstrates 
this Balasubramaniam et al.[41] Acrylic resin is a frequently 
utilized material in the production of removable dental 
prostheses. Incorporating AgNPs into acrylic resin has 
been found to possess inhibitory effects against bacterial 
cultures such as Streptococcus mutants, E. coli, and S. 
aureus.[36] In another study using T. kotschyanus extract 
as a reducing agent, Abdulazeem et al.[32] synthesized 
AgNPs and characterized them with various analytical 
methods. Synthesized AgNPs were discovered to possess 
efficacy against pathogenic bacteria isolated from chicken 

droppings when used as an alternative to conventional 
treatments.

Silver NPs as antiviral
The exact mechanism by which AgNPs induce viral death 
is currently unknown.[27,42] AgNPs can potentially prevent 
viral infections through two mechanisms: hindering virus 
infection in cells and directly deactivating viruses.[43] 
Examples of viruses that can be inactivated by AgNPs 
include herpes simplex virus, respiratory syncytial virus, 
and adenovirus serotype 3. The significant surface area of 
AgNPs enables enhanced interaction with viral particles, 
resulting in heightened antiviral efficacy.[44] Using 
bacteriophage X174, murine norovirus, and adenovirus, 
Haggag et al.[45] assessed the antivirus efficacy of these 
AgNPs in various settings without observing any major 
ecological hazards. In a separate investigation, AgNPs 
with mean sizes of 10 nm (Ag10Ns) and 50 nm (Ag50Ns) 
were used to inhibit the viral replication of the hepatitis 
B virus genome.[42] According to previous research, 
poliovirus-infected human rhabdomyosarcoma cells 
were found to be susceptible to being killed by AgNPs 
that were electrochemically synthesized. The particles 
utilized in combining AgNPs and poliovirus exhibited 
quasi-spherical morphology, with an average diameter of 
approximately 7.1 nm.[46]

Silver NPs as antiparasitic
Over the past 10 years, researchers in parasitology have 
documented promising outcomes in managing parasites 
by employing AgNPs that have been synthesized through 

Figure 3: The main application of AgNPs
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environmentally friendly means.[47] It was discovered that 
these AgNPs have potent anti-plasmodial efficacy against 
several types of parasites, for instance, Plasmodium 
falciparum. The in vitro investigations conducted on the 
effectiveness of AgNP treatment against Leishmania 
tropica have revealed the generation of reactive oxygen 
species (ROS), which are recognized to elicit a heightened 
sensitivity response in Leishmania.[48] Furthermore, applying 
AgNPs against Toxoplasma gondii caused impairment of 
the parasite’s mitochondrial and cytoplasmic membrane 
and a 90% reduction in infection.[49] Moreover, AgNPs 
were synthesized using the plants Artemisia abrotanum and 
Artemisia arborescens because of their effectiveness toward 
the P. falciparum parasite and the many benefits of “green” 
AgNPs in the medical field.[50]

AgNPs as anticancer
Several studies have revealed that the addition of AgNPs 
to standard chemotherapeutics improves their effectiveness 
against cancer cells that have developed resistance to 
multiple drugs.[51] Coating NPs with receptor-specific 
binders allows them to selectively target malignant or 
otherwise abnormal cells. Although research into various 
metal NPs for use as anticancer treatments continues, 
interest in silver has recently increased due to its beneficial 
antibacterial action.[52] Several different types of cancer 
cells, including HepG2 (tumor cells from the liver), HCT 
(intestinal cancer cells), Hela (cancer cells from the cervix), 
MCF 7 (cancerous cells from the breast), and others, were 
used to test how harmful AgNPs are to cells.[53]

AgNPs as drug delivery systems
AgNPs, with their short carbon chain and insufficiently 
binding oxygen atom, may provide powerful synergistic 
antibacterial effects when released with medication via 
a ligand-dependent silver release.[54] Empirical studies 
have shown that modifying AgNPs can be utilized for 
pharmaceutical transport and to mitigate the harmful 
effects of drugs.[55] It was also found that the cytotoxic 
activities of the AgNP conjugates were not significantly 
reduced with increasing concentration related to the 
cytotoxicity of the cells.[56] Other research has shown 
that AgNP catalytic activity is enhanced when bound to 
β-cyclodextrin. Conversely, there has been extensive study 
into using oligonucleotide conjugation to coat AgNPs for 
targeted genetic therapy and bio-diagnostics.[54] In addition 
to expressing synergism with synthetic antibiotics in terms 
of antibacterial activities, it has been hypothesized that 
AgNPs can transport drug molecules to target areas, hence 
improving therapeutic performance.[57] The previously 
mentioned assumptions have been subjected to empirical 
scrutiny by numerous researchers in the relevant discipline, 
who have documented the efficacious conjugation 
of tetracycline (which possesses multiple hydroxyl, 
phenol, and amide groups) and the immunosuppressant 

azathioprine (which contains S-atom and basic N-atoms 
in heterocycle).[58]

concluSIon
This brief  study explores the wide range of  biomedical 
uses for AgNPs and their more specific applications. 
AgNPs are well-suited for targeting pathogenic to 
diseased mammalian cells due to their structure, size, 
and adhesion. Moreover to their ability to combat 
pathogenic bacteria, AgNPs have also shown promise 
as an anticancer agent and a vehicle for medication 
delivery. The examined literature indicates that AgNPs 
may exhibit a synergistic impact with both anticancer 
agents and drug delivery systems, thereby enabling 
the administration of  reduced dosages. Hence, these 
nanocarriers offer reduced toxicity in non-cancerous 
cells, thereby potentially mitigating the adverse effects 
associated with anticancer agents.
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