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Abstract 
It is important to recognize protein classes in order to understand folding patterns. In 

this paper, we have proposed a method to extract the features based on secondary 

structure sequence and hydropathy profile. A feature selection algorithm that combines 

particle swarm optimization and extreme learning machine was employed to select a total 

of 25 features. The selected features were fed to the classifier in order to classify each 

protein to an appropriate class. The well-known data sets, i.e. ASTRALtraining, 

ASTRALtest, 25PDB, 640 and 1189 were used to evaluate the proposed method. Upon 

comparing the current approach against other approaches based on the same data, it is 

evident that the proposed method shows higher efficiency in the prediction of structural 

class of protein, and its overall accuracy reaches up to 1.5%. Moreover, the extracted 

secondary and hydropathy features are important for us to differentiate the α/β and α+β 

classes. 
 

 الخلاصت
طزَقت نخظُُف . َقخزح هذا انبذث الاًَبطانخعزف عهً اطُبف انبزوحُُبث حهعب دور اسبسٍ فٍ فهى وحًُُش 

انبزوحُُبث يٍ خلال اسخخزاج يجًىعت يٍ انخظبئض انًبُُت عهً سهسهت انخزكُب انثبَىٌ نهبزوحٍُ وانظىرة 

انًبئُت نهذبيغ الايٍُُ نهبزوحٍُ. كًب وَقخزح خىارسيُت لاَخقبء افضم انخظبئض يٍ خلال انذيح بٍُ 

خبطُت يٍ بٍُ  52لاسخخلاص  extreme learning machineو  particle swarm optimizationطزَقخٍ

انعذد انكبُز يٍ خظبئض انبزوحٍُ وانخٍ حى انذظىل عهُه ببنًزدهت الاونً. حغذي انخظبئض انخٍ َخى اَخقبءهب انً 

نغزع حظُُف انبزوحٍُ انً انظُف انظذُخ يٍ انفئبث. حى اسخخذاو  extreme learning machineانًظُف 

، ASTRALtraining ،ASTRALtestبث يخخهفت يٍ بُبَبث انبزوحُُبث انًعزوفت فٍ الاعًبل انسببقت يثم يجًىع

25PDB ،640  نخقُُى انطزَقت انًقخزدت. بُُج انُخبئح اٌ انطزَقت انًقخزدت حًخهك كفبءة عبنُت يٍ دُث دقت  1189و

ببنًقبرَت يع انطزق انسببقت فٍ حُبأ َىع انبزوحٍُ. كًب بُُج انُخبئح اٌ انخظبئض  %1.5انخظُُف حظم انً 

انًعخًذة عهً سهسهت انخزكُب انثبَىٌ وانظىر انًبئُت نهذبيغ الايٍُُ نهبزوحٍُ اسخطبعج انخًُُش وبشكم دبسى بٍُ 

 .α+βو   α/βانبزوحُُبث يٍ انظُف  اَىاع
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1. Introduction 
The information of structural classes of protein plays a vital role in bioinformatics field 

for performing protein fold analysis and recognition, protein function prediction, and DNA 

prediction [1-4]. The first definition of protein structural class was presented by Levitt and 

Chothia in 1976 [5]. Accordingly, there are four major classes, i.e. (1) all-α class has small 

amount of strands; (2) all-β class has small amount of helices; (3) α+β class has both helices 

and strands, where the strands are commonly anti-parallel; and (4) α/β class has both helices 

and strands, where the strands are commonly parallel. Currently, the Structural 

Classification of Protein (SCOP) database is commonly used to classify protein structural 

classes [6]. The protein structures of SCOP are classified manually depending on the known 

tertiary structures of proteins. With the rapid development of sequencing technologies, the 

number of revealed protein sequences is increasing exponentially, thus enlarging the gap 

between the sequence-known and the structure-known proteins. Therefore, the manual 

methods are unable to cope with the increasing demand of classification. In other words, it 

is required to improve the current computational techniques in order to reduce the 

computational time and to enhance the determination accuracy of protein structural class. 

One of the shortcomings of the existing approaches is inaccuracy of datasets that have low-

similarity sequences [2, 7-8], probably due to the usage of information that is extracted 

solely from the amino acid sequences [7-12]. Recently, several feature methods have been 

proposed to improve the prediction accuracy of the low-similarity sequences by using 

secondary structural information [13-18], such as SCPRED [19] and MODAS [20] that are 

designed based on the use of secondary structural sequences obtained from PSI-PRED [21]. 

In SCPRED, there are 9 selected features where 8 of them are based on secondary structure 

predictions and the remaining feature is based on the collection of Leucine and Glycine. In 

MODAS, the evolutionary and information profiles of the predicted secondary structure are 

employed for prediction. The extracted feature vector is used to train and evaluate different 

machine learning algorithms such as support vector machine (SVM) [22-25], neural 

network [26], fuzzy clustering [27], rough sets [28], etc. The feature representation and 

classification algorithms have been extensively reviewed [2, 8]. Although numerous 

methods have been developed based on secondary structures, it is challenging to develop 

high-quality prediction methods for low-similarity sequences. 

In this study, we aim to enhance the prediction accuracy based on the secondary 

structure sequence and the hydropathy information obtained from amino acids sequence. 

The 25-dimensional integrated feature vectors were selected based on the feature selection 

algorithm that combines Particle Swarm Optimization (PSO) and Extreme Learning 

Machine (ELM). The multi-class ELM was then implemented to predict the protein 

structural class. In order to demonstrate the efficiency of the proposed prediction method, 

the 10-fold cross-validation test (10-CV) was conducted on 5 low-similarity data sets.  

The rest of the paper is organized in the following manner. Section 2 summarizes the 

related works of protein classification methods. Section 3 explains the proposed method 

consisting of feature extraction and feature selection with classification by using PSO-ELM. 

Some performance measures are highlighted as well. Section 4 discusses the experimental 

results. Finally, Section 5 concludes the paper and recommends some possible future works. 
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2. Related works 
The open literatures related to the feature extraction and selection methods for 

improving the performance of protein classification have been reviewed. The outcomes are 

presented in this section. 

Wang et al. [4] proposed a model to extract features based on PSSM and secondary 

structure sequence for protein classification using SVM. The prediction precision has been 

improved by 3%–5%. SVM has been found efficient in improving the generalization 

performance, solving high-dimensional problem, and avoiding local minimum problem. 

However, SVM is particularly sensitive to missing data and the kernel function must be 

carefully chosen for processing. Furthermore, Wang et al. [29] extracted feature information 

based on PseAA structural properties and secondary structure patterns, using SVM in the 

protein structural class data sets. In general, its overall prediction accuracy is promising.  

The method proposed by Yang et al. [13], i.e. RKS-PPSC is based on secondary 

structure sequence. A total of 24 features are obtained using recurrence quantification 

analysis, k-string based information entropy and segment based analysis. In this method, the 

prediction accuracy of α+β is lower than that of our current method for all data sets. 

Ding et al. [14] predicted the protein structural classes based on the predicted secondary 

structure. Their method is reasonably accurate; however, it is computationally expensive 

due to the associated high dimensional space with SVM. 

In additional, Zhang et al., [30] introduced a method to predict the protein based on 

secondary structure sequence. They used SVM-based Jackknife cross-validation test to 

classify the data sets of protein. However, the prediction accuracy of α+β is somewhat low.  

Finally, Wang et al., [31] proposed a deep recurrent encoder-decoder neural network 

called Secondary Structure Recurrent Encoder-Decoder Network (SSREDN) to solve some 

problems related to predicted secondary structure. This model is not recommended as 

information leakage cannot be prevented. 
 

3. Proposed approach 
In this section, the details of the proposed approach are given. Figure 1 shows the 

proposed methodology in this study. The benchmark cases (ASTRAL, 25PDB, 640 and 

1189) are employed to evaluate the performance of the proposed model. The scenario of the 

proposed method is described as follows: 

In the feature extraction stage: 

1. Convert the protein amino acids into the secondary structure sequence by using 

PSIPRED [21]. 

2. Extract 38 features from the secondary structure sequence based on the elements (H, E 

and C) shown in Table 2. 

3. Remove the C element from the secondary structure sequence. 

4. Extract 10 additional features from the obtained secondary structure sequence based on 

the elements (H and E) shown in Table 3. 

5. Represent the protein amino acids in the form of hydropathy sequence with three 

elements (I, E and A) by using the formulation proposed by Wang et al. [29]. 

6. Extract 25 features from the hydropathy sequence as shown in Table 4. 
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Hence, a total of 73 features can be extracted from this stage. 

In the feature selection stage: 

1. Apply PSO technique to generate the swarm of feature subsets randomly. 

2. Evaluate the subsets by using ELM algorithm. 
3. Repeat the operations of PSO and step 2 to improve the subsets of features (n iteration). 

4. Select the best global solution of feature subsets based on the maximum cost. 

     In the classification stage: 

1. Determine the optimum parameters for ELM algorithm by using the grid search 

technique. 

2. Build new training and testing data sets based on the best selection of feature subset. 

3. Apply ELM to classify the data set into one of the classes (α, , α/, α+). 

4. Validate and compare the classification results with other related works. 

     Additional details about the proposed method are provided. 
 

3.1 Protein data sets 
In order to perform a comprehensive comparison experimentally, five commonly low-

similarity benchmark data sets were employed. The selected ASTRAL data set (including 7 

classes) has sequence similarity of < 20% and it comprises of 6424 sequences [20]. In our 

study, only four major classes (all-α, all-β, α/β, α+β) that contain 5626 sequences were used. 

The ASTRAL data set was arbitrarily separated into two equivalent subsets; one was used 

as the training data set (ASTRALtraining) and the other was used as the test data set 

(ASTRALtest). The selected 25PDB comprises of 1673 protein domains with similarity of 

sequence of < 25% [2]. The 640 data set consisting of 640 sequence with 25% similarity of 

sequence was taken from [14]. The final data set named 1189 comprises of 1092 sequences 

with 40% sequence similarity [32]. The details of the five data sets are shown in Table 1. 
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Figure 1. The methodology of proposed approach 
 

Table 1. The characteristics of data sets employed to evaluate the proposed method 

Data set All-α All-β α/β α+β Total 

ASTRALtraining 640 662 748 763 2813 

ASTRALtest 640 662 747 764 2813 

25PDB 443 443 346 441 1673 

640 138 154 177 171 640 

1189 223 294 334 241 1092 
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3.2 Feature extraction 

Based on the secondary structure and hydropathy sequences of amino acids, a total of 73 

features are extracted. These features are detailed as follows: 
 

3.2.1. Features extraction of secondary structure sequence 

By using PSIPRED (version 2.6) [21], the prediction outcome of the protein amino 

acid is one of the following secondary structural elements: H (helix), E (strand), and C 

(coil). Hence, the protein can be categorized within one of the structural classes according to 

these elements. The features obtained from the above structures may be immediately applied 

to the protein structural class prediction. Accordingly, a total of 48 features were derived to 

reflect the common contents and spatial arrangement of the secondary structural elements of 

the specified protein sequence. Some of them have been applied previously [19, 33-34]. 

Table 2 summarizes the predicted secondary structural features, where the length of the 

secondary structural sequence is denoted as L. 

α-helices and β-strands are normally separated in α/β proteins and they are usually 

interspersed in α+β proteins. Therefore, in order to reflect the distributions of α-helices and 

β-strands effectively, the C element was removed from the secondary structural sequence to 

obtain the new sequence H-E. A total of 10 features based on the new secondary structure 

were extracted, where the length of the H-E sequence is denoted by Lnew. The features of the 

new H-E sequence are detailed in Table 3. 
 

3.2.2. Features extraction of hydropathy sequence (HS) 

The hydropathy profile of the protein sequence was selected based on the assumption that it 

would significantly influence the protein folding process. Hydropathy features define the 

hydrophilic and hydrophobic natures of the sequence [29]. Twenty types of amino acids of 

protein were classified into three groups based on their respective hydropathy profiles, 

namely Internal (I), External (E) and Ambivalent (A) (see Wang et al., [29]): 

 

 ( ( ))   {

    ( )           

    ( )               

    ( )                 

 

 

In the above equation,  ( ) denotes the     amino acid in the primary sequence of the 

protein, while  ( ( )) denotes its constant substitute based on the nature of the hydropathy. 

For example, a sequence of the amino acid for a given protein can be expressed as: 
                is denoted by 

 

 ( )                

 

Therefore, based on the new hydropathy sequence (HS),   *     +, a total of 25 new 

hydropathical features were extracted. The hydropathical features were combined with the 

previous features extracted from the predicted secondary structural sequence. The 

hydropathical features are shown in Table 4, where Lhydro denotes the length of the new 

hydropathy sequence. 
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3.3 Feature selection 
In this paper, many features have been extracted, signifying that a large computational cost will be 

required for machine learning. Furthermore, those irrelevant and redundant features could affect the 

prediction accuracy. Thus, feature selection was employed to select those more essential features in 

order to improve and accelerate the prediction process. Several feature selection approaches have 

been proposed in different bioinformatics studies [35]. These methods can be divided into two main 

groups: filter and wrapper. Filter approach adopts the statistical properties of features for selecting 

the good features. On the other hand, wrapper approach combines the feature selection method with 

a specific classifier to estimate the worth feature subsets by calculating its accuracy. Thus, better 

result can be obtained using wrapper approach. Moreover, the wrapper feature selection approach 

uses the cross-validation function to prevent overfitting during the course of calculation. Finally, 

PSO technique was used with 10 cross-validation ELM to construct 25-dimensional feature vector 

from the above 73 features. PSO was adopted to improve the quality of selected features using 

ELM. The process was terminated upon obtaining the optimal feature vector. 
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Table 2. The features derived from secondary structural sequence 

No Feature Description 
1     ( )   Normalized count of H in secondary structural sequence 

2     ( )   Normalized count of E in secondary structural sequence 

3     ( )   Normalized count of C in secondary structural sequence 

4              Normalized length of the longest segment of H 

5              Normalized length of the longest segment of E 

6              Normalized length of the longest segment of C 

7              Normalized average of length for segments H 

8              Normalized average of length for segments E 

9              Normalized average of length for segments C 

10     ∑      
 
     (   )  Composition moment vector of H (PosHj is the jth position of H) 

11     ∑      
 
     (   )  Composition moment vector of E (PosEj is the jth position of E) 

12     ∑      
 
     (   )  Composition moment vector of C (PosCj is the jth position of C) 

13             Normalized number of segments H 

14             Normalized number of segments E 

15             Normalized number of segments C 

16        (        )⁄  The ratio of parallel β-sheets to both parallel and anti-parallel β-

sheets 

17         (        )⁄  The ratio of anti-parallel β-sheets to both parallel and anti-parallel 

β-sheets 

18                 Normalized maximum distance between H and E 

19                 Normalized maximum distance between E and H 

20                   Normalized number of exchanges between H and E 

21               Normalized variance of segment lengths H 

22               Normalized variance of segment lengths E 

23               Normalized variance of segment lengths C 

24               Normalized variance of positions H 

25               Normalized variance of positions E 

26               Normalized variance of positions C 

27                Normalized standard deviation of count between H and E 

28                 Normalized standard deviation of count between H and C 

29                Normalized standard deviation of count between E and C 

30                 Normalized standard deviation of count for H, E and C 

31      (  )   Normalized count of HE 

32      (  )   Normalized count of EH 

33     ∑       
 
     (   )  Composition moment vector of HE 

34     ∑       
 
     (   )  Composition moment vector of HC 

35     ∑       
 
     (   )  Composition moment vector of EH 

36     ∑       
 
     (   )  Composition moment vector of EC 

37     ∑       
 
     (   )  Composition moment vector of CH 

38     ∑       
 
     (   )  Composition moment vector of CE 
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Table 3. The features derived from the secondary structural sequence upon removing the C element 
 

No Feature Description 

1      ( )      Normalized count of H in new H-E sequence 

2      ( )      Normalized count of E in new H-E sequence 

3                  Normalized length of the longest segment of H in H-E 

4                  Normalized length of the longest segment of E in H-E 

5                  Normalized average length for segments H in H-E 

6                  Normalized average length for segments E in H-E 

7     ∑           (      )
    
     Composition moment vector of H in H-E sequence 

8     ∑           (      )
    
     Composition moment vector of E in H-E sequence 

9                Normalized number of segments H in H-E 

10                Normalized number of segments E in H-E 

 

Table 4. The features which derived from hydropathy profile 
 

No Feature Description 
1      ( )        Normalized count of I  

2      ( )        Normalized count of E 

3      ( )        Normalized count of A 

4                    Normalized length of the longest segment I 

5                    Normalized length of the longest segment E 

6                    Normalized length of the longest segment A 

7                    Normalized average length for segments I 

8                    Normalized average length for segments E 

9                    Normalized average length for segments A 

10     ∑             (        )
      
   

  Composition moment vector of I 

11     ∑             (        )
      
   

  Composition moment vector of E 

12     ∑             (        )
      
   

  Composition moment vector of A 

13                  Normalized number of segments I 

14                  Normalized number of segments E 

15                  Normalized number of segments A 

16                    Normalized variance of segment lengths I 

17                    Normalized variance of segment lengths E 

18                    Normalized variance of segment lengths A 

19                    Normalized variance of positions I 

20                    Normalized variance of positions E 

21                    Normalized variance of positions A 

22                     Normalized standard deviation of count between I and E 

23                     Normalized standard deviation of count between I and A 

24                     Normalized standard deviation of count between E and A 

25                      Normalized standard deviation of count for I, E and A 
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The processing steps of PSO are outlined as follow: 

1. Choose the optimum values of parameters (, φ1, φ2) for PSO using the grid search 

technique. 

2. Generate the positions and velocities of particle swarms randomly. 

3. Set the global best solution to zero. 

4. Evaluate the particle swarms (i.e. computing costs) by using ELM model. 

5. Search the global best solution based on the objective function, i.e. maximization of cost.  

6. Recalculate the velocities of particle swarms using previous velocities and positions of 

the best particle swarms. 
 

                                                        

                      
 

7. Recalculate the positions of particle swarms based on the previous positions and new 

velocities. 
                           

8. Repeated steps (4-7) until convergence is attained for the positions of particle swarms. 

9. Select the global best solution as the best subset of features. 
 

3.4 The ELM Classifier 
The recognition of protein structural classes is indeed a multi-class classification 

problem. Here, an extreme learning machine tested successfully by Huang et al. [36] was 

employed as a single-hidden layer-feed-forward neural network (SLFNN). It is also named 

as ELM as it can exactly learn N distinct observations, i.e. almost any nonlinear activation 

function with at most N hidden nodes. Hence, the essential difference between ELM and 

traditional training of a feed-forward network is that the tuning of hidden layer of ELM is 

unnecessary (i.e. parameters of hidden layer are randomly chosen). However, the input 

weights and hidden neurons biases, as well as the output weights of the hidden layer, are 

assigned randomly in order to minimize the training error. ELM transforms the learning 

problem into a simple linear system where the output weights can be analytically 

determined. The results reported in [36] implies that ELM performs better and its 

implementation is easy. For kernel-based ELM, several nonlinear kernel functions can be 

used to calculate the hidden layer feature mapping of ELM. One of the popular kernel 

functions is Gaussian radial basis function (RBF) which was used in the current work. 

Moreover, the grid search algorithm was used to determine the optimum number of hidden 

layers for ELM. The optimum number of hidden layers was 30 and it was used in all 

experimental results. 
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3.5 Evaluation Measures 
The 10 cross-validation (10-CV) test is a popular method used to validate the results of 

different classifiers [2]. Hence, it is exploited to assess the stability and reliability of our 

new approach. In order to perform extensive evaluation, parameters such as individual 

sensitivity (Sens), individual specificity (Spec), Matthew's correlation coefficient (MCC) of 

the four structural classes, and overall prediction accuracy (OA) of the whole data set were 

calculated. These parameters are defined as follows: 

 
 

      
   

(       )
 

      
   

       
 

     
(               )

√(       )(       )(       )(       )
 

    
   

(               )
 

where   ,   ,   and    are the number of true positives, true negatives, false positives and false 

negatives in the structural class   , respectively. 

 

4. Experimental Results and Discussion 
The proposed method was tested with ASTRALtraining, ASTRALtest, 25PDB, 640 and 1189 data sets 

by using 10-CV test. The predicted results for proteins from all-α, all-β, α/β and α+β classes were 

compared against those of other approaches using the same data sets. The predicted results of our 

current approach are reported in Table 5. The computer with the following specification was used: 

Windows 10 OS, Core i5 2.60 GHz CPU, and 12 GB RAM. The freeware package ELM [38] was 

coded using Java. 
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Table 5. The predicted results using the current method upon conducting the 10-CV test on 

five data sets 

 
Data set Class Sens (%) Spec (%) MCC (%) 

ASTRALtraining 

All-α 94.22 97.93 91.75 

All-β 83.08 96.56 81.32 

α/β 84.22 92.98 76.35 

α+β 72.08 89.46 61.47 

OA 82.94   

ASTRALtest 

All-α 93.75 98.62 92.89 

All-β 81.72 96.65 80.53 

α/β 85.94 92.64 77.11 

α+β 72.38 89.12 61.2 

OA 83.04   

25PDB 

All-α 95.49 95.45 88.76 

All-β 83.75 97.48 83.88 

α/β 81.79 95.78 78.16 

α+β 78.91 91.48 69.79 

OA 85.18   

640 

All-α 90.58 98.41 90.2 

All-β 85.06 96.71 83.1 

α/β 90.96 92.87 81.59 

α+β 74.85 91.9 67.39 

OA 85.16   

1189 

All-α 93.27 96.89 88.45 

All-β 86.39 97.99 86.77 

α/β 84.43 93.01 77.37 

α+β 70.54 90.36 59.95 

OA 83.7   

 

As shown in Table 5, the overall accuracies for all data sets are high (> 82.9 %), 

indicating that our predictor is reliable. Also, the proposed method is stable even though the 

size of data set and similarity are different. Moreover, the percentages of Sens, Spec and 

MCC for all-α class are the highest for all data sets, while the percentages of α+β class are 

the lowest. For example, the MCC is only 59.95 % for the 1189 data set due to the fact that 

it is difficult to distinguish the α+β class as there is an overlap with other classes [32]. Thus, 

it is challenging to identify anti-parallel sheets. 

Moreover, the proposed method was compared against other popular methods such as 

SCPRED [19], MODAS [20], and the methods developed by Zhang et al. [38] and Ding et 

al. [14]. 
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Table 6. Comparison of our proposed method with other methods 

Data set Reference 
Accuracy (%) 

OA 
All-α All-β α/β α+β 

ASTRALtraining 
[38] 94.06 81.72 79.55 73.79 81.80 

The proposed 94.22 83.08 84.22 72.08 82.94 

ASTRALtest 

[38] 95.16 80.97 83.94 72.51 82.69 

[14] 94.53 77.49 87.28 71.47 82.33 

[19] 93.13 78.33 83.38 64.27 79.14 

The proposed 93.75 81.72 85.94 72.38 83.04 

25PDB 

[38] 94.81 82.39 81.21 77.32 84.1 

[14] 95.03 81.26 83.24 77.55 84.34 

[19] 92.6 80.1 74 71 79.7 

[20] 92.3 83.7 81.2 68.3 81.4 

The proposed 95.49 83.75 81.79 78.91 85.18 

640 

[38] 92.75 81.82 89.27 74.27 84.22 

[14] 94.93 76.62 89.27 74.27 83.44 

[19] 90.6 81.8 85.9 66.7 80.8 

[20] 89.1 85.1 88.1 71.4 83.1 

The proposed 90.58 85.06 90.96 74.85 85.16 

1189 

[14] 93.72 84.01 83.53 66.39 81.96 

[19] 89.1 86.7 89.6 53.8 80.6 

[20] 92.3 87.1 87.9 65.4 83.5 

The proposed 93.27 86.39 84.43 70.54 83.7 

 

As shown in Table 6, our method exhibits the highest overall accuracy, i.e. accuracies 

are improved by 1.14 %, 0.35 %, 0.63 %, 0.94 % and 0.2 % for ASTRALtraining, ASTRALtest, 

25PDB, 640 and 1189 data sets, respectively. Moreover, the accuracies of ASTRALtraining 

for all-α, all-β and α/β class are 0.16 %, 1.36 % and 4.67 % higher than those of Zhang et al. 

method [38]. For the ASTRALtest data set, the accuracy of all-β class is 0.75 % higher than 

the previously reported best result [38]. As compared with those best methods reported 

previously, the accuracies of all-β and α+β classes are improved by 0.05 % and 1.36 % 

respectively for 25PDB. In addition, the accuracies of α/β and α+β class are improved by 

1.69 % and 0.58 % respectively as compared with the best results reported for 640 data set 

[14, 38 ]. Finally, for the 1189 data set, the accuracy of α+β class is 4.15 % higher than the 

previous best-performing result obtained by Ding et al. [14]. From Table 6, some results 

obtained using our method are slightly inferior to those predicted using other methods. 

Figure 2 compares the overall accuracy of our proposed method with the best method 

reported previously for each data set. In addition, Figure 3 compares the sensitivities of the 

proposed method and the best method reported in open literature for all data sets. As 

deduced from these figures, our method is more promising than others. 
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Figure 2. Comparison of proposed method with the other best methods in terms of overall 

accuracy 
 

 
 

Figure 3. Comparison of proposed method with the other best methods in terms of average 

sensitivity 

 

Based on the previous comparisons, our proposed method performs the best in 

predicting the α/β and α+β classes which are hard to be predicted precisely. For the α/β 

class, our approach shows promising prediction accuracy in spite of the fact that α/β class 

always produces non-promising results as each protein of α/β can be assigned to more than 

one class. Moreover, some less popular elements of secondary structural, e.g. β-turns and β-

bugles are excluded. These elements could be included in future work for accuracy 

enhancement purpose. 

The proposed approach selects features that are more related to the protein structural 

class. Moreover, the t-test shows that the proposed method improves the overall accuracy 

significantly as shown in Table 6, where the p-value is 0.008996. 

On the other hand, the proposed method is computational cheaper than SVM, as the 

employed ELM is faster than SVM. Besides that, the computational time of PSO algorithm 

in the selection process is shorter than those of other optimization methods.  
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5. Conclusions 
This study has presented an approach to predict the protein structural class based on 

secondary structural sequence and hydropathy profile. Firstly, the best feature vector was 

chosen using the combined method of PSO and ELM. Then, the selected feature vector was 

fed into the ELM technique in order to predict the protein structural classes. From the 

experiments, the accuracy of the proposed method can reach up to 85.18%. The main 

contribution of this study is the extraction of new features from secondary structure and 

hydropathy profile of protein. The current method performs better than other popular 

methods such as SCPRED, MODAS, etc. The proposed approach is about 1.5 % more 

accurate than the existing best-performing methods. Our method performs exceptional well 

in predicting α/β and α+β classes. From the current work, the influence of hydropathy 

feature on the prediction accuracy has been found to be significant.  
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