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ABSTRACT
The primary objective is to determine whether the structural efficiency of plates can be improved
with variable thickness.  The large displacement analysis of steel plate with variable thickness at x-
direction is obtained numerically, using finite differences. The effects of boundary condition,
tapering ratio, type of tapering equation and plate aspect ratio on large deflection behavior of
rectangular plates are investigated. Numerical results for rectangular steel plate are presented for the
different effects.  This study showed that the large deflection behavior is very sensitive for thickness
variation (tapering ratio) where the maximum deflection will increase about 5% for slenderness
ratio (b/t=100) and tapering ratio (1-2) of simply supported plate.
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NOTATIONS
b,a Plate dimension in x and y- directions respectively.

c  =  clamped edge.
  ooat atttc    =Slope coefficient of the Tapered plate.

 23 112 vEtD o   Modulus of Rigidity.
E Modulus of Elasticity.

Nx, Ny, Nxy = In-plane forces (per unit width).
q Transverse load (per unit area).

s = Simple supported edge.
t = Plate thickness.
ta = Thickness at the side x=a.
tav = Average thickness ((ta+to)/2).
to = Thickness at the side x=0.
 Poisson’s ratio.

w = Out-of-plane displacement (or deflection).

INTRODUCTION
With the increasing use of rolled, machined, or them-milled skins in aircraft and missile

designs, analyses of plates tapered in thickness are becoming the rule rather than the exception.
Design data for the large displacement of such plates are limited(2). Nonlinear structural problems
usually fall into one of the following main categories: (a) large deflections; (b) finite strains; (c)
nonlinear material properties; (d) deformation-dependent interactions between structural parts; (e)
combination of nonlinear material behavior with one of the other categories.

The problem of geometrical nonlinearity is of considerable practical interest for aerospace
engineers and naval architects.  In civil engineering, hanging roofs, suspension bridges, etc.
constitute the most important class of structures which display pronounced geometrical
nonlinearities(2).

The function of a thin plate element is generally to withstand a distributed lateral pressure,
or to act with the adjoining structure in sustaining in-plane forces, or both.

Although the equations of the large deflection behavior of plates were first derived by Von
Karman, it is only through recent advances in the development of numerical methods that the
general problem of plates has been treated satisfactorily.  The early investigators used infinite
double Fourier series (Levy[12]) and finite differences (Basu and Chapman[3]). They studied the large
deflection behavior of thin plate under uniformly distributed loading.  Aalami and Chapman[1] used
the finite difference method to obtain solutions for a number of isolated plates under uniformly
distributed loading and with simple boundary conditions. Ueda, et al.[4] studied the large
deflection behavior of a rectangular plate by an efficient semi-analytic method. An incremental
form of the governing differential equations of plates and stiffened plates with initial deflection had
been derived. For each load increment, these equations were solved by Galerkin method with
special consideration of simple supported boundaries.  Recently,  Jayachandran, et al.[5] derived
incremental matrices for thin initially imperfect plates with a small out-of-flatness by using
minimum potential energy principles. Explicit coefficients of the displacement gradient tensor had
been evaluated.  These matrices were used in combination with any thin plate element.  The
formulations were incorporated in software plot-cold.

FORMULATION AND SOLUTIONS
The basic concepts of three methods (or steps) for the solution of the large deflection

behavior of plates together with a description of the boundary conditions of the cases examined are
summarized in the following.
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FORMULATION
Starting from the equilibrium of compatibility of a thin plate element and expressing the

strains and curvatures as functions of the stress resultants, the following equations are presented(2): -
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The stress-strain relationships become as follows: -
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where  n
tox xctt  1 ; in which   ooat atttc  ; to and ta denote the thickness at the sides

x = 0 and x = a, n denote to type of equation.
After derivation of strains and substitute the derivations into Equation (1) and express it as a

stress function resultant where the compatibility equation becomes:
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By similar algebraic steps it is possible to write the equilibrium equation in terms of w and
Φ, thus: -
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And the variable   is Airy’s stress function and is defined such that: -
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All the other quantities related to the bending and membrane actions of the plate can be expressed

in terms of two variables (w) and ( )(2).

  The boundary conditions considered for x=0, a, as shown in Figure (1), are as follows: -

1-Boundary on rigid supports

0w (7)
2- For rotationally free cases (on edge parallel to y-axis)
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For rotationally fixed cases(on edge parallel to y-axis)
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For membrane action cases of fully free is considered.

3-For fully free condition of zero membrane direct stress (on edge parallel to y-axis)
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Equations (10) and (11) refer to the boundary condition of an isolated free plate(2).
For solution, the plate is subdivided into a graded mesh.  The grading is chosen to be fine

under distributed loading and for the fixed boundary conditions for increased accuracy.  Equations
(3) and (4), together with the boundary conditions are expressed at the nodes in terms of central
finite difference expressions, as shown in Figure(2).

The resulting equations may then be arranged into the following coupled matrix form: -

     wBA  (12)

        qwDwC  (13)
in which [A] = a square matrix with constant coefficients depending on  ; [B] = a square matrix
depending on w; [C] = a square matrix for bending effect obtained from the left hand side of
Equation (13); [D( )] = a square matrix depending on  ; {w} and { } = column matrices of
the unknown variables w and  , respectively; {q} = the applied transverse loading.  For numerical
evaluation, it is convenient to rewrite Equation (10) as follows: -

      wBA 1 (14)
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Now for any specified conditions, Equations (12) and (13) can be solved for w and   using
an iterative procedure.  There are various schemes used for the solution of the present type of
coupled equations. In the present study, the successive iteration procedure is considered.

The solution to be obtained for a given applied loading {q} is achieved by assigning a value
to   (which may be assumed equal to zero for first loading, and equal to the previous values for
subsequent loading). Thus Equation (12) can be solved for {w}, from which [B] is evaluated, and
subsequently used in Equation (13) to get new values of  .  The procedure is repeated until a
desired degree of accuracy is reached.  There are certain refinements in the iteration, which are
employed to ensure a rapid convergence.

COMPUTER PROGRAMMING
A computer program was written by Amash [2] and developed to take the out of plane

loading and multi equations of variable thickness. The program is written in FORTRAN 90
language.

RESULTS
All the solutions presented were obtained with a specified degree of accuracy ( r ) of 0.1%

in the iterative procedure. In most cases the plate was divided into 16 divisions in any direction.
This was considered adequate for obtaining deflections which are accurate enough for practical
purposes.

COMPARISON WITH OTHER WORK
Ideally it would be desirable to compare the theoretical predictions of the program with the

results of carefully controlled experiments and other theoretical results.
The accuracy of the results of the present study in the analysis of real panels is compared

with the theoretical results obtained by Levy (11) [1942] on simply supported panels. The numerical
analysis of Levy based on the infinite double Fourier series for the non-linear analysis of general
steel-plate.

In the present study, this plate is analyzed based on the prescribed procedure and it is
divided into (1616) divisions.

Figure (3) shows a comparison between the theoretical results of Levy's study and the
present study for the out-of-plane displacements.

The curves shown relate the applied load ( 44
avEtqa ) on the vertical side to the non-dimensional

maximum deflection ( avtw ) on the horizontal side.  A similar format is adopted for all other
figures.  It is clear from this figure that good agreement between the results by the present method
and the experimental results and the theoretical results is obtained for a simply supported thin plate.

APPLICATION AND DISCUSSION OF RESULTS
1-Simply Supported Tapered Plate under Transverse Uniform Load

Figure (4) presents the load-deflection curve of a square simply supported plate under
transverse uniform load.  The effect of a variation in thickness is considered.  The values of tapering
ratio are taken to be (ta/to=1.0, 1.5, and 2.0). So, the modulus of elasticity for all plate in this study
was taken equal to 200 GPa. This figure shows that the effect of tapering ratio on large deflection
behavior is considerable when the applied load is increasing.  The increase in the effect of tapering
ratio will be more appearing when the effect of membrane action becomes more appearing.

2-Clamped Tapered Plate under Uniform Load
Figure (5) presents the load-deflection curve of a square thin plate with all edges clamped.

This figure shows a comparison between the constant thickness and the variable thickness in perfect
plate.  The effect of variation in thickness is very clear on large deflection behavior of thin plates.
This effect is appearing in the beginning of loading of plate by transverse uniform load.  The effect
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of material nonlinearity is neglected in the present study.   These results are compared for a plate
with constant thickness (ordinary plate) and with average thickness which is equivalent thickness of
ordinary plate.

3-Square Thin Tapered Plate with Two Edges Simply Supported and Other Edges Clamped
Figure (6) presents the load deflection curve of a square plate with two edges simply

supported and other edges clamped and under transverse uniform load.  This figure shows the effect
of boundary condition and tapering ratio on the large deflection behavior of a square plate under
uniform lateral load.

4-Effect of Aspect ratio (a/b) on the Large Displacement Analysis of Simply Supported Plate
Figures (7) and (8) presents the load-deflection curve of a rectangular simply supported thin

plate under uniform lateral load with aspect ratios (a/b=2.0 and 0.5), respectively. These figures
show the effect of tapering ratio on the large deflection behavior of a rectangular thin plate with
increasing and decreasing in the length in x-direction (parallel to the variation in thickness).

From Figures (7) and (8), the following is noticed:
1- The values of the deflection of the thin plate with aspect ratio (a/b=2.0) and under uniform
load are less than the values of the deflection of the thin plate with aspect ratio (a/b=0.5).  This
difference is due to the effect of tapering ratio on the plate where the deflection becomes larger
for the plate with aspect ratio (a/b=0.5).
2- The effect of tapering ratio on large deflection behavior of a thin plate with aspect ratio
(a/b=0.5) is more than the effect of tapering ratio on large deflection behavior of a thin plate
with aspect ratio (a/b=2.0).

5-Effect of Order of Tapering Equation on the Large Displacement Analysis of Simply
Supported Plate
Figures (9) presents the load-deflection curve of a rectangular simply supported thin plate under
uniform lateral load with aspect ratios (a/b=1.0), slenderness ratio (b/tav=100), tapering ratio
(ta/to=1.5) and varying values of tapering equation (n from 1-4). This figure shows the effect of
tapering equation on the large displacement behavior of a rectangular thin plate. from this figure,
can be noticed that the effect of tapering decrease with increasing the order of tapering equation.

CONCLUSIONS
A simplified computational procedure is used to study the large deflection analysis of a rectangular
thin tapered plate under lateral uniform load.  Approximate values can be obtained with a good
accuracy when compared with other works.  The effects of boundary condition, tapering ratio and
plate aspect ratio on the large deflection behavior of rectangular thin tapered plates are studied and
presented in graphs.  The tapering ratios are taken to be  (ta/to=1.0,1.5,2.0). It is shown that the
large deflection behavior is dependent on the tapering ratio.  So the effect of order of tapering ratio
shows that the deflection of steel plate increases with increase the order of tapering ratio. The effect
of tapering ratio is dependent on plate aspect ratio.  In the present study, the material nonlinearity,
initial imperfection, free and rotationally boundary condition are not considered.
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Figure (1): Rectangular thin tapered plate under distributed load

(a) Plate with axes load. (b) Plate cross section.
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Figure (2): Plate equation in finite difference molecule form(2)
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Figure (4): Load-deflection curve of a square simply supported thin plate under
transverse uniform load
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Figure (3): Central deflection of simply supported square plate versus uniform
lateral load
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Figure (5): Load-deflection curve of a square thin plate with all edges clamped and
under transverse uniform load
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Figure (6): Load-deflection curve of a square thin plate with two edges simply
supported and other edges clamped under transverse uniform load
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Figure (7): Load-deflection curve of a rectangular simply supported plate with
aspect ratio (a/b=2.0) and under transverse uniform load
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Figure (8): Load-deflection curve of a rectangular simply supported plate with
aspect ratio (a/b=0.5) and under transverse uniform load
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Figure (9): Load-deflection curve of a rectangular simply supported plate and under
transverse uniform load with different values of order tapering equation
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