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Abstract— Upper limb amputation is a condition that severely limits the amputee’s 

movement. Patients who have lost the use of one or more of their upper extremities have 

difficulty performing activities of daily living. To help improve the control of upper limb 

prosthesis with pattern recognition,  non-invasive approaches (EEG and EMG signals) is 

proposed in this paper and are integrated with machine learning techniques to recognize 

the upper-limb motions of subjects. EMG and EEG signals are combined, and five features 

are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of 

the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), 

and rest (RST)). Experiments demonstrate that using mean absolute value (MAV), 

waveform length (WL), Wilson Amplitude (WAMP), Sine Slope Changes (SSC), and 

Cardinality features of the proposed algorithm achieves a classification accuracy of 89.6% 

when classifying seven distinct types of hand and wrist movement.  

Index Terms— Human Robot Interaction, Bio-signals Analysis, LDA classifier. 

I. INTRODUCTION 

Upper limb amputation is a condition that severely limits amputees' ability to conduct daily tasks. 

The electro muscular prosthesis's objective is to help restore the function of these lost limbs by utilizing 

signals from the remaining muscles. Unfortunately, there are several challenges facing patients with 

missing upper limbs in terms of the difficulty of obtaining this signal, as well as the percentage of upper 

limb amputation, as most research is currently directed to study in this field to help amputees live as 

normal a life as possible [1]. The most highly rehabilitative type of artificial limb is a hand prosthesis 

controlled by bioelectrical methods. This is because they can combine the aesthetic component, 

grabbing power and speed, and several opportunities for adaptability to various degrees of handicap [2]. 

Upper-limb amputees commonly use multifunctional prostheses to restore lost motion functions. 

Electromyography (EMG) is a type of neural signal that carries motor commands and can be extracted 

noninvasively from the muscle surface of residual limbs. However, it’s plays an important role in the 

control of modern motorized prostheses due to its relative simplicity of acquisition and rich neural 

information content [3,4]. An additional neural signal, Electroencephalography (EEG), also contains 

information about mental activities of the brain but is unaffected by amputation [5].   Multiple attempts 

have been made to use EEG as a brain-computer interface (BCI) for potential applications: Chen et al. 

used EEG to control robotic arms that performed hand movements for paralyzed subjects by decoding 

EEG signals recorded with an implanted microelectrode array [6]. Multiple-source signal fusion is one 

way to solve the problem of not having enough information to control a prosthesis [7]. In this method, 

non-EMG signals are added to EMG signals to get more accurate motor commands [8]. This study 

proposes an algorithm for classifying the upper limb motions of below-elbow amputees by fusing EMG 
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and EEG data as parallel input. The following is a summary of the main contributions of the current 

work: 

1- Combining five-feature group, which are Mean absolute value (MAV), Waveform length 

(WL), Wilson Amplitude (WAMP), Sine Slope Changes (SSC), and Cardinality features, 

and Formants to extract 60- dimensional feature vectors for each subject from combined 

four channels from EEG and eight channels from EMG.  

  

2- Exploring the influence of using EEG or EMG individually, and fusing (EEG, EMG) 

 Signals, in order to improve classification accuracy using the LDA classifier. 

II. RELATED WORKS 

This work focuses  mainly on recognition of upper limb  movements based on  fusion  bio-signals 

 analysis, there are some previous works have concerned the study of such a system. Biswas et al. 

propose a method to classify three upper limb movements (i.e., extension, flexion, and rotation) using 

accelerometer data and gyroscope data, with a 10-fold cross-validation accuracy of 88% using 

accelerometer data and 83% using gyroscope data for healthy participants, using a Linear Discriminant 

Analysis classifier and a Support Vector Machine [9]. Li in [7] proved that  The two different signal 

types underwent separate pre-processing steps before being combined as a parallel control input. A 

classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition was fed 

with four time-domain features. Additionally, the Sequential Forward Selection method was used to 

perform channel selections (SFS). Using 32 channels for EEG and 32 channels for EMG, they were 

able to achieve 87.5% accuracy. In [10] EEG and EMG are two possible combinations of the 

electrophysiological signal sources. In order to prepare the data for preliminary classification, signal 

processing and classification techniques were used. EEG and EMG were combined using a theory-

based method. Any mathematically ambiguous or inaccurate data could potentially be modelled using 

this method. The formula for the mass functions that underlies this theory is specific. When using a 

classifier NN with two EMG channels and one EEG channel as inputs, the results were 78.65% 

according to the target application.  

Despite the fact that these physiological signals have been widely exploited, they are very weak 

and subject to a variety of interferences. For instance, power line noise and motion distortions would 

surely reduce the motion intention detection accuracy of wearable systems that use EMG or EEG data 

as control sources [11]. 

The rest of this work is organized as follows. The proposed algorithm is detailed in section III, and 

it looks at the theoretical background of Time-domain feature extraction concepts and Dimensionality 

Reduction. The experimental results and analysis are shown in section IV. Finally, section V outlines 

the work's conclusions and plans. 

III. THE PROPOSED ALGORITHM 

The proposed algorithm for classifying different hand Guster motions in Time-Domain Feature 

Extraction includes signals Pre-Processing to fusion (EEG, EMG)  data stage, Time-domain (features 

extraction, dimensionality reduction), and classification stages. Firstly, Pre-processing for the given 

signals EEG and EMG includes segmentation with overlap window size. After that, there are Time 

Domain Extractions with different features is presented. Following the PCA dimension reduction 

presentation, the LDA classifier is finally used to identify seven other shoulder girdle motions for 

prosthesis control such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand 

close (HC), pronation (PRO), supination (SUP), and rest (RST)). Algorithm 1. Illustrates the main steps 
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of the proposed algorithm, and the subsections that follow provide more detailed descriptions of these 

stages. 

 

Algorithm 1: Classifying Wrist and Hand motion   

Input EEG, EMG signals, window size (win_size) , widow increment (win_inc). 

Output Classes (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), 

pronation (PRO), supination (SUP), and rest (RST). 

 

Step1: 

 

// Create a Matrix (SD)  that stores twelve channels values (four channels for EEG signals, and eight 

channels for EMG signals) preparing for pre-processing step 

 

Set feature training()            null 

Set class training()                null 

Set feature testing()              null 

Set class testing()                  null 

 

Divide the EEG,EMG signals S into overlapped segments based on win_size,win_inc. 

 

Step2 : 

Feature 

Extraction 

 

 

 

 

 

 

 

 

Step 3: 

 

 

Step 4: 

 

Extract Mean absolute value, waveform length, Wilson Amplitude, Number of Slope Sign Changes, and 

              Cardinality. for  training signal file, and for testing signal file  

 

Apply the get class function to assign the class for each segment for the training and testing file. 

 

// Store the result of each of training and testing files  

Set feature training            Result of training file 

Set class training                Result of class file 

Set feature testing             Result of testing file 

Set class testing                 Result of class file 

 

// reduce the dimension of the obtained results from 60 features column to 35 features column 

Apply PCA dimension reduction algorithm 

 

// Classify the obtained results from the previous step to seven type of wrist and hand motion 

Apply LDA classifier to obtain the classes 

 

 

 

Step 1: Data Collection and Pre-processing 

This step includes data collection and pre-processing. Data were collected from three healthy limb 

subjects in the laboratory of the Department of Biomedical Engineering. Al-Khwarizmi College of 

Engineering, University of Baghdad. To classify hand movements, a set of seven movements was 

selected: wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), 

pronation (PRO), supination (SUP), and rest (RST). Eight EMG channels were recorded in the data. 

Furthermore, four EEG channels were provided by placing on the forehead Fig.  1, the overall layout 

of the suggested work scheme is depicted in Fig. 2. All subjects they received a thorough explanation 

of the events, and they received some brief training to get them acclimated to the process. Each 

participant in the experiment was instructed to do the exercise in turn for a duration of 10 seconds, after 

which the motions were recorded three more times. EMG and EEG were recorded simultaneously while 

performing the movement. EMG signals were collected. They used of a high-density EMG system 

where the signal frequency was 200 Hz for eight channels; Electrodes were placed on the surface of the 
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skin to check for residues arm for each subject. On the other hand, EEG Muse were collected on 252 

Fs, and with 4 channels Raw. 

 

 

 

FIG. 1. EEG MUSE RAW 4 CHANNELS AND EMG ARMBAND PLACEMENT 8 CHANNELS. 

 

FIG. 2. THE GENERAL DESIGN OF THE PROPOSED WORK SCHEME.  

 

At a sampling rate of 1 kHz, raw data are gathered from which useful features can be 

extracted. The eight-channel EMG signals are shown in Fig. 3; the data was segmented 

using an overlapped segmentation approach with a window size of 150 ms and an 

increment of 50 ms. Fig. 4 depicts the four channels used to record EEG data. 
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    FIG. 3. EXAMPLES OF EMG DATA (8 CHANNELS) IN THE PRE-PROCESSING CONDITION. 
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                     FIG. 4. EXAMPLS OF EEG (4 CHANNELS) IN THE PRE-PROCESSING CONDITION. 
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Step 2: Feature Extraction Methods  

The most useful features in classification research are those that use time-domain (TD) data. The 

key benefit is the straightforward extraction process, which, when compared to other methods like 

frequency domain (FD) and time-frequency domain (TFD), delivers great results. Several studies 

showed the usefulness of TD, especially in terms of its quickness, simplicity, and lack of any necessary 

transformation.[12]. The main disadvantage of the TD is that the features are produced by the signal's 

stationary nature. Therefore, when dealing with non-stationary signals like the EMG collected mostly 

in dynamic movements, the characteristics are likely to exhibit very significant fluctuations [13]. The 

TD characteristics are highly vulnerable to noise picked up during data collection because they are 

entirely based on EMG amplitudes. To distinguish between class movements, the temporal and spectral 

information is crucial. Additionally, this will serve as the primary criterion for separating TD from FD 

performance in the categorization [14]. 

Many studies have made use of those characteristics. However, it's worth noting that not every 

combination of characteristics was utilized. It has been decided which features would be used in the 

classification research. The following sections detail the extensive testing performed on five TD 

features. 

1. Mean absolute value (MAV) 

Researchers studying EMG  and EEG signals frequently and extensively use the MAV 

feature. The integrated EMG (IEMG) value is computed using the rectified EMG's moving 

average. Other names for this trait include ARV (i.e., average rectified value) [15]. MAV is 

mathematically given as: 

 

                                               MAV= 
1

𝑁
∑ |𝑥𝑖|𝑁

𝑖=1                                                                 (1) 

 

Where 𝑥𝑖 represents the signal of the EMG and EEG, whereas N represents the 

signal’s sample number. 

2.  Waveform length (WL) 

One definition of WL is as a measure of the complexity of an EMG ,and EEG signal 

that accounts for the sum of all fluctuations across the entire signal. In the context of 

absolute derivative signals, this property is also known as the full value, and its name is 

"wavelength" (WAVE). An equation has been derived for determining WL, and it looks 

like this [16]: 

                                                       WL=log(
∑ |Δx  |𝑛−1

𝑖=0

∑ | 𝛥2𝑥 |𝑛−1
𝑖=0

)                                                           (2)                                   

 

3.  Wilson Amplitude (WAMP) 

This is the quantity of instances where the difference between two successive amplitudes is greater 

than a predetermined threshold. It can be stated as follows[17] : 

 

                                  WAMP=∑ 𝑢(|𝑥𝑖+1 − 𝑥𝑖|𝑁
𝑖=1 − 𝑇                                                (3)           

 

In this study, a threshold V of 0.05 is taken into account. This characteristic reflects the 

firing of motor unit action potentials (MUAP), which in turn reflects the intensity of muscle 

contraction [18]. 
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4.  Slope sign change (SSC) 

The SSC can be thought of as a recognizable kind of ZC behavior. It measures 

changes in the sign of the slope to encode signal frequency information [19]. Within 

their threshold function, the negative and positive slope changes have been counted three 

times sequentially. As a result, background EMG noise will not be present. This feature's 

mathematical expression is: 

 

  SSC = ∑ [ 𝑓[(𝑥𝑖
𝑛−1
𝑖=2 − 𝑥𝑖−1) × (𝑥𝑖 −  𝑥𝑖+1 )]]                                           (4) 

                                                 𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

 

The threshold parameter for this feature should be set to a value between 50 and 100 mV [15, 19]. 

But if the background noise and gain values of the instrument are not set to the same level, it can be 

different [20]. 

 

5.  Cardinality feature 

A recently proposed and promising property is called "cardinality," which is represented by 

counting the number of components in a set of things while omitting all comparable objects among the 

elements in that collection [21]. When compared to other widely-used individual features in the 

literature, cardinality was found to be one that maintains a high level of accuracy regardless of changes 

in the sample frequency, the size of the window, the number of movement classes, or any of the other 

variables [22]. 

Those characteristics have also been shown to yield very high classification accuracy in hand 

movement detection algorithms, outperforming both Frequency Domain (FD) and Time-Frequency 

Domain (TFD) methods[23]. This was the driving force behind this research's decision to use the TD 

features indicated previously in the EMG signal gathered for this study. 

Step 3: Dimensionality Reduction Method  

To extract a few useful features, One typical method for overcoming this issue is to use 

dimensionality reduction techniques[24]. Principle Component Analysis (PCA) algorithm were used 

dimensional reduction. 

- Principal component analysis (PCA ) 

PCA is a mathematical technique that decreases the dimensionality of data while preserving the 

majority of variation1. In contrast, Principal Component Analysis is an example of an orthogonal 

transformation that produces samples with linearly uncorrelated characteristics from data derived from 

correlated variables. There are fewer or the same amount of variables as in the beginning, and the new 

features are the primary components. As an unsupervised technique, PCA discards tagged data. PCA 

can be quite useful, but it does have some limitations [25]. 

1- It assumes that there is a linear connection between the variables. 

2- All variables must be quantitatively scaled in order to make sense of it. 

3- It is missing a probabilistic model framework that has been deemed essential in a number of 

contexts, including Bayesian decision making and mixture modeling. 

 

Step 4: Classifier  

In the classification problem, the learner must learn a function that converts a vector into one of 

the various classes by examining several instances of input-output feature vectors. There are many 

methodologies in pattern classification, such as the LDA method [26]. 
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- Linear Discriminant Analysis (LDA) 

The main job of LDA is to search such vector(s) in the vector space that provide better separation 

of the classes of the data. The class separability can be evaluated by projecting the original data points 

on to these vector(s). Hence, if the classes are overlapped for a given data points, LDA tries to better 

separate them by applying some transformation mechanism. LDA has two advantages [27]: 

 
1) It improves the strength of the predictive model by transforming or projecting the original 

feature vectors into reduced vector space where the class separability is maximized. 

2)  Second, it reduces the time complexity of the predictive model enormously. After the 

dimensionality reduction by LDA, the transformed data is applied to neural network for 

classification. 

The proposed algorithm was experimented and evaluated with following step.  

 

Step 5: Experimental Setup 

The data was initially segmented using the overlapping segmentation approach with a 150 ms 

window size and a 50 ms window increment. EMG signal duration was 10 seconds, with a 200 Hz 

frequency. Channel placements by employing an armband that has eight channels are as follows: 1-4 

Ant, 1 Lateral Ant Side, Ch4 Medium Ant Side, 5-8 Post Side. See Fig. 5, and the EEG Muse with 252 

Fs, Raw 4 channels EEG. 

 

FIG. 5. (A): ARMBAND DEVICE (B): A PHOTO SHOWING AN EXAMPLE OF THE DETAILED ELECTRODE 

LOCATION FOR WEARABLE ARMBAND FOR INTACT_LIMBED SUBJECT. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The proposed algorithm was experimented and evaluated with following step.  Testing Error and 

Classification Accuracy Based on EEG, EMG, and fusion EEG, and  EMG. 

The average Testing errors for the single-signal approaches of 8-ch only EMG, 4-ch only EEG, and 

Fusion of 12-ch EMG and EEG  to all subjects are shown in Fig. 6 at 12.93%, 38.66%, and 10.43%, 

respectively. The time domain is a collection of features used in the first experiment, including (MAV, 

WL, SSC, MAV, Wamp. and Cardinality). According to Fig. 7, the subject one value-based PCA 

(Dimensionality Reduction) achieved classification accuracy is computed using the LDA classifier. The 

classification performance confusion matrix for intact-limb subject 1 utilizing the (8-ch EMG) is 88.8%, 

(4-ch EEG) is 57.8%, and dual signal (8-ch EMG + 4-ch EEG) is 89.8%, respectively. 

The second experiment is conducted with the Time Domain characteristics, which include (MAV, 

WL, SSC, MAV, Wamp. and Cardinality). As illustrated in Fig. 8, the acquired classification accuracy 

is computed for subject two value-based PCA (Dimensionality Reduction) with the LDA classifier. This 

figure depicts the confusion matrix for classification performances for intact-limb subject 2 utilizing 
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the single signal approaches (8-ch EMG) at 87.4%, (4-ch EEG) at 54.4%, and (8-ch EMG + 4-ch EMG) 

at 92.9%.   

 

 

FIG. 6. THE ERROR RATES FOR LDA CLASSIFIER WITH EMG ONLY, LDA CLASSIFIER WITH EEG ONLY, AND 

LDA CLASSIFIER FOR FUSION EMG, EEG FOR OF INTACT-LIMBED SUBJECTS. 

 

Once more, the last experiment is conducted using the collection of features known as Time 

Domain, including (MAV, WL, SSC, MAV, Wamp. and Cardinality). For subject three value-based 

PCA (Dimensionality Reduction), the acquired classification accuracy is calculated using the LDA 

classifier, as shown in Fig. 9. The classification performance confusion matrix for intact-limb subject 

three is shown in this figure for the single signal approaches of (8-ch EMG) which is 85.0%, (4-ch EEG) 

which is 71.8%, and (8-ch EMG + 4-ch EEG) which is 86.1%, respectively. 

 

 

                                                             (A)                                                                                                                           (B) 
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 (C) 

FIG. 7. (A) CONFUSION MATRICES OF ACCURACY FOR SUBJECT 1(EMG ONLY). 

             (B) CONFUSION MATRICES OF ACCURACY FOR SUBJECT 1(EEG ONLY). 

                (C) CONFUSION MATRICES OF ACCURACY FOR SUBJECT 1(EMG +EEG). 

 

 
                    (A)                                                                                                                           (B) 
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                                                                                                                           (C)   

   FIG. 8. (A) CONFUSION MATRICES OF ACCURACY FOR SUBJECT 2 (EMG ONLY). 

                (B) CONFUSION MATRICES OF ACCURACY FOR SUBJECT 2 (EEG ONLY). 

                   (C) CONFUSION MATRICES OF ACCURACY FOR SUBJECT 2 (EMG +EEG). 

 

 
                       (A)                                                                                                                           (B) 
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    (C)  

     FIG. 9. (A) CONFUSION MATRICES OF ACCURACY FOR SUBJECT 3 (EMG ONLY). 

                  (B) CONFUSION MATRICES OF ACCURACY FOR SUBJECT 3 (EEG ONLY). 

                     (C) CONFUSION MATRICES OF ACCURACY FOR SUBJECT 3 (EMG +EEG). 

Classification results for each subject's confusion matrices are shown in Fig. 7, 8, and 9. These 

figures reveal significant inter-subject variability in both EEG and EMG. That is because bio potentials, 

the electrical output of human activity, can be measured by techniques like electroencephalography 

(EEG) and electromyography (EMG). However, the data for each of these range in amplitude and 

bandwidth. 

To compare our study with the previous related literature, Table I demonstrates a summary of the 

related works mentioned above with the used methodology, No. of channels and achieved results. 

 

TABLE I. THE SUMMARY OF THE RELATED WORKS, THEIR METHODOLOGY, USED NO. OF CHANNELS AND ACHIEVED RESULTS 

Work Method Channels Classifier Accuracy 

[9] 

Time-domain  with features 

(RMS,STD,  information 

entropy,2ndRMS, Peak no., 

maximum peak amplitude, 

dispersion, kurtosis, skewsness) 

        3–ch. 

Accelerometer 

(Acc) or 

gyroscope 

 

LDA,SVM 

 

88% ,83% 

[7] 
Time-domain with 

features(MAV,WL,ZC,SSC) 

32-ch EMG 

      + 

     32-ch EEG 

 

LDA 

 

 87.5% 

[10] Time-Frequency domain (WPT) 

wavelet packets transform 

      2-ch EMG 

       + 

      1-ch EEG 

 

ANN 

 

  78.65% 

      The  

          Proposed  

Time-Domain with 

features(MAV,WL,SSC,Wamp., 

Cardinality) 

      8-ch EMG 

       + 

       4-ch EEG 

 

LDA 

 

  89.6 % 
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V. CONCLUSIONS AND FUTURE WORKS 

This paper aims to use EMG and EEG signals to classify seven distinct types of hand and wrist 

movements by amputees who have lost their limbs bellow the elbow. With regions of interest defined, 

the fusion of EMG and EEG data can be more accurate, allowing upper-limb amputees to use hand 

movements as non-invasive and intuitive control cues for prosthetic replacement. The experiment 

showed that PCA dimensionality reduction using an LDA classifier was facilitated by extracting regular 

patterns of vital signs. With an average classification accuracy of 89.6% in three intact limb subjects, 

the proposed PR system succeeded in recognizing seven hand-grinding movements. The results of the 

study can be used to improve the functionality of myoelectric prostheses for those who have lost their 

limbs below the elbow. For future work, it is possible to use a different type of dimensionality reduction 

technique, such as an auto encoder neural network, and to record vital signs from amputees in order to 

expand the database we have compiled. 
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