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Abstract— A mobile robot's major purpose is to get to its destination by 

traveling over an optimum path defined by various parameters such as time, 

distance, and the robot's safety from any impediments in its path. As a result, 

the backbone of the autonomous mobile robot is path planning and obstacle 

avoidance. Several algorithms for path planning and obstacle avoidance have 

been presented by various researchers, each with its own set of benefits and 

drawbacks. This paper focuses on two parts; the first part finds the short and 

smooth collision-free path for a mobile robot to navigate in a static environment 

based on two proposed hybrid algorithms. The first hybrid is between Firefly 

Algorithm (FA) and Modify Chaotic Particle Swarm Optimization (MCPSO), 

namely (HFACPSO), while the other hybrid is between Genetic Algorithm (GA) 

and MCPSO, namely (HGACPSO). The second part suggests an algorithm 

planner for improving the efficiency of the route-planning algorithm with 

moving obstacle avoidance by adjusting the velocity or re-planning the path for 

the mobile robot. To demonstrate the effectiveness of the proposed algorithms in 

terms of the shortest path length and collision-free, as well as obtaining optimal 

or near-optimal wheel velocities with the minimum number of iterations. The 

proposed hybrid (FAMCPSO) algorithm provides enhancement on the path 

length equal to (0.82%) compared to the firefly algorithm (FA). Moreover, the 

hybrid (GAMCPSO) algorithm enhancement on the path length equals (0.67%) 

compared to the genetic algorithm (GA). All methods are simulated in a static 

and dynamic obstacle environment using MATLAB 2018b. 

Index Terms— Dynamic environment, Collision avoidance, obstacle avoidance, Path planning, 

PSO, FA, GA. 

I. INTRODUCTION 

Given the potential effect and societal benefit of this technology, research interest in 

autonomous guided robots has progressively grown in the modern era. Autonomous robot 

control systems must be capable of making navigation decisions based on past knowledge 

of the working environment (building maps, sensor models, and robot dynamics) as well as 

observations about the robot's vicinity. The observations originate from the perception 

system, which can include odometry, cameras, and sonars, as well as other sensors [1]. 

On the other hand, most mobile robot application environments, are dynamic, which 

implies that mobile robots must be able to construct collision-free pathways with both static 

and dynamic obstacles that are not included in the map and can collide with the robot's 

intended path. Robots can create a collision-free route in static environments by using the 

environment's occupancy grid map. However, in dynamic situations, the robot must account 

for the dynamic nature of barriers not depicted on the map, that can collide with the robot's 

planned path. the robot must forecast the future trajectories of these obstacles to planning its 
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path accordingly. Because of sensor limitations and inaccurate dynamic models, these 

forecasts have a significant level of uncertainty [2]. As a result, real-world applications of 

mobile robot navigation in complex and dynamic situations represents still a challenge. The 

robot should be able to navigate safely through moving people or vehicles to reach its 

desired location, despite the implied unpredictability of the environment and the limitations 

of its vision system [3]. The problem of autonomous path planning and navigation has been 

studied in literature and many review articles about robot path planning have been 

published. For instance, A* algorithms [4], D* algorithms [5], fuzzy logic (FL) [6], genetic 

algorithms (GA) [7], particle swarm algorithms (PSO) [8], ant colony algorithms (ACO) 

[9], simulated annealing (SA) [10], Artificial Potential Fields [11], Probabilistic Road map 

(PRM) [12], and so on. Each has its advantages and drawbacks in different environments. 

The algorithm's optimization concerns the path length and total time consumed while 

avoiding any collisions with obstacles. Obstacle avoidance, on the other hand, is a critical 

approach for the design and implementation of mobile robots, as static and even dynamic 

impediments frequently appear in their pathways. When numerous robots move near one 

another, they become impediments to one another [13]. As a result, obstacle avoidance 

research has become a hot issue in the realm of mobile robotics, and several solutions for 

avoiding static and/or dynamic barriers have been presented. Such as: In [14] proposed a 

modified potential field approach to tackle the mobile robot motion planning problem in 

dynamic situations by defining the collision angle with exponential form as the constraint 

having the repulsive potential field. In addition to the angle and magnitude of the robot's 

relative velocity and that of the obstacle. In [15] introduced Smoothly RRT (S-RRT), a 

dynamic path-planning solution for autonomous robotic manipulator obstacle avoidance 

based on an enhanced Rapidly Exploring Random Tree (RRT) algorithm. This technique 

revealed that the manipulator can avoid not just a static global impediment, but also a 

dynamic obstacle that may develop unexpectedly in an unstructured dynamic environment. 

In [16], the authors suggested a simulated annealing-based method for determining the best 

path for a mobile robot in dynamic settings containing static and dynamic impediments. 

This approach employed the vertices of the obstacles to creating the search space, which 

was computed based on known static obstacles and then re-calculated the path in real-time 

whenever a moving obstacle was identified. While in [17] proposed approach combining 

distance computation and discrete collision detection (DCD) is suggested to avoid dynamic 

obstacles during industrial operations performed by manipulators. The Gilbert–Johnson–

Keerthi algorithm calculates the closest distances between the links of a manipulator and 

the convex hull of an arbitrarily-shaped dynamic obstacle obtained in real-time from the 

Kinect-V2 camera, and the minimum one is defined as the closest distance between the 

manipulator and the obstacle. In [18] determined the shortest and smoothest collision-free 

path under several static and dynamic scenarios based on swarm intelligence optimization 

and improved two path planning algorithms. The first is a modified frequency bat algorithm 

(MFB), while the second is a mix of particle swarm optimization and the modified 

frequency bat algorithm (MFB) (Hybrid PSO-MFB). In this work, we suggest a solution to 

the problem of mobile robot path planning in a dynamic environment by using two hybrid 

algorithms, namely (Hybrid FFCPSO) and (Hybrid GACPSO). The hybrid algorithms 

generate a shorter path, an improved distance cost function, and good obstacle avoidance 

that may be used in a dynamic environment. The rest of this paper is organized as follows: 

Section (2) describes the kinematic of the wheeled mobile robot. Section (3) explains the 

dynamic obstacle avoidance method depending on the proposed hybrid path planning 
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algorithms. While Section (4) displays the numerical results and analysis of the MATLAB 

simulation in a dynamic environment, and finally the conclusion is discussed in Section (5). 

II. KINEMATIC OF THE WHEELED MOBILE ROBOT 

In general, the wheeled mobile robot platform depicted in Fig. 1 comprises left and 

right wheels placed on a parabolic shaft, with two multi-directional wheels fitted in the 

front or back for stabilization. The two separate analog Direct Current (DC) motors that 

provide torque to the right and left wheels of the mobile robot dictate the robot's motion and 

steering [19]. The center mass of the wheel's mobile robot is denoted by Cm, which is 

halfway between the right and left wheels. 

 

 
 

FIG. 1. KINEMATIC MODEL OF A DIFFERENTIAL-DRIVE MOBILE ROBOT [20]. 

 

In general, the global reference frame is [X, Y], while the position vector of the local 

reference frame of the mobile robot is defined as Ɋ in Eq. (1):   

Ɋ = [x, y, θ] T                                                                                                             (1) 

Where (x,y) is the position coordinates at midway Cm, and θ is the nonholonomic constraint 

operating on the motion's orientation. So, the three kinematic equations for nonholonomic 

wheels mobile robots can be represented as in Eq. (2), (3), and (4):  

 

x(t) =
1

2
[VR(t) + VL(t)] cos θ (t)TS + x(t − 1)                                                      (2) 

 

𝑦(t) =
1

2
[VR(t) + VL(t)] sin θ (t)TS + y(t − 1)                                                       (3) 

 

        θ(t) =
1

D
[VL(t) − VR(t)]TS + θ(t − 1)                                                                   (4) 

 

Where VR(t) and VL(t) are the right and left wheel velocity of the platform respectively;  

the distance between the driving wheels of the platform is taken as D;  and the sampling 

time of the numerical calculation is denoted by Ts [19]-[21].   

 

 

 

(0,0) 

Cm 
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III. DYNAMIC OBSTACLE AVOIDANCE ALGORITHM 

If we wanted to transport a mobile robot to a certain location, especially in a dynamic 

environment, the first challenge it would encounter is selecting the best way to take, 

followed by avoiding obstacles and arriving at the destination with acceptable precision 

[22], [23]. As a result, the ability to avoid obstacles is crucial. To maintain the path as short 

as possible, the robot must be trusted to complete its task without hurting itself or others. 

Many algorithms have been proposed in recent years to develop an ideal path and avoid 

colliding with obstacles [24]–[27]. The suggested hybrid algorithms and collision avoidance 

strategies are explained in this section. 

A. Collision Avoidance Methods 

      For mobile robots to achieve collision-free motion planning, they must first detect and 

identify obstacles. mobile Robot collision avoidance is divided into three parts, according to 

the collision avoidance process: perception of obstacles, collision decision, and collision 

avoidance [25]. Furthermore, the robot must decide whether it will collide with the 

identified obstacle depending on various criteria after establishing the position and size of 

the obstacle. A safe distance between the robot and all obstacles might be one of these 

criteria used in this article [28]. The distance (D) between the obstacle and the mobile robot 

is calculated according to Eq. (5). After that, the user normally determines the safe distance 

N according to Eq. (6). So, if the distance between a robot and a detected obstacle is smaller 

than the set safety distance, in which case the collision avoidance system will be engaged to 

assist the robot in escaping the impediment. Unlike that, the mobile robot completes the 

road to the goal. 

 

           Distance = √(xr  −  xobs)2  + (yr  − yobs)2                                                  (5) 

           Distance <=  N                                                                                            (6) 

 

Where xr and yr indicate the position of the mobile robot in the X and Y axis; while 

x𝑜𝑏𝑠, and y𝑜𝑏𝑠 are the position of moving obstacles in the X and Y axis; N is the safe distance 

and proposed equal to 75 cm. 

After obstacles are detected and threat analysis is done, the proposed strategy of 

obstacle avoidance are: to increase or/ decrease the velocity of the mobile robot, or 

otherwise, replan another path to avoid moving obstacle. A decision is taken by the robot 

depending on the obstacle velocity, the obstacles change their location continuously at each 

time step, and, in dynamic environments, the position of the obstacle (xobs, yobs) is updated 

according to the following relationship as shown in Eqs. (7) and (8), suppose that the 

obstacles move linearly at speed as Vobs and direction θobs.  

       

          xobs =  xobs +  Vobs  ×  Cos θobs                                                                   (7) 

 

                 yobs =  yobs +  Vobs  ×  Sin θobs                                                                                                           (8) 

 

      The flow chart of the proposed dynamic obstacle avoidance method is shown in Fig. 2. 

On the other hand, Fig. 3 presents the robot traveling to the goal and the obstacle moving 

from the bottom to the top, then the mobile robot chooses the first proposed method to 

avoid the collision by increasing or decreasing its speed in the X direction.  
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       After that, if the mobile robot passes the obstacle, it returns to the previous velocity and 

continues down the path until it reaches the goal location. While, Fig. 4 shows the second 

proposed method for avoiding collision, which is to choose a different path to avoid a 

dynamic obstacle in the collision zone. Where the green circle represents the collision 

region while the red point represented the intersection point between the robot path and the 

obstacle path.  
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FIG. 2. THE FLOW CHART OF THE SUGGESTED DYNAMIC OBSTACLE AVOIDANCE METHOD. 

 

 

FIG. 3. THE FIRST PROPOSED METHOD TO AVOID THE COLLISION. 
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FIG. 4. THE SECOND PROPOSED METHOD TO AVOID THE COLLISION. 

B. Hybrid Firefly Algorithm with Modify Chaotic Particle Swarm Optimization (Hybrid 

FFMCPSO) 

By combining the strengths of the two techniques, a hybridization of the firefly and 

modify chaotic particle swarm optimization (Hybrid FFMCPSO) was suggested. The 

MCPSO approach is highly successful and performs quick searching due to the velocity 

parameter's fast convergence. The algorithm occasionally fails to generate the best results 

due to oscillations in local searches for more details about MCPSO, see [29]. FF, on the 

other hand, is incapable of maintaining a personal best position and does not have a velocity 

characteristic. As a result, they will move, regardless of their previous best places. Fig. 5 

depicts the flowchart of the suggested hybrid algorithm. 

As a result, based on the local search space conditions, fireflies can select the best 

option. To increase the convergence of the firefly algorithm and prevent it from slipping 

into the local minimum, MCPSO characteristics are combined with the FF algorithm to 

form a hybrid optimization approach known as hybrid FFMCPSO. In this paper, we initially 

hypothesized that by dynamically altering the acceleration coefficient (C) using an iterative 

process, we could enhance the optimal performance of the PSO algorithm with chaotic 

searching, and we got superior optimal performance compared to the chaotic state in the 

inertia weight (W) [30]. After applying the chaotic equations adopted in this article as 

shown in Eq.s (9), (10), (11), and (12). Based on this, the secondly proposed hybrid 

combination of FF and MCPSO will provide a better solution for the local search 

capabilities of firefly and the global search capabilities of the MCPSO algorithm [31], [32].  

The fireflies are estimated using an objective function in the proposed hybrid 

algorithm-based route planning problem. To see how they are relative to the ideal solution, 

use the minimal path length (Pa) estimation function, which permits the mobile robot to go 
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from the start point to the target position in the shortest path feasible, as given in Eq (13). In 

addition to the above, the proposed method incorporates the concepts of personal best and 

global best into FF. Except for the firefly movement, which has been updated to integrate 

the notions of personal and global best [33]-[35], all the methods in FF have remained the 

same. Consequently, the altered position vector of the FF method may be written as follows 

in Eq. (14) and (15): 

 

       Zitr+1 = µ ×  Zitr  × (1 − Zitr)                                                                              (9) 

 

              C = CMX −
(CMX− CMN )

MaxIt
 ×  itr                                                                                  (10) 

 

              C1new = C ×  Zitr+1                                                                                               (11) 

            

              C2new =     C1new                                                                                                    (12) 

 
        Where (µ) is the control parameter and when µ= 4 the system enters into a chaotic 

state, while, the initial value of deterministic is Z0. while, in Eq. (10) CMX and CMN are the 

maximum and the minimum acceleration values, respectively, MaxIt is the maximum 

iterations' number, and itr is the present iteration.  

 

             Pa= √( xi − xi+1)2 + (yi − yi+1)2                                                                           (13) 

  

      

       Where Pa is the distance between two points. x𝑖 and y𝑖 are x and y coordinates of the current 

waypoints. x𝑖+1 and y𝑖+1 are x and y coordinates of feasible waypoints in the next iteration.      

 

     Dpxy = √ ∑ (pbest(i,itr) − xy(i,itr)  )2D
k=1                                                                                  (14)          

           

            Dgxy = √∑ (gbest(i,itr) − xy(i,itr) )2D
k=1                                                                                     (15)                                                       

 

        Where Dpxy is the distance between the best local fitness values pbest for the ith particle’s position 

in the itrth iteration. Dgxy is the distance between the best global fitness values gbest for all particles and 

the ith particle’s position in the itrth iteration. The new position xi
(itr+1) and yi

(itr+1) values of the particles 

are calculated according to Eq. (16) denoted coordinates number in the X and Y axis, respectively. 

 

  xyi
itr+1 = W × xyi

itr + C1new × e−Dpxy2 (Pbest,i − xyi
itr) + C2new  × e−Dgxy2(gbest,i − xyi

itr) + α £      

(16) 

  

      Where 𝛼 represents the randomization parameter [0 to 1] and £ represents a vector of random 

variables (rand - 0.5), making the investigation of the search distance more successful. 
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FIG. 5. THE FLOWCHART OF HYBRID FFMCPSO ALGORITHM-BASED PATH PLANNING. 
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C. Hybrid Genetic Algorithm with Modify Chaotic Particle Swarm Optimization (Hybrid 

GAMCPSO) 

To improve the efficiency of the best path from the starting position to the destination 

and execute a more efficient local search for the optimal solution, we incorporate the 

Genetic Algorithm (GA) into the Modify Chaotic Particle Swarm Optimization (MCPSO). 

Algorithms such as GA and MCPSO are population-based optimization techniques, each 

having its own set of advantages and disadvantages. In particular, GA is a global 

optimization method that simulates heredity and the evolution process in the environment. 

To achieve the survival of the fittest, it employs three operating processes: selection, 

crossover, and mutation for the generation of solutions, thereby leading to many function 

evaluations. The strength of the MCPSO, on the other hand, is that it can use swarm 

intelligence to replicate cooperation amongst individuals in the same group and pass on 

experiences from generation to generation [36]. This is because MCPSO generates 

solutions using mathematical operators rather than evolutionary operators. As compared to 

the GA approach, the PSO algorithm is characterized by its easier coding. The MCPSO 

approach has some advantages for exploiting and exploring the hyperspace global optimum, 

particularly the quick convergence. The suggested hybrid algorithm (HGACPSO) combines 

the advantages of these two algorithms' characteristics and overcomes the drawbacks of 

both. In other words, combining MCPSO's capacity to search large spaces and the fast 

convergence associated with GA's global search feature results in avoiding convergence 

ahead of time and high diversity, as well as the stochastic nature of its mutation capabilities. 

It is possible to incorporate crossover and mutation from the GA process into the MCPSO 

[37]-[39] because both algorithms have a similar working methodology of starting 

by randomly creating the beginning population with the initial position. Then, 

objective function values (cost functions) are evaluated for every chromosome depending 

on the position based on Eq. (13). After the evaluation is done, the chromosomes are 

separated into two parts according to the performance of the fitness value. The first part is 

the chromosomes with better fitness values (Best Cost) while the second part includes 

chromosomes with worse fitness values (Worst Cost). The algorithm selects two parents 

according to the relative fitness (costrel) for carrying out the roulette selection value for 

every individual in the population. Then the mathematical crossover is then used to create 

new offspring by recombining information from the two parents and it carries out mutation 

randomly to ensure population variety by modifying the genetic structure of some 

individuals according to a mutation rate. Finally, it merges the offspring obtained from the 

GA and updates the best solution and position to each chromosome. After that, it updates 

the position and velocity using the MCPSO equations and calculates the corresponding cost 

to update personal and global best values. The MCPSO population is then returned to the 

main population, the entire population is ranked, and the procedure is repeated until a 

convergence criterion or iteration limit is reached [36]-[38]. The equations for selection, 

crossover, and mutation are shown in Eq. (17) through Eq. (21) [40] while the velocity and 

the update position are shown in Eq. (22) and (23). The flowchart of the proposed hybrid 

GAMCPSO is illustrated in Fig. 6.  

 

             pop. costrel =  e
−B × pop.cost

worstcost                                                                             (17)    

 

            pop. costrel =  
pop.costrel

sum(pop.cost)
                                                                           (18)         
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           Offspring1 = alpha ×  p1 + (1 − alpha) × p2                                             (19)          

        

          Offspring2 = alpha ×  p2 + (1 − alpha) ×  p1                                              (20)         

 

           mutation =  p1 +  α × randn                                                                         (21) 

                  

          [V(i, j)]p
iter+1 = [

W × V(i, j) + C1new  × r1  ×  (Pbest(i, j) − xy(i, j)) …

+C2new  ×  r2  × (Gbest(i, j) − xy(i, j))
]

p

iter

         (22)              

                  

         [xy(i, j)]p
iter+1= [xy(i, j)]p

iter +  [V(i, j)]p
iter+1                                                            (23) 

 

       Where the parameter in the GA algorithm refers to pop.cost is the cost value for each chromosome 

depending on the position; while pop.costrel is the relative fitness of each individual in the population; 

B represented the selection pressure; P1 and P2 are the two parents selected; alpha is randomly selected; 

α is random [0 − 1]. In another word, the parameter in the MCPSO algorithm refers to the proposed 

values of r1 and r2 are constant 0.9,   [xy(i, j)]p
itr and [V(i, j)]p

itrof the p particle represent the position 

and velocity at the itrth iteration, respectively, and (i, j) denotes the coordinates' values on the X and Y 

axis.  
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For m=1to Nc/2, select parent from nPop 

Perform crossover to get offspring, Eq. (19) and (20) 

 

Carry out mutation 

For m=1to Nm/2, select individual randomly from nPop 

Perform mutation, Eq. (21) 

 

   itr=itr+1 

A 
B 
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                 FIG. 6. THE FLOWCHART OF HYBRID GAMCPSO ALGORITHM-BASED PATH PLANNING. 

IV. SIMULATION RESULT AND ANALYSIS 

Two tests were carried out in the simulations: the first involved simulations in a static-

obstacle environment, and the second involved simulation results in a dynamic-obstacle 

environment. The size of the search space in each simulation was [800 × 600] cm2 per grid 

cell. The route planning hybrid algorithm (HFAMCPSO & HGAMCPSO) plans the full 

path from the start point [75, 750] cm (yellow-point), to the endpoint [470, 300] cm 

(yellow-point). The efficiency of the suggested hybrid algorithms was investigated in this 

paper using MATLAB software (2018b) in the computer hardware specifications including 

Intel Core i7-10750H with 16.0 GB of RAM, and a CPU of 2.60GHz. 

 

Experiment 1: Static-Obstacle Environment        

        The static-obstacle environment was used in this experiment to demonstrate the 

efficacy of the suggested hybrid method for path planning. The mobile robot's static 

workspace comprises ten static obstacles of various sizes and positions. The suggested 

hybrid algorithms were applied in the same environment and compared to discover the 

optimal cost distance function and optimum path several times with various iterations’ 

numbers ranging from 50 to 100 and particles' numbers ranging from 25 to 50.  

  Merge the offspring obtained from GA 

A 

Update the best solution and position to each chromosome 

For j=1 to nPop 

Calculate and update velocity and position of particles in Eq.  (22) 

and (23) 

 

Calculate the corresponding cost, Update personal and global best 

If itr<= MaxIt 

Find the best global path from star to goal and plot the best cost 

function 

 

End 

B 

Yes  

No 
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      The shortest path length was (737.399 cm and 737.094 cm) to HFFMCPSO and HGAMCPSO 

respectively, at iterations (50, and 48), with varying execution durations with a maximum iterations 

number equal to 100 iterations. Finally, the two hybrid algorithms provide a smooth path with the 

shortest distance and a minimum number of iterations compared to the original algorithms. On the other 

hand, the comparison results showed that the HGAMCPSO provides an enhancement on the path length 

of 0.14% compared to the MCPSO algorithm and 0.67% compared to the GA algorithm.  The best path 

and cost function for hybrid and original algorithms obtained are shown in Fig. 7 -a and -b and Table I 

shows the best path values. 

 
                                                                                           (a) 

 
(b) 

FIG. 7. THE BEST PATH AND COST FUNCTION OBTAINED. 
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                                          TABLE I. COMPARISON RESULTS FOR EXPERIMENT 1 

 

Algorithm Types Best Path Length Best No. of Iterations 

             GA       742.131               72 

             FA       743.555               65 

        MCPSO       738.992               60 

      HFAMCPSO       737.399               50 

      HGAMCPSO       737.094               48 

 

     The reference route equation is obtained in Eq. (24), and (25) based on the fitting 

function as the best path that depends on the suggested hybrid algorithms: HFFMCPSO and 

HGAMCPSO respectively. 

 

      yr(xr) =  −4.8791 ×  10−13 xr
6 + 5.6773 ×  10−10 xr

5 − 2.4954 ×  10−7 xr
4 +

4.886 ×  10−5 xr
3 − 0.0053179 xr

2 + 0.14714 xr + 753.15                                          (24) 

      

      yr(xr) =  −9.0952 ×  10−13 xr
6 + 8.3904 ×  10−10 xr

5 − 1.6277 ×  10−7 xr
4 −

5.4952 ×  10−5 xr
3 + 0.022309 xr

2 − 2.7587 xr + 861.64                                            (25)        

 

    These equations will be employed in Eq. (26) to Eq. (31) based on the reference path equation to get 

the right (VR), left (VL) wheel linear velocities, and right (WR), left (WL) wheel angular velocities [41]        

 

                  vr(t) =  √(ẋr(t))2 + (ẏr(t))2                                                                           (26)    

            

                  wr (t) =  
ÿr(t) × ẋr(t)− ẍr(t) ×ẏr(t)

xr
2+  yr

2                                                                      (27) 

 

           VR(t) = 0.5 × (2vr(t) + D × wr(𝑡))                                                               (28) 

 

           VL(t) = 0.5 × (2vr(t) − D × wr (t))                                                               (29) 

 

           WL(t) = 0.5 × (2vr(t) − D × wr(t))/r                                                           (30) 

 

           WR(t) = 0.5 × (2vr(t) + D × wr (t))/ r                                                         (31) 

 

        Where, vr is the reference linear velocity and wr is the reference angular velocity of the platform 

mobile robot, while r is denoted by the radius of the wheel of the mobile robot platform. Based on 

equations (28) to (31) Fig. 8-a shows the right and left wheel linear velocity, whereas the right and left 

wheel angular velocity are shown in Fig. 8 -b, to one of the hybrid algorithm reference path equations. 

Where the parameters of the mobile robot platform are used: r = 0.075 m and D= 0.39 m with a 

sampling time equal to 0.2 sec. 
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(a)                                                                                (b) 

 

FIG. 8. EXPERIMENT 1: A) THE RIGHT AND LEFT WHEELS LINEAR VELOCITIES, B) THE RIGHT AND LEFT 

WHEELS ANGULAR VELOCITIES. 

Experiment 2: Dynamic-Obstacle Environment 

      In this experiment, the suggested path planning from experiment 1 (static-obstacles) has been used, 

based on the reference route equation Eq. (24) under a dynamic workspace, which consists of one 

dynamic obstacle at position (340, 550), to demonstrate the efficacy of the suggested collision 

avoidance method. In this workspace, the obstacle moves linearly according to Eq. (7) and (8) with 

Vobs= 0.5 (m/sec) and the direction θobs= 1.5708 (rad). Fig. 9 - a and -b shows the moving obstacle-

avoidance simulation results with the two proposed method for avoiding collision.  

      In the first figure, the mobile robot avoids the moving obstacle by accelerating or decelerating its 

velocity. After the mobile robot passes by the obstacle, it returns to its original speed and continues 

moving along the path until it reaches its destination point.  

      While in the second figure, the mobile robot selects another road to avoid collision and then returns 

to the original path where the obstacle passes.  

       On the other hand, Fig. 10 -a shows the right and left wheel linear velocity, whereas the right and 

left wheel angular velocity are shown in Fig. 10 -b. Where the figure shows how the mobile robot 

increases its speed to avoid a collision in the expected period of the collision (the danger zone), 

according to the equation safety distance Eq. (5)– (6). 

      In the inverse case, Fig. 11 -a and -b shows how the mobile robot decreases its velocity to avoid the 

collision. While Fig. 12 -a and -b show the wheel velocity of the second proposed method to avoid 

obstacle collision by replanning the path. 
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(a) 

 
(b) 

 

FIG. 9. PATH PLANNING IN DYNAMIC ENVIRONMENT A) INCREASE OR DECREASE THE ROBOT 

VELOCITY. B) SELECT ANOTHER PATH TO AVOID OBSTACLE. 
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(a)                                                                                            (b) 

 

FIG. 10. EXPERIMENT 2: INCREASE THE VELOCITY OF MOBILE ROBOT A) THE RIGHT AND LEFT WHEELS 

LINEAR VELOCITIES, B) THE RIGHT AND LEFT WHEELS ANGULAR VELOCITIES. 

 

 

 

 

 

 

  

(a)                                                                                                     (b)                                          

FIG. 11. EXPERIMENT 2 : DECREASE THE VELOCITY OF MOBILE ROBOT A) THE RIGHT AND LEFT 

WHEELS LINEAR VELOCITIES, B) THE RIGHT AND LEFT WHEELS ANGULAR VELOCITIES. 
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(a)                                                                                              (b) 

 

FIG. 12. EXPERIMENT 2: REPLAN THE PATH OF MOBILE ROBORT  A) THE RIGHT AND LEFT WHEELS 

LINEAR VELOCITIES, B) THE RIGHT AND LEFT WHEELS ANGULAR VELOCITIES. 

V. CONCLUSIONS  

The mobile robot path planning algorithm is an important aspect of the robotics field that focuses 

on finding the short and smooth collision-free path in the global environment that has been proposed in 

this paper. Different types of meta-heuristic algorithms are proposed for solving the path planning 

problem for the mobile robot, and they are used to find the best path in the environment with dynamic 

and static obstacles, namely, FA, GA, MCPSO, and hybrid algorithms. According to the MATLAB 

simulation results, the proposed hybrid algorithms can determine the most ideal path for the mobile 

robot with the minimum number of iterations under the same conditions of obstacles in the environment 

as the original methods. Where, the comparison results of the first hybrid algorithm (FAMCPSO) 

provide enhancement on the path length of 0.82%, up to 0.21% compared to the FA and MCPSO 

algorithms, respectively. Moreover, the comparison results of the second hybrid algorithm 

(GAMCPSO) provide enhancement on the path length equals 0.67% and 0.14% compared to the GA 

and MCPSO algorithms, respectively. Furthermore, a proposed algorithm planner for improving the 

efficiency of the route planning algorithm with dynamic obstacle avoidance by adjusting the velocity 

or replanning the path for the mobile robot has been proposed. Simulation results have demonstrated 

the effectiveness and efficiency of the proposed approach by showing its ability to produce smooth and 

small values of the angular and linear velocities of the left and right wheels without abrupt spikes leads 

to small amounts of power being wanted by the mobile robot to move on its path.  

In future work, the proposed strategy of obstacle avoidance can be carried out in experimental work 

by first using an ultrasonic sensor to detect the safe distance between the mobile robot and all moving 

obstacles and, secondly, using low control on the motor of the mobile robot to control the velocity of 

the mobile robot wheels. 
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