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In this article, we use the Sinc approximation to solve the single Poisson problem (where the 

first derivative or higher order does not have an exact answer on the border of the boundary). 

We have examined the Sinc Galerkin approximation to solve the single Poisson problem, and 

finally, to solve the Poisson problem, We will use the sinc collocation method and in this 

method, we will reach a linear system. By carefully choosing the length of the steps and the 

number of nodal points, we will solve this system with two methods, with the orthogonalization 

technique; a numerical approximation will be obtained, Its accuracy can be exponential and of 

exponential order. In the final part, we will give some numerical examples of single Poisson 

problems  
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1. Introduction  

Boundary value problems have received considerable attention in various fields of science and engineering. These 

problems are very hard to solve because of the presence of singularities, very methods has been explained to conquest this 

difficulty. Therefore, among the existing techniques, sinc methods is said for boundary equations for treatment singularities 

[1]. Singular boundary value equations are discussed and solved by several methods such as modified a domain 

decomposition for higher-order ordinary differential equations  [2-4], variational method [5], Bernstein's iterative method 

and polynomial decomposition scheme [6], cubic B-spline approximations [7], quartic B-spline numerical method [8,9], 

quantitative B-spline polynomial [10] and a novel differential transform approach [11]. 

Frank Stenger introduced Sinc methods in [12]. An applied problem in physiology that is singular boundary value problems 

is discussed and analyzed in [13] by non-classical sinc method.  Numerical method for solving third-order boundary 

equations using sinc-collocation method expressed in [14]. Numerical solution methods by sinc nystrom formula explained 

and analyzed for some kind of Fredholm integral equations over infinite certain intervals [15]. 

 

 

2. The sinc function preliminaries 

Sinc methods based on the cardinal (Whittaker) function.  

From the symbol 

𝑆(𝑘. ℎ)(𝑥) =
sin(𝜋(𝑥 − 𝑘ℎ)/ℎ]

𝜋(𝑥 − 𝑘ℎ)/ℎ
                                              (1) 

It used to introduce the sink function, where h is a positive number and k is an integer. S(k.h)(x) is 

called the eminence of the sinc function with step length. For the defined and bounded function f∈(-

∞.∞), the cardinal function of function f is defined as follows: 
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𝐶(𝑓, ℎ)(𝑥) = ∑ 𝑓(𝑘ℎ)𝑆(𝑘. ℎ)(𝑥).

∞

𝑘=−∞

                                          (2) 

From the aspect of derivation, integration, etc., the cardinal function plays important role for sinc 

procedure as polynomials for most classical schemes. Polynomials, many operators on 

𝐶(𝑓, ℎ)  implicitly transferred and each of these results leads to one of the explicit approximation 

methods. The function 𝐶(𝑓, ℎ) is equivalent to many approximation formulas such as the trapezoid 

rule, many techniques obtained from the field of signal processing, etc. 

 

 2.1 Interpolation and exact quadrature for Paley wiener class functions 

Definition 1. Suppose the function f is defined in real numbers and h>0 is given. We define the 

following series, 

𝐶(𝑓, ℎ)(𝑥) ≡ ∑ 𝑓(𝑘ℎ)𝑠𝑖𝑛𝑐(
𝑥 − 𝑘ℎ

ℎ
)

∞

𝑘=−∞

 

Which we have from relation (1). 

𝑠𝑖𝑛𝑐 (
𝑥 − 𝑘ℎ

ℎ
) ≡ {

sin(𝜋(𝑥 − 𝑘ℎ)/ℎ)

𝜋(𝑥 − 𝑘ℎ)/ℎ)
,        𝑥 ≠ 𝑘ℎ

1,                                  𝑥 = 𝑘ℎ

 

Wherever the series (2) converges, it called cardinal function f. 

Theorem 1. Suppose 𝜙′𝐹 ∈ 𝐵(𝐷) and ℎ > 0. Let ϕ be a one-to-one cosine mapping from the domain 

D to Ds. Suppose Γ = (ℝ) ,  𝑤𝑘 = 𝜓(𝑘ℎ),  𝜓 = 𝜙−1 then for each 𝜉 ∈ Γ the limit of the relation 

ϵ(𝜙′𝐹)(𝜉) ≡ 𝐹(𝜉) − ∑ 𝐹(𝑤𝑘)𝑠𝑖𝑛𝑐(
𝜙(𝜉) − 𝑘ℎ

ℎ
)

∞

𝑘=−∞

 

As follows: 

‖𝜖(𝜙′𝐹)‖∞ ≤
𝑁(𝜙′𝐹, 𝐷)

2𝜋𝑑𝑠𝑖𝑛ℎ(𝜋𝑑/ℎ)
 

In addition, suppose there are constant values β.α and C that 

|𝐹(𝜉)| ≤ 𝐶 {
exp (−𝛼|𝜙(𝜉)|,      𝜉 ∈ Γ𝛼

exp (−𝛽|𝜙(𝜉)|,      𝜉 ∈ Γ𝑏
 

If we consider the following choices. 

𝑁 = [|
𝛼

𝛽
𝑀 + 1|], 

ℎ = (
𝜋𝑑

𝛼𝑀
)

1/2

≤
2𝜋𝑑

ln (2)
 

 

 

 

 

Then for every ξ∈Γ we have: 

𝜖𝑀,𝑁(𝜙′𝐹)(𝜉) ≡ 𝐹(𝜉) − 𝐶𝑀.𝑁(𝐹, ℎ, 𝜙)(𝜉) 

𝐶𝑀,𝑁(𝐹, ℎ, 𝜙)(𝜉) ≡ ∑ 𝐹(𝜔𝑘)𝑠𝑖𝑛𝑐(
𝜙(𝜉) − 𝑘ℎ

ℎ
)

∞

𝑘=−∞
 

 

And also 

‖𝜖𝑀.𝑁(𝜙′𝐹)‖∞ ≤ 𝐾5𝑀1/2𝑒𝑥𝑝(−(𝜋𝑑𝛼𝑀)1/2) 

Which 𝐾5 is arbitrary fixed number dependent on d, ϕ and D. 



Aya Nadhim Abdel Hassan. al, MJPAS, Vol. 2, No. 4, 2024 

 

43 

 

3. Solving Poisson problem 

  The sinc approximation method for solving the single Poisson equation was first used by F. Stenger 

and J. Lund. Stenger used the Sinc-Galerkin method for this problem and arrived at a linear system. 

Lund also achieved a symmetric linear system by using the same method and choosing appropriate 

weight functions. Both of them reached the same exponential convergence speed in their works. 

Before we solve the single Poisson problem using the collocation method of the sinc, it will be very 

useful if Let us examine Sinc Galerkin method. 

3.1 Solving the Poisson problem using the Sinc-Galerkin method 

   First, for a non-negative integer k, we put:   

(3                                                               )
( )  ( , ) ( ) .

l

k
k k

jl w xk

d
h S j h o w

d
 


==    

Using the following relation,       

(4                                                     )
 

1
( )

1

1
( , ) ( ) ,

2

t x kh t
hS k h o x e dt




−

−

=      

We have: 

                                                            
( )0 1 ,

0 ,
jl

if j l

if j l


=
= 


   

                                                       ( )
(1)

0

1
j l

jl

if j l

if j l
j l

 −

=


= −
− 

−

          

                                                     

2

(2)

2

3

2( 1)

( )

jl j l

if j l

if j l
j l




−


− =


= 
−− 

 −

 

                                 
( )3

2 2

3

0

( 1)
6 ( )

( )

j l
jl

if j l

j l if j l
j l




−

=


= −
 − − −   −

   

                              

4

(4)

2 2

4

5

( 1)
24 4 ( )

( )

jl j l

if j l

j l if j l
j l






−


=


= 

−  − − −   −

                     

 

The original Galerkin method for solving the desired problem on (0,1) (0,1)S =  is as follows: 

 (5                         )

2 ( , ) ( , ) , ( , )

( , ) 0, ( , )

u x y f x y x y S

u x y x y S

 = 

= 
 

A set of basic functions as, 

                                          
,

( ), ( )k q N k q N
S x S y

−  
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And we can define an approximate solution for (5) as follows: 

(6                          )( , ) ( ) ( ) , 2 1
N N

q

m k k q

k N q N

u x y u S x S y m N
=− =−

= = +   

We know that q

ku in (6) are determined with the assumption 2

mu f − must be orthogonal to the basic 

functions . 

 (7                                    )( )2 , . 0, ,m k qu f S S N k q N − = −   

The above inner multiplication in (7) also defines the basic functions of our method. In order to obtain 

basic functions on (0,1) , we define the following isometric mapping  

(8                                                            )( ) ln
1

z
w z

z


 
= =  

− 
 

Basic functions in Sinc Galerkin method defined as follows: 

(9                 )( ) ( , ) ( ), ( ) ( , ) ( )k qS x S k h o x S x S q h o y = =  

This inner multiplication in (7) for the Sinc Galerkin method defined as follows: 

(10                                     )( ), ( , ) ( , )
( ) ( )

s

dxdy
u v u x y v x y

x y 
=

    

 

3.2. Two-dimensional Galerkin sinc methods: 

In this section, to solve the Poisson problem in two dimensions, we first define a group of one-

dimensional problems as follows:  

( , ) ( ) ( , ) ( , ),

( , ) ( ) ( , ) ( , )

xx j j j yy j

yy i i i xx i

u x y f x f x y u x y

u x y g y f x y u x y

=  −

=  −
                      

      (12) 

 

 Which has zero boundary conditions for every i and j.  

For each of the problems (12), we define the following approximate solution:               

 (13                                    )

( ) ( )

( ) ( )

( ) ( . ) ( ),

( ) ( , ) ( ).

x

x

y

y

N
j j

y k x

k N

N

i i

x q y

q N

u x u S k h o x

u y v S q h o y





=−

=−

=

=





                 

 

 

 

 

 

The coefficients in (12) obtained from the following systems: 

 (14                              )

( )( )
( )( )

2
2

2
2

,

,

j
jp m x x x

i
ip m y y y

D x B u h f N j N

D y B v h g N i N





 = −  

 = −  

         

( )
1

, ,...,
x x x

t
j j j j

N N Nu u u u
+− )و  =− )( ) ( )( )( ), ,..., ,

x x

t
j

yy N j yy N jf f u x y f u x y−= − −  
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Where iv and 
ig are similarly. If ( , )ju z y

 
, ( , )iu x z apply in the conditions of theorem 1 and 

1

2d
h

N





 
=  
 

then with regards to the law of interpolation we can write: 

(15                                      )

( )

( )

( ) ( , )

( ) ( , )

j x

i y

d Nj

y j y

d Ni

x i x

u x u x y C e

u y u x y C e

 

 

−

−

− 

− 

 

If the exact answer (5) applies in the following relation  

                                      ( )( , ) (1 ) (1 )u x y K x x y y


 − −  

And if ,i j  on the right side (15) is replaced by  and we put x yh h h= = and 
x yN N N= = , we get 

the following matrix systems: 

(16                                   )

2 2

2 2

( ( ) ) ,

( ( ) )

yy

p m

t
t xx

p m

D x B U h F U

D y B U h F U





  = − 

  = − 

 

( )
,

( , )i j N i j N
F f x y

−  
)و = )

,
( , )p

p i j N i j N
U u x y

−  
pیا  yyکه ) = xx=.) 

By transposing the second equation (16) and 
xx yyU U F+ = , we get the following relation: 

(17                            )
2 2 2( ( ) ) ( ( ) )t

p m m pD x B U UB D y h F  + =  

 

4. Scheme of solving and selecting parameters 

The method of finding the answer of the system (17) and the method of parameter selection that is 

effective in reducing the program execution time are discussed; For simplicity, if we consider the 

following relation as the Sinc-Galerkin focal approximation  

( , ) ( , ) ( ) ( , ) ( ) (18)
y x

y x

N N
g

c k

k N g N

u x y u S k h o x S g h o y 
=− =−

=  
      

 

The following approximate solution represents the non-focal Sinc-Galerkin approximation 

(19                  )( , ) ( , ) ( ) ( , ) ( )
y x

y x

N N
g

nc k

k M g M

u x y u S k h o x S g h o y 
=− =−

=    

First, we solve the system (17) for the focal state ( x yN N=  ), because all the variables in (17) are 

matrices with dimension m m or 2 1xm N= + , we skip writing the dimension of the matrix in this 

part, we put ( )( )2
C D B= , then there exists the matrix 1E − such that 

                                                 
1C E E−=  

 

 

 

Which 
1( , ,..., )

x x xN N Ndiag   − − + =  are eigenvalues of C. By replacing 
1Y E UE−= in the system 

(17), we get the following equations to determine Y: 

                               ( )2 2 tY Y h W h EFE +  =  

Therefore, the answer U is as follows: 

(20                                     )( )1 1
t

U E Y E− −= 
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4.1. Results of the numerical solution of the single Poisson problem 

In this section, we use the sinc approximation method to numerically solve single Poisson problems, in the 

examples of this section, the exact solution has undetermined second derivatives on the boundary. 

The parameter 0  should be in such a way that the exact solution u(x,y) is applied in the following 

conditions: 

                                                           
( )( )( )

1

2( , )u x y M x a b y
+

 − −                             (21) 

We take the parameter h equal to

1

2d

N





 
 
 

, where d is chosen equal to 
2


in the investigated problems. 

The absolute value of the maximum error between the numerical approximation ( )( , )Nv x y obtained from the 

above method and the analytical solution ( )( , )u x y of the problem at nodal points sinc with 
g

E and the 

absolute value of the maximum error in 100 equidistant points with 
u

E , which are equidistant points 

( ),m nx y   and 1 1 1( )
100

m

m
x a b a= + − , 2 2 2( )

100
n

n
y a b a= + − are chosen . 

 

Example 1. Consider the following Poisson problem 

                   
72 2

2 2 24
2 2

( , ) , ( , ) (1 ) ( 1) (4 ) ,
u u

f x y u x y x y y
x y

 
+ = = − − −

 
 

That ( 1,1) (1,4) = −  and 
5

4
 = . The results shown in Table 1 . 

Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2. Consider the following Poisson equation: 

                             

3 32 2

2 2
2 2

( , ) , ( , ) ( ) ( ),
u u

f x y u x y x x y y
x y

 
+ = = − −

 
 

Where . (0,1) (0,1) =     

In this example, u has indefinite derivatives in 0x = and 0y = . Problems of difference method for elliptic 

equations presented in the works of Wieser in [16] and Kaufman and Warner in [18] and Dyksen in [17] . 

In all these researches, the numerical approximation error of this problem is significantly higher than similar 

analytical problems. Parameter 
1

2
 = , and the results are displayed in the Table 2. 

 

u
E           

                     

g
E          

 

h              

 

N     

1.1046D-1     1.0802D-1     1.404963      2     

1.1887D-2     1.1282D-1     0.993459      4     

1.0048D-3     1.0286D-3     0.702481      8    

2.3147D-5     2.4315D-5     0.496729       16   

8.3172D-8     4.5137D-8     0.352113       32   
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Table 2  

 

 

 

 

 

 

 

 

 

Conclusion 

  These methods are effective in solving and removing the singularity and work well in confronting 

with this type of problem, considering that the singularity of the equation occurs at the end point of the 

interval. Since most of the sink grid points clustered in the neighborhood of the endpoints of the 

interval, it helps us to control the singularity well. Numerical examples also confirm the efficiency of 

the method. 
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