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1. INTRODUCTION 

Optimization techniques have been utilized since the era of prominent mathematicians such as Cauchy, Lagrange, and 

Newton. The contributions of Newton and Leibnitz to the field of calculus facilitated the advancement of differential 

calculus techniques in the realm of optimization. The foundational principles of the calculus of variations were established 

by prominent mathematicians such as Bernoulli, Euler, Weistrass, and Lagrange. Lagrange's name has become closely 

associated with the optimization strategy used to solve limited problems by including unknown multipliers. The technique 

of steepest descent was initially employed by Cauchy in order to address unconstrained optimization problems. The 

advent of high-speed digital computers throughout the mid-20th century facilitated the execution of intricate optimization 

procedures, hence stimulating more investigation into novel methodologies. Subsequent to these remarkable 

advancements, a substantial corpus of knowledge pertaining to optimization strategies was generated. The emergence of 

numerous well-defined topics in optimization theory has been a direct result of this achievement. This discussion 

highlights some significant advancements in the field of numerical methods for unconstrained optimization. 

[1] [10], [11], [12], [13] 

The field of optimization is wide and continually evolving. The characteristics of maximizes and minimizers of functions 

are contingent upon the availability of mathematical tools. These encompass mathematical techniques derived from 

calculus, topology, and other geometric concepts. The theoretical framework that underlies contemporary computer 

optimization techniques is in a constant state of evolution. Some instances of mathematical techniques commonly 

employed in optimization problems include interior point methods, applications rooted in control theory, and algorithms 

based on duality. [2] . 

ABSTRACT: The aim of this paper is to calculate a better approximation value (whether it is maximized or minimize) 

for one- and two-dimensional nonlinear equations using the best numerical optimization algorithms, which is 

Newton's method. The idea of this technique is based on approximating the function by expanding the Taylor series 

expansion and iteratively updating the estimate of the optimal solution. we have obtained good results in terms of 

accuracy and speed of approach, as shown in the examples mentioned. We also mentioned the applications of 

Newton’s method in multiple disciplines, including engineering, physics, economics, finance, computer graphics, 

machine learning, image processing, and other applications. 
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2. OPTIMAZATION  

 
Optimization is the mathematical procedure of maximizing or minimizing the objective function that satisfies the 

specified limitations or chooses the best solution to the problem from the available alternatives [7,8]. 

 

2.1 Unconstrained Optimization  

Consider the scenario wherein the objective function has to be minimized, taking into account real variables that are not 

subject to any value restrictions. Let us denote the real vector as nx R  , comprising components 1n  , and let represent 

a differentiable function : nf R R→ . The unconstrained optimization issue is represented by the following symbolic 

expression, [4,8]: 

 
𝑚𝑖𝑛𝑥 𝑓 (𝑥) 

2.2 Constrained Optimization 

       Assume a general constrained problem of the following form 

min ( )x f x
 

subject to x X  

( ) 0       

( ) 0       

i

i

g x i

L x i





= 

   

where g is the equality constraint, L is the inequality constraint and we called f  as an objective function, [4,7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Classification of Optimization 

3. GRADIENT OF A FUNCTION  

Let  𝑓 ∶ ℝ𝓃 → ℝ  be a continuous function on the open neighborhood D ⊆ 𝑅𝑛 then the gradient of  f  is defined as 

follows [3]. 

 

𝛻 𝑓 =      

[
 
 
 
𝜕𝑓

𝜕𝑥1

⋮
𝜕𝑓

𝜕𝑥𝑛]
 
 
 

     ,       where     x   =  [

𝑥1
⋮
𝑥𝑛
] 
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4. THE HESSIAN MATRIX  

 Given  𝒇: ℝ𝓷 → ℝ , if 𝜵𝒇 is differentiable, we say for that  𝒇 is twice differentiable, and write the second derivative of 

𝒇 as: 

𝛻2𝑓 (𝑥) =   

[
 
 
 
 

𝜕2𝑓

𝜕𝑥1
2 ⋯

𝜕2𝑓

𝜕𝑥𝓃𝜕𝑥1

⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥1𝜕𝑥𝓃
⋯

𝜕2𝑓

𝜕𝑥𝓃
2 ]
 
 
 
 

      ,   where  x = [

𝑥1
𝑥2
⋮
𝑥𝑛

] 

The matrix 𝛻2𝑓 (𝑥)  is called Hessian Matrix of  𝑓 at 𝑥, and often too Symbolized by  𝐹′(𝑥) ,[3]. 

5.  NEWTON METHOD  

Suppose the problemis distinguishable twice continuously. Additionally, we assume that the  f, function min ( )f x
x

  

function  f  has a lower bound. 1k kd H g−= −  indicates the direction of the search based on the information from the first 

and second derivatives. Here
kg  represents the gradient at the point 

kx .The iterative approach involves using a Taylor 

series expansion to approximate a given function f  at a given point 
kx using a quadratic. Then the lower bound of this 

quadratic function is determined to obtain 
1kx +

 an estimate of the required value. This procedure continues until the 

specified criterion is met,[7]. 

 

𝑓(𝑥) ≈ 𝑓𝑞(𝑥) = 𝑓(𝑥
𝑘) + 𝑔𝑘

𝑇
(𝑥 − 𝑥𝑘) +

1

2
(𝑥 − 𝑥𝑘)𝑇𝐻𝑇(𝑥 − 𝑥𝑘)     …(1) 

     

where 
kH  is the Hessian at the current point 

kx , the new iteration is obtain by minimizing the quadratic function 

( )qf x this means that 1 arg min ( )k

x qx f x+ = the gradient of qf  denote by  𝛻𝑓𝑞(𝑥) = 0 ⇒ 𝑥𝑘+1 = 𝑥𝑘 − (𝐻𝑘)−1𝑔𝑘 

(assuming 
kH  is in revertible ), if write it in our visual form 

k k kx + d    , chosen 𝛼𝑘 = 1 and 𝑑𝑁
−(𝐻𝑘)−1𝑔𝑘 is called 

the Newton direction. The Newton direction is descent direction if H is positive definite 𝑔𝑘
𝑇
𝑑𝑁 = −𝑔

𝑘𝑇(𝐻𝑘)−1𝑔𝑘 < 0 

(it satisfy when H ≻ 0) Consider the problem to minimize 𝑓(𝑥) =
1

2
𝑥𝑇𝐻𝑥 − 𝑐𝑇𝑥  where H is a symmetric positive 

matrix g(x) = 0 ⇒ 𝑥∗ = 𝐻−1𝑐 is a strict local minimum let 𝑥0 ∈ 𝑅0 be any point𝑔(𝑥0) = 𝐻𝑥0 − 𝑐,𝐻(𝑥0) = 𝐻using 

classical Newton method 1 0 1 0 1 *( )x x H Hx c H c x− −= − − = = for a quadratic function, if apply classical Newton method 

starting from any point can reach the solution in exactly one step, assuming that the initial point is not the optimal point 

compare this with the behavior of the steepest descent method depends alto on the condition number of the Hessian 

matrix 1H =  converges in one step starting from any point and if the condition number of the a Hessian matrix H > 1 

then that the zigzagging takes place for a typical starting point.  . [5,9]. 

         In general, the minimum of the perfectly convex quadratic function, (with the invertible Hessian matrix) can be 

obtained in a single iteration using the classical Newton approach, regardless of the initial starting point. 

5.1 Newton Method Algorithm 

Step 1: Initialize 
0x  and ϵ, set k = 0 

   - Set an initial guess 
0x for the root or stationary point. 

   - Set a tolerance   to define the convergence criterion. 

   - Initialize k as 0 to keep track of the number of iterations. 

Step 2: While ( )kg x   

   - This is the main loop that iterates as long as the value of the function g(xk) is    

     greater than or equal to the specified tolerance  . 
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   a. ( )1k k kd H g−= −  

     Calculate the update direction 
kd as the negation of the product of the inverse  

     of the Hessian matrix 1kH − and the gradient 
kg of the function f(x) evaluated    

     at the current approximation xk. 

 

   b. Find αk = 1. Determine the step size αk in code, it's directly set to 1.  

 

   c. xk+1 = xk + αkdk 

      Update the current approximation xk using the step size αk and the calculated  

      update direction dk. This produces the next approximation xk+1 

       d. k = k + 1 

      Increment the iteration counter k to prepare for the next iteration. 

 

Step 3. End while. 

 

Step 4. output x∗ = xk a stationary of  ( )f x  

5.2 Definition 

A locally convergent iteration optimization algorithm is characterized by the property that, for every solution
*x  , there 

exists a positive value δ such that, for any initial point 𝑥0 ∈ 𝐵(𝑥∗, 𝛿), the process generates a sequence {𝑥𝑘}that 

converges to
*x R .(δ is function of 

*x ). [9]. 

5.3  Theorem: 

Consider a function :f R R→ that belongs to the class C2. Let x* be an element in the real numbers such that g(x*) = 

0 and g′(x*) > 0. Assuming that x0 is sufficiently closed to x∗, the sequence {𝑥𝑘} generated by the classical Newton 

method converges to x* with an order of convergence two (locally convergent) [9]. 

 

Proof: Since 2: ,f R R f C→  consider the problem min ( )f x , and since 
*x R be such that ( )* 0g x = and 

( )* 0g x   assume that 
0x   is sufficiently closed to 

*x ,suppose apply classical Newton algorithm to minimize ( )f x  

At  
thk iteration  

 

                               

𝑥𝑘+1 = 𝑥𝑘 −
𝑔(𝑥𝑘)

𝑔′(𝑥𝑘)
                                    …  (2)                                                                 

𝑥𝑘+1 − 𝑥∗ = 𝑥𝑘 − 𝑥∗ −
𝑔(𝑥𝑘) − 𝑔(𝑥∗)

𝑔′(𝑥𝑘)
 

              = −
(𝑔(𝑥𝑘) − 𝑔(𝑥∗) + 𝑔′(𝑥𝑘)(𝑥∗ − 𝑥𝑘))

𝑔′(𝑥𝑘)
                 ...(3) 

If assume that  ( )3 2 f C or g C  , then using truncated Taylor series 

𝑔(𝑥∗) = 𝑔(𝑥𝑘) + 𝑔′(𝑥𝑘)(𝑥∗ − 𝑥𝑘) + (0.5)𝑔″(𝑥
𝑘
)(𝑥∗ − 𝑥𝑘)2      …(4)       

Where  𝑥
𝑘
∈ 𝐿𝑆(𝑥∗ − 𝑥𝑘) 

Therefore  

𝑥𝑘+1 − 𝑥∗ = (0.5)
𝑔″(𝑥

𝑘
)

𝑔′(𝑥𝑘)
(𝑥𝑘 − 𝑥∗)2                                            …  (5) 

got relationship between (
1kx +

 and 
*x ), ( )

2
*  kx and x , if recall the definition of  convergence of algorithm, this would 

turn out to be order 2convergence, 

   

|𝑥𝑘+1 − 𝑥∗| = (0.5)
|𝑔″(𝑥

𝑘
)|

|𝑔′(𝑥𝑘)|
|(𝑥𝑘 − 𝑥∗)2|                                        …(6) 
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suppose there exist α1 and α2 such that 
1( )

k

g x    for all ( )*
k

kx LS x x −  2( )kg x    for all xk sufficiently close 

to x∗ then  

       

|𝑥𝑘+1 − 𝑥∗| ≤ (0.5)
𝛼1

𝛼2
|(𝑥𝑘 − 𝑥∗)2|                                               …(7) 

 

 Where ( ) 1

2

0.5



> 0 and constant (order two convergence if 

*kx x− ) 

 

Where (0.5)
𝛼1

𝛼2
(|(𝑥𝑘 − 𝑥∗)|)required to be < 1, then got the distance between xk+1 and x∗ less than distance between xk 

and x∗   |𝑥𝑘+1 − 𝑥∗| < |𝑥𝑘 − 𝑥∗|, ∀𝑘 
Choose α1 and α2 in some way such that the inequality 

                                                
|𝑥𝑘+1 − 𝑥∗| < |𝑥𝑘 − 𝑥∗|, ∀𝑘             …(8)                                                

holds. Now, g(x∗) = 0 and g′(x ∗) 0 since g′ ∈ 𝑖C0(g′) continues ∃η > 0 ∋ g′(x) > 0 , ∀x ∈ (x ∗ −η, x ∗ + η) 
 

( )

( )

* *

* *

1
,

2
,

max ( )

max ( )

x x x

x x x

g x

g x

 

 





 − +

 − +

=

=
 

Therefore 

                             

|0.5
𝑔″𝑥

𝑘

𝑔′𝑥
𝑘| ≤ (0.5)

𝛼1

𝛼2
                                             …(9) 

preferable to choose 𝑥0 ∈  (𝑥∗ − 𝜂, 𝑥∗ + 𝜂) also, want  
* 1,kx x k −   , that is |𝑥𝑘 − 𝑥∗| <

1

𝛽
, ∀𝑘 ⇒ 𝑥𝑘 ∈

(𝑥∗ −
1

𝛽
, 𝑥∗ +

1

𝛽
),therefore  choose 

 𝑥0 ∈ (𝑥∗ − 𝜂, 𝑥∗ + 𝜂) ∩ 𝑥0 ∈ (𝑥∗ − 𝜂, 𝑥∗ + 𝜂)Now, will show if x0 choose in this regain then xk converge to x∗ 

|𝑥𝑘 − 𝑥∗| ≤ |𝑥𝑘−1 − 𝑥∗|2 

𝛽|𝑥𝑘 − 𝑥∗| ≤ (𝛽|𝑥𝑘−1 − 𝑥∗|)2
𝑘

 

|𝑥𝑘 − 𝑥∗| ≤
1

𝛽
(|𝑥𝑘−1 − 𝑥∗|)2

𝑘
⏟          

<1

⇒ 𝑙𝑖𝑚
𝛽→∞

|𝑥𝑘 − 𝑥∗| = 0                                ...(10) 

the problem is that the initialization of x0 require knowledge of x∗ and our aim is to minimize f(x) to get x∗.  So, this 

knowledge of x∗ is not there cannot initialize x0 properly, so that, can get global convergence of Newton method. In 

other words, the Newton method does depend a lot on x0. 

 

6. EXAMPLES  

6.1 One-dimensional non-linear equations 

Example (1):- apply the Newton Method to solve  the nonlinear equation 

max ( ) ln sin( ) 2f x x x= + +  when Initial value 
0 0.2x =  
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Fig. 2.  graph of Function  max ( ) ln sin( ) 2f x x x= + +  

Solution: - when applying Newton formula
1

( ) 
  , ( ) 0  

( )

i
i i i

i

f x
x x f x

f x
+

= − 


   on the mentioned equation, and account  

 ( ) , ( ) , 1,2,  ,6  i if x f x i = we obtained the results recorded in the table (1) which includes i mean number of 

iterations and values x. 

Table 1.   

I value x 

0 0.02 

1 0.05709866 

2 0.10063316 

3 0.11854476 

4 0.12005053 

5 0.12005913 

6 0.12005913 

Where the results showed that a good approximate solution appears after six iterations and the maximize function 

( ) ln sin( ) 2f x x x= + +   is 0.12005913. 

 

Example (2): - apply the Newton Method to solve the nonlinear equation 𝑚𝑖𝑛 𝑓 (𝑥) = 𝑥𝑒𝑥 +
1

𝑥
+ 3 when Initial value 

𝑥0 = 1 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. graph of Function 
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𝑚𝑖𝑛 𝑓 (𝑥) = 𝑥𝑒𝑥 +
1

𝑥
+ 3

 
 

Solution :- when applying Newton formula   𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖) 

𝑓′(𝑥𝑖)
 , 𝑓 ′(𝑥𝑖) ≠ 0  on the mentioned equation, and account  

 ( )  , ( ) ,i=1,2,  ,6  i if x f x we obtained the results recorded in the table(2) which includes  i mean number of 

iterations and values x. 

Table 2.   

I value x 

0 1 

1 -0.51429853 

2 -0.29996104 

3 -0.35243596 

4 -0.36364616 

5 -0.36402677 

6 -0.36402677 

 

Where the results showed that a good approximate solution appears after six iterations and the maximize e function 

1
min ( ) 3xf x xe

x
= + +   is -0.36402677. 

 

6.2 Two-dimensional nonlinear equations 

Example (3) :- apply the Newton Method to solve the nonlinear equation 2 2min ( ) 2 4 x yf x x y e += + + when Initial 

values 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. graph of Function  2 2min ( ) 2 4 x yf x x y e += + +  

 
 

Solution: - Gradient of a function =
1

4

8

x y

x y

e x
g f

e y

+

+

 +
=  =  

+ 
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and The Hessian matrix. 
4           

8            

x y x y

x y x y

e e
H

e e

+ +

+ +

 +
=  

+ 

 

We apply Newton formula  xk+1 = xk + αkdk , ( )1k k kd H g−= −   on the mentioned equation, and account Gradient of a 

function and The Hessian matrix at the initial values 0 0 0.5x y= = . we obtained the lowest results: - 

The initial value of the objective function: 2.5 

The minimum successfully achieved. 

The number of iterations required for achieving convergence.: 5 

Point of Minima: [-0.18844312399, 0.09422156199] 

Objective Function Minimum Value after Optimization: 0.860305 

Table 3.   

i Value x  Value y 

0 0.5 0.5 

1 -0.18181818181 0.09090909091 

2 -0.18843583768 0.09421791884 

3 -0.18844312398 0.09422156199 

4 -0.18844312399 0.09422156199 

 

 

 

Example (4):- apply the Newton Method to solve  the nonlinear equation 3 3min ( ) 2 5 2 4f x x y xy x y= + + + − when 

Initial values 
0 0 0x y= =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. graph of Function  3 3min ( ) 2 5 2 4f x x y xy x y= + + + −  
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Solution: - Gradient of a function =
2

1 2

6 5 2

3 5 4

x y
g f

y x

 + +
=  =  

+ − 

,The Hessian matrix. 12         5

5           6

x
H

y

 
=  
 

 we apply Newton 

formula   xk+1 = xk + αkdk , ( )1k k kd H g−= −  on the mentioned equation, and account Gradient of a function and The 

Hessian matrix at the initial values
0 0 0x y= = . we obtained the lowest results:  - 

The initial value of the objective function: 0 

The minimum successfully achieved. 

The number of iterations required for achieving convergence: 7 

Point of Minima: [0.50297974747, - 0.703586351639] 

Objective Function Minimum Value after Optimization: 1.957054 

Table 4.   

i Value x  Value y 

0 0 0 

1 0.8 -0.4 

2 0.55820149875 -0.70374687760 

3 0.50442967113 -0.701869460415 

4 0.50298167522 -0.703586162707 

5 0.50297974747 -0.703586351637 

6 0.50297974747 -0.703586351639 

 

 

Example (5):- apply the Newton Method to solve  the nonlinear equation  

max ( ) ln(1 2 ) cos(2 3 )f x xy x y= + + + when Initial values 
0 0 1x y= =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. graph of Function  max ( ) ln(1 2 ) cos(2 3 )f x xy x y= + + +  

Solution: - Gradient of a function =𝑔1 = 𝛻𝑓 = [

2𝑦

1+2𝑥𝑦
− 2 𝑠𝑖𝑛( 2𝑥 + 3𝑦)

2𝑥

1+2𝑥𝑦
− 3 𝑠𝑖𝑛( 2𝑥 + 3𝑦)

], 

The Hessian matrix.  
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( ) ( ) ( )

( ) ( ) ( )

2

2 2

2

2 2

2 2 4
4cos(2 3 )                             6cos(2 3 )    

1 21 2 1 2

2 4 4
6cos(2 3 )                9cos(2 3 )

1 2 1 2 1 2

y xy
x y x y

xyxy xy
H

xy y
x y x y

xy xy xy

 − −
− + − + − 

++ + 
=  − −
 − + − − +

+ + + 

 

we apply Newton formula  xk+1 = xk + αkdk , ( )1k k kd H g−= −   on the mentioned equation, and account Gradient of a 

function and The Hessian matrix at the initial values
0 0 0x y= = . we obtained the lowest results: - 

The initial value of the objective function: 6 

The minimum successfully achieved. 

The number of iterations required for achieving convergence: 6 

point of minima: [1.538957433913, 2.30843615086] 

Objective Function Minimum Value after Optimization: 6.1106935713985 

 

Table 5.   

 

 

 

 

 

 

 

 

 

 

 

 

7. CONCULUSION  

 A differentiable function's minimum or maximum can be found using Newton's method, an iterative numerical 

methodology for optimization. Based on calculus principles, it iteratively improves the approximation of the best solution 

by using the gradient and Hessian matrix (second derivatives) of the function. Each iteration of the method begins with 

an initial approximation for the optimum, which is subsequently updated based on the local curvature of the function. If 

the function is well-behaved and the initial guess is close to the optimum, it converges quickly. In one-dimensional 

optimization, Newton's approach uses the function's first derivative (gradient) to update the current guess; in multi-

dimensional optimization, it uses the gradient plus the Hessian matrix to determine the update direction.   

One key advantage of Newton's method is its fast convergence rate. It can efficiently find the optimum in fewer iterations 

compared to some other optimization algorithms. The method's effectiveness heavily depends on the choice of the initial 

guess and the nature of the function being optimized. For non-convex functions or poor initial guesses, it may converge 

to local optima rather than the global optimum. 

 

 

 

 

 

   

 

i Value x Value y 

0 1 1 

1 1.98423879028 1.69627290318 

2 2.29321584657 1.551735584573 

3 2.30846406768    1.538944002054 

4 2.30843615080 1.538957433967 

5 2.30843615086 1.538957433913 



Safaa M. Aljassas et al., Wasit Journal for Pure Science Vol. 2 No. 4 (2023) p. 1-11 
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