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In this work, the approximation solution for nonlinear hyperbolic partial differential equation 

(NLHPDE) is obtained by using the mixed Crank-Nicolson (CN) scheme and the Galerkin Method 

(GM) and it is symbolized by (MCNGM). At first the CN is utilized for the variable of time to 

obtain the discrete weak form for the NLHPDE, and then the GM is utilized which reduces the 

DWF into the Galerkin nonlinear algebraic system (GNLAS) at each step of time. Through 

utilizing the predictor-corrector techniques which are symbolized by the obtained GNLAS is 

transformed into Galerkin linear algebraic system (GLAS) which is solved by applying the 

Cholesky method. The convergence of the method is studied. Some examples are given to 

illustrate the efficiency and the accuracy for the proposed method. 
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1. Introduction 

As it is known many natural phenomena usually are described by mathematical problems represent by nonlinear PDEs (NLPDEs) 

in general and by NLHPDEs in particular. Of course there is a need to solve such problem often; but in fact solving them 

analytically is difficult if it is not impossible. Therefore, numerical and approximate methods became an urgent need to find the 

approximate solution of such mathematical problems.  

In the previous decades many aproximate and numerical methods were used for solving the PDEs in general; like the finite 

difference method (FDM) [1][2][3][4], method of lines [5][6], meshless method [7][8], and many other methods. The CN and 

GM have been used in many applications like: digital image processing [9], reactors [10], power system [11] and in groundwater 

[12].  In the recent years many other methods have been introduced to solve such problems, more precisely in 2018, GM has been 

used to solve the hyperbolic partial differential equation [13], in  2019, the MCNGM has been applied to solve NLPDEs of 

parabolic type [14], while in 2020 [15], used the CN with heredity and its program implementation for solving PDEs, also in 

2020 the CN with the FDM analyzed and proposed for a NLPDEs of integral type [16], also in 2020 the CN was applied to a 

random component heat equation [17], in 2021 the Galerkin-Implicit Methods [18], also in 2021 MCNGM are used for nonlinear 

time fractional parabolic problems [19], in 2022 the mixed method of homotopy perturbation and the variation iteration method 

[20] used to solve NLHPDEs, also in 2022 the time fractional telegraph equation is solved numerically based on the CN [21], 

also in 2022 the MCNGM are used for Maxwell's equations [22] and later in 2022 CN is used to solve uncertain heat equation 

[23]. 
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In this work, the MCNGM is used to find the approximation solution of the NLHPDE. In the proposed method, at first the CN 

scheme is utilizedtoobtain the discrete weak form, and then the GM is utilized to get the GNLAS at each step of time. Then the 

predictor (PrT)- corrector (CoT) techniques (PrCoT) is applied to solve this GNLAS, in the PrCoT, the GNLAS transforms to a 

GLAS, which is solved by using the cholesky method. The convergence of the method (the PrCoT) is proved. Some examples 

are given to illustrate the efficiency and the accuracy for the method. Also, the numerical results are given. 

2. Basic Concepts 

Definition1 [24]: A point 𝑛∗ ∈ 𝑄 ⊂ 𝑅2 is called a fixed point (FP) of the function 𝑄 → 𝑅2if 𝑦(𝑛∗) = 𝑛∗. 

Definition2 [25]: A function 𝑦: 𝑄 ⊂ 𝑅2 → 𝑅2 is called contractive on 𝑃 if ∀ 𝑝1, 𝑝2 ∈ 𝑄: ‖𝑦(𝑝2) − 𝑦(𝑝1)‖ ≤
𝛼‖𝑝1 − 𝑝2‖, where 𝛼 ∈ (0,1). 

Theorem1 [26]: A contractive function 𝑦 on a complete normed space 𝑄 has a unique FP 𝑛∗in 𝑄. 

Theorem2 [27]: Let {𝑣𝑛} be a bounded sequence in the space 𝐿∞(𝑄). Then, there exists a subsequence {�́�} 

and a function 𝑣0 ∈ 𝐿∞(𝑄) s.t, 𝑣�́� → 𝑣0 in 𝐿∞(𝑄). 

3. Description of the NLHPDE 

Let 𝑆 = [0, 𝑇], with 0 < 𝑇 < ∞, 𝑄 ⊂ 𝑅2 be a bounded region with boundary 𝜕𝑄, 𝜗 = 𝑄 × 𝑆, 𝐸 = 𝜕𝑄 × 𝑆. 
Then, the NLHPDE is given by: 

𝑋𝑡𝑡 − ∆𝑋 + 𝑋 = 𝑔(𝑟, 𝑡, 𝑋), 𝑖𝑛 𝜗                                                                             (1) 

𝑋(𝑟, 0) = 𝑋0(𝑟), 𝑖𝑛 𝑄                                           (2) 

𝑋𝑡(𝑟, 0) = 𝑋1(𝑟), 𝑖𝑛 𝑄                               (3) 

𝑋(𝑟, 𝑡) = 0, 𝑜𝑛 𝐸                                            (4) 

where 𝑋 = 𝑋(𝑟, 𝑡) ∈ 𝐻0
2(𝑄), ∆𝑋 = ∑

𝜕2𝑋

𝜕𝑟𝑖
2

2
𝑖=1 , 𝑟 = (𝑟1, 𝑟2) ∈ 𝑅2, 0 < 𝑟1, 𝑟2 < 1, and 𝑔 ∈ 𝐿2(𝑄).  

Now, let 𝑉 = 𝐻0
1(𝑄) = {𝜎: 𝜎 ∈ 𝐻1(𝑄), 𝜎 = 0 𝑜𝑛 𝜕𝑄} and 𝑋𝑡 = 𝑝. Then, the weak form of (1-4) is: 

〈𝑋𝑡𝑡, 𝜎〉 + (∇𝑋, ∇𝜎) + (𝑋, 𝜎) = (𝑔(𝑋), 𝜎), ∀𝜎 ∈ 𝑉                                                (5) 

(𝑋(0), 𝜎) = (𝑋0, 𝜎)  𝑖𝑛 𝑄, 𝑋0 ∈ 𝑉                              (6) 

(𝑝(0), 𝜎) = (𝑋1, 𝜎)  𝑖𝑛 𝑄, 𝑋1 ∈ 𝐿2(𝜗)                             (7) 

The following assumptions are necessary to study both the existence and the convergence of the solution. 

Assumptions (ASM): 

(1) Let 𝑞1 and 𝑞2 be a nonnegative constants that satisfy the following: 

a) |(∇X, ∇𝜎)| ≤ 𝑞1‖∇X‖1‖∇𝜎‖1 , ∀𝑋, 𝜎 ∈ 𝑉 

b) (∇X, ∇X) ≥ 𝑞2‖∇X‖1
2 , ∀ X ∈ 𝑉 

(2) g is continuous w.r.t 𝑋𝑗
𝑛and defined on 𝑄 × 𝑅, and satisfies: 

a)|𝑔(𝑟, 𝑡𝑗
𝑛, 𝑋𝑗

𝑛)| ≤ 𝑒(𝑟, 𝑡) + 𝛾|𝑋𝑗
𝑛|where, 𝛾 > 0, 𝑋𝑗

𝑛 ∈ 𝑄 and 𝑒 ∈ 𝐿2(𝜗). 

b)|𝑔(𝑟, 𝑡𝑗
𝑛, 𝑋𝑗

𝑛) − 𝑔(𝑟, 𝑡𝑗
𝑛 , 𝑋𝑖

𝑛)| ≤ 𝐿|𝑋𝑗
𝑛 − 𝑋𝑖

𝑛|,where 𝐿 is a Lipchitz constant and 𝑋𝑗
𝑛, 𝑋𝑖

𝑛 ∈ 𝑄.  

4. Discretization of the Problem: 

In this section, the method of GM is applied for discretizing ((5)-(7)). Let 𝜗 be divided into sub regions 

𝜗𝑖𝑗 = 𝑄𝑖
𝑛 × 𝑆𝑗

𝑛, 𝑎𝑛𝑑 𝑙𝑒𝑡{𝑄𝑖
𝑛}𝑖=1

𝑁(𝑛)
 be a triangulation of �̅� and {𝑆𝑗

𝑛}𝑗=0 be a subdivision of the interval 𝑆 into 

𝑌(𝑛) intervals. Then, 𝑆𝑗 = 𝑆𝑗
𝑛 ≔ [𝑡𝑗

𝑛, 𝑡𝑗+1
𝑛 ] has the same lengh ∆𝑡 =

𝑇

𝑌
. Also, let 𝑉𝑛 ⊂ 𝑉 = 𝐻0

1(𝑄) be the 

space of piecewise affine functions in 𝑄. 
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Now, the following weak form is obtained from using CN formula and is given ∀𝜎 ∈ 𝑉𝑛as: 

(𝑝𝑗+1
𝑛 − 𝑝𝑗

𝑛, 𝜎) + ∆𝑡 (∇𝑋1

2
𝑗

𝑛 , ∇𝜎) + ∆𝑡 (𝑋1

2
𝑗

𝑛 , 𝜎) = ∆𝑡 (𝑔(𝑡𝑗
𝑛, 𝑋1

2
𝑗

𝑛 ), 𝜎)                                               (8) 

Since, ∆𝑡(𝑝𝑗+1
𝑛 ) = 𝑋𝑗+1

𝑛 − 𝑋𝑗
𝑛 then, (8) becomes 

(𝑋𝑗+1
𝑛 − 𝑋𝑗

𝑛, 𝜎) + (∆𝑡)2 (∇𝑋1

2
𝑗

𝑛 , ∇𝜎) + (∆𝑡)2 (𝑋1

2
𝑗

𝑛 , 𝜎) = 

(∆𝑡)(𝑝𝑗
𝑛, 𝜎) + (∆𝑡)2 (𝑔(𝑡𝑗

𝑛, 𝑋1

2
𝑗

𝑛 ), 𝜎)                              (9) 

Where 𝑋1

2
𝑗

𝑛 =
1

2
(𝑋𝑗+1

𝑛 + 𝑋𝑗
𝑛) 

(𝑋(0), 𝜎) = (𝑋0, 𝜎), in𝑄                  (10) 

(𝑝(0), 𝜎) = (𝑋1, 𝜎), in𝑄                  (11) 

where𝑋0 ∈ 𝑉, 𝑋1 ∈ 𝐿2(𝑄),𝑋𝑗
𝑛 = 𝑋𝑛(𝑟, 𝑡𝑗

𝑛), 𝑎𝑛𝑑𝑝𝑗
𝑛 = 𝑝𝑛(𝑟, 𝑡𝑗

𝑛) ∈ 𝑉𝑛, ∀𝑗 = 0,1, ⋯ , 𝑌 − 1. 

5. The Approximation Solution of the NLHPDE: 

In this part, the MCNGM is used to find the APSOL �̅�𝑛 = (𝑋0
𝑛, 𝑋1

𝑛, ⋯ , 𝑋𝑦
𝑛) for the DWF (8-11) through 

the following steps: 

1- From the basis of 𝑉𝑛 and by using the MCNGM, let �̅�𝑛(𝑟, 𝑡𝑗
𝑛)(with�̅�𝑡

𝑛(𝑟, 𝑡𝑗
𝑛) = �̅�(𝑟, 𝑡𝑗

𝑛)) 

be an APSOL of ((8)-(11)) s.t: 

�̅�𝑛(𝑟, 𝑡𝑗
𝑛) = ∑ 𝑓𝑘

𝑗
𝜎𝑖

𝑁
𝑘=1 and �̅�𝑛(𝑟, 𝑡𝑗

𝑛) = ∑ 𝑤𝑘
𝑗
𝜎𝑖

𝑁
𝑘=1 , ∀𝜇𝑖 ∈ 𝑉𝑛, 

where 𝑓𝑘
𝑗

= 𝑓𝑘(𝑡𝑗
𝑛), and 𝑤𝑘

𝑗
= 𝑤𝑘(𝑡𝑗

𝑛) are unknown to be determined,∀𝑗 = 0,1, ⋯ , 𝑌 − 1. 

2-Using the APSOL in ((8)-(11)), ∀𝑗 = 0,1, ⋯ , 𝑌 − 1, given: 

((1 +
1

2
(∆𝑡)2) 𝐷 +

1

2
(∆𝑡)2𝑍) 𝐹𝑗+1 = 

((1 −
1

2
(∆𝑡)2) 𝐷 −

1

2
(∆𝑡)2𝑍) 𝐹𝑗 + (∆𝑡)𝐷𝑊𝑗 + (∆𝑡)2�⃗⃗⃗�               (12) 

𝑊𝑗+1 =
1

∆𝑡
(𝐹𝑗+1 − 𝐹𝑗)                             (13) 

𝐷𝐹0 = �⃗⃗⃗�0                                          (14) 

𝐷𝑊0 = �⃗⃗⃗�1                                          (15) 

Where𝐷 = (𝑑𝑖𝑘)𝑁×𝑁 ,  𝑑𝑖𝑘 = (𝜎𝑘, 𝜎𝑖), 𝑍 = (𝑧𝑖𝑘)𝑁×𝑁, 𝑧𝑖𝑘 = (∇𝜎𝑘, ∇𝜎𝑖), 𝑈 = (𝑔 (𝑡𝑗
𝑛, 𝑋1

2
𝑗

𝑛 ) , 𝜎𝑖) 

𝐹𝑁×1
𝑗

= (𝑓1
𝑗
, 𝑓2

𝑗
, ⋯ , 𝑓𝑁

𝑗
)𝑇 , 𝑊𝑁×1

𝑗
= (𝑤1

𝑗
, 𝑤2

𝑗
, ⋯ , 𝑤𝑁

𝑗
)𝑇 , �⃗⃗⃗�0 = (𝑢𝑖

0)𝑁×1, 𝑢𝑖
0 = (𝑋0, 𝜎𝑖), and 

�⃗⃗⃗�1 = (𝑢𝑖
1)𝑁×1 𝑤𝑖𝑡ℎ 𝑢𝑖

1 = (𝑋1, 𝜎𝑖), ∀ 𝑖, 𝑘 = 1,2, ⋯ , 𝑁. 

3-The GNLAS ((12)-(15)) has a unique solution. To solve it, first and from solving (14) and  

(15) respectively, the solutions 𝐹0 and 𝑊0are found, then (12) is solved by using the PrCoT(for each 𝑗 =
0,1, … , 𝑌 − 1) as: 
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In the PrT, suppose that 𝐹𝑗+1 = 𝐹𝑗 in the elements of �⃗⃗⃗�(in the RHS), then it convert to a GLAS, which is 

solved to get 𝐹𝑗+1, then resolve (12) with setting �̅�𝑗+1 = 𝐹𝑗+1 (in the elements of �⃗⃗⃗�) to get the corrector 

solution (CoS) 𝐹𝑗+1, finally 𝑊𝑗+1 is obtained from setting 𝐹𝑗+1 in (13); of course this technique can be 

repeated for more than one time. This PrCoT can be expressed as: 

(𝑋𝑗+1
(𝑙+1)

, 𝜎𝑖) + (∆𝑡)2 (∇𝑋1

2
𝑗

(𝑙+1)
, ∇𝜎𝑖) + (∆𝑡)2 (𝑋1

2
𝑗

(𝑙+1)
, 𝜎𝑖) = 

(𝑋𝑗
𝑛, 𝜎𝑖) + (∆𝑡)(𝑝𝑗

𝑛, 𝜎𝑖) + (∆𝑡)2 (𝑔(𝑡𝑗
𝑛, 𝑋1

2
𝑗

(𝑙)
), 𝜎𝑖)                                                           (16) 

𝑝𝑗+1
(𝑙+1)

=
(𝑋𝑗+1

(𝑙+1)
−𝑋𝑗

𝑛)

∆𝑡
                                                (17) 

Equation (17) shows that the iterative method depends only on 𝑋𝑗+1
(𝑙+1)

, where 𝑙 represents the number of 

iterations.  

Theorem: For “sufficiently small”∆t and for any fixed 𝑗 (0 ≤ 𝑗 ≤ 𝑌 − 1), the DWF ((8)-(11)), has a unique 

solution 𝑋𝑛 = (𝑋0
𝑛, 𝑋1

𝑛, ⋯ , 𝑋𝑁
𝑛) and the sequence of the CoS converges in 𝑅. 

Proof: Let 𝑋(𝑙+1) = (𝑋0
(𝑙+1)

, 𝑋1
(𝑙+1)

, ⋯ , 𝑋𝑁
(𝑙+1)

), and �̅�(𝑙+1) = (�̅�0
(𝑙+1)

, �̅�1
(𝑙+1)

, ⋯ , �̅�𝑁
(𝑙+1)

), where 𝑋(𝑙+1) and 

�̅�(𝑙+1) are the solutions of equation (16). Hence 

(𝑋𝑗+1
(𝑙+1)

, 𝜎𝑖) + (∆𝑡)2 (∇𝑋1

2
𝑗

(𝑙+1)
, ∇𝜎𝑖) + (∆𝑡)2 (𝑋1

2
𝑗

(𝑙+1)
, 𝜎𝑖) = (𝑋𝑗

𝑛, 𝜎𝑖) + ∆𝑡(𝑝𝑗
𝑛 , 𝜎𝑖) +

(∆𝑡)2(𝑔 (𝑡𝑗
𝑛 , 𝑋1

2
𝑗

(𝑙)
) , 𝜎𝑖)                                                                          (18) 

and 

(�̅�𝑗+1
(𝑙+1)

, 𝜎𝑖) + (∆𝑡)2 (∇�̅�1

2
𝑗

(𝑙+1)
, ∇𝜎𝑖) + (∆𝑡)2 (�̅�1

2
𝑗

(𝑙+1)
, 𝜎𝑖) = 

(𝑋𝑗
𝑛, 𝜎𝑖) + ∆𝑡(𝑝𝑗

𝑛, 𝜎𝑖) + (∆𝑡)2(𝑔 (𝑡𝑗
𝑛, �̅�1

2
𝑗

(𝑙)
) , 𝜎𝑖)                                                                                       (19) 

Subtracting (19) from (18) then setting 𝜎𝑖 = (�̅�𝑗+1
(𝑙+1)

− 𝑋𝑗+1
(𝑙+1)

), it yields to 

 (�̅�𝑗+1
(𝑙+1)

− 𝑋𝑗+1
(𝑙+1)

, �̅�𝑗+1
(𝑙+1)

− 𝑋𝑗+1
(𝑙+1)

) + (∆𝑡)2 (∇�̅�1

2
𝑗

(𝑙+1)
− ∇𝑋1

2
𝑗

(𝑙+1)
, ∇�̅�𝑗+1

(𝑙+1)
− ∇𝑋𝑗+1

(𝑙+1)
) 

+(∆𝑡)2 (�̅�1

2
𝑗

(𝑙+1)
− 𝑋1

2
𝑗

(𝑙+1)
, �̅�𝑗+1

(𝑙+1)
− 𝑋𝑗+1

(𝑙+1)
) = 

(∆𝑡)2(𝑔 (𝑡𝑗
𝑛 , �̅�1

2
𝑗

(𝑙)
) − 𝑔 (𝑡𝑗

𝑛 , 𝑋1

2
𝑗

(𝑙)
) , �̅�𝑗+1

(𝑙+1)
− 𝑋𝑗+1

(𝑙+1)
)                                                                                  (20) 

From ASM (1 - b) the 2𝑑 and 3𝑑 terms in the LHS of (20) are nonnegative, and from ASM (2- b) on g in 

RHS of (20), and then by applying the Cauchy Schwarz inequality to obtain 

‖�̅�𝑗+1
(𝑙+1)

− 𝑋𝑗+1
(𝑙+1)

‖
0

≤ 𝜉 ‖�̅�1

2
𝑗

(𝑙)
− 𝑋1

2
𝑗

(𝑙)
‖

0

,𝜉 =
(∆𝑡)2𝐿

(1+(∆𝑡)2)
                                                                               (21) 

But 𝜉 < 1, (for “sufficiently small”∆𝑡), Which leads to that 𝑔 is contractive. Also since {𝑋(𝑙)} ∈

𝑅 for each 𝑙, that (�̅�(𝑙+1)) = 𝑋(𝑙+1) ∈ 𝑅 for each 𝑙, 𝑖. 𝑒 𝑔(𝑋) ∈ 𝑅, and by theorem 2 we get that {𝑋(𝑙)} is 

converged to a point in 𝑅.  

6. Numerical Examples 
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In this section, some numerical examples are carried out to show the efficiency and the accuracy for the 
proposed method. 

Example 1: Consider the following NLHPDE: 

𝑋𝑡𝑡 − ∆𝑋 + 𝑋 = 𝑔(𝑟, 𝑡, 𝑋),   𝑟 = (𝑟1, 𝑟2), 𝜗 = 𝑄 × 𝑆, 𝑄 = (0,1) × (0,1), 𝑆 = [0,1] 

𝑋(𝑟, 0) = 𝑟1𝑟2 − 𝑟1
2𝑟2 − 𝑟1𝑟2(𝑟2 − 𝑟1𝑟2), 𝑖𝑛 𝑄 

𝑋𝑡(𝑟, 0) = 𝑋1(𝑟), 𝑖𝑛 𝑄 

𝑋(𝑟, 𝑡) = 0, 𝑜𝑛 𝐸 = 𝜕𝑄 × 𝑆 

Where,𝑔(𝑟, 𝑡, 𝑋) = 𝑒−2𝑡 [(𝑟1𝑟2 − 𝑟1
2𝑟2 − 𝑟1𝑟2(𝑟2 − 𝑟1𝑟2)) (5 − sin ((𝑟1𝑟2 − 𝑟1

2𝑟2 − 𝑟1𝑟2(𝑟2 −

𝑟1𝑟2))𝑒−2𝑡)) + 2(𝑟1(1 − 𝑟1) + 𝑟2(1 − 𝑟2))]. 

Where the exact solution of the problem is 

 𝑋(𝑟, 𝑡) = (𝑟1𝑟2 − 𝑟1
2𝑟2 − 𝑟1𝑟2(𝑟2 − 𝑟1𝑟2))𝑒−2𝑡 

The MCNGM was used to solve this problem with D=9, Y=20 and T=1, the numerical results are given at 

�̂� = 0.5 in the Table (1) and are shown in Figure (1). 

Table1- Comparison between exact and approximation solutions 

 

𝑟1 𝑟2 Exact  Approx

imation 

Absolute 

error 
𝑟1 𝑟2 Exact Approx

imation 

Absolute 

error 

 

0.1 

 

0.1 0.0030 0.0026 0.0004 
 

0.5 

 

0.5 0.0230 0.0192 0.0038 

 

0.2 

 

0.1 0.0053 0.0046 0.0007 
 

0.6 

 

0.5 0.0221 0.0185 0.0036 

 

0.3 

 

0.1 0.0070 0.0061 0.0009 
 

0.7 

 

0.5 0.0193 0.0163 0.0030 

 

0.4 

 

0.1 0.0079 0.0069 0.0010 
 

0.8 

 

0.5 0.0147 0.0125 0.0022 

 

0.5 

 

0.1 0.0083 0.0071 0.0012 
 

0.9 

 

0.5 0.0083 0.0071 0.0012 

 

0.6 

 

0.1 0.0079 0.0067 0.0012 
 

0.1 

 

0.6 0.0079 0.0067 0.0012 

 

0.7 

 

0.1 0.0070 0.0059 0.0011 
 

0.2 

 

0.6 0.0141 0.0119 0.0022 

 

0.8 

 

0.1 0.0053 0.0045 0.0008 
 

0.3 

 

0.6 0.0185 0.0156 0.0029 

 

0.9 

 

0.1 0.0030 0.0026 0.0004 
 

0.4 

 

0.6 0.0212 0.0177 0.0035 

 

0.1 

 

0.2 0.0053 0.0046 0.0007 
 

0.5 

 

0.6 0.0221 0.0185 0.0036 
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0.2 

 

0.2 0.0094 0.0082 0.0012 
 

0.6 

 

0.6 0.0212 0.0178 0.0034 

 

0.3 

 

0.2 0.0124 0.0107 0.0017 
 

0.7 

 

0.6 0.0185 0.0158 0.0027 

 

0.4 

 

0.2 0.0141 0.0121 0.0020 
 

0.8 

 

0.6 0.0141 0.0121 0.0020 

 

0.5 

 

0.2 0.0147 0.0125 0.0022 
 

0.9 

 

0.6 0.0079 0.0069 0.0010 

 

0.6 

 

0.2 0.0141 0.0119 0.0022 
 

0.1 

 

0.7 0.0070 0.0059 0.0011 

 

0.7 

 

0.2 0.0124 0.0105 0.0019 
 

0.2 

 

0.7 0.0124 0.0105 0.0019 

 

0.8 

 

0.2 0.0094 0.0080 0.0014 
 

0.3 

 

0.7 0.0162 0.0137 0.0025 

 

0.9 

 

0.2 0.0053 0.0045 0.0008 
 

0.4 

 

0.7 0.0185 0.0156 0.0029 

 

0.1 

 

0.3 0.0070 0.0061 0.0009 
 

0.5 

 

0.7 0.0193 0.0163 0.0030 

 

0.2 

 

0.3 0.0124 0.0107 0.0017 
 

0.6 

 

0.7 0.0185 0.0158 0.0027 

 

0.3 

 

0.3 0.0162 0.0139 0.0023 
 

0.7 

 

0.7 0.0162 0.0139 0.0023 

 

0.4 

 

0.3 0.0185 0.0158 0.0027 
 

0.8 

 

0.7 0.0124 0.0107 0.0017 

 

0.5 

 

0.3 0.0193 0.0163 0.0030 
 

0.9 

 

0.7 0.0070 0.0061 0.0009 

 

0.6 

 

0.3 0.0185 0.0156 0.0029 
 

0.1 

 

0.8 0.0053 0.0045 0.0008 

 

0.7 

 

0.3 0.0162 0.0137 0.0025 
 

0.2 

 

0.8 0.0094 0.0080 0.0014 

 

0.8 

 

0.3 0.0124 0.0105 0.0019 
 

0.3 

 

0.8 0.0124 0.0105 0.0019 

 

0.9 

 

0.3 0.0070 0.0059 0.0011 
 

0.4 

 

0.8 0.0141 0.0119 0.0022 

 

0.1 

 

0.4 0.0079 0.0069 0.0010 
 

0.5 

 

0.8 0.0147 0.0125 0.0022 

 

0.2 

 

0.4 0.0141 0.0121 0.0020 
 

0.6 

 

0.8 0.0141 0.0121 0.0020 
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Figure1: shows the exact and the approximation solution 

 

Example 2: Consider the following NLHPDE: 

𝑋𝑡𝑡 − ∆𝑋 + 𝑋 = 𝑔(𝑟, 𝑡, 𝑋),   𝑟 = (𝑟1, 𝑟2), 𝜗 = 𝑄 × 𝑆, 𝑄 = (0,1) × (0,1), 𝑆 = [0,1] 

𝑋(𝑟, 0) = 𝑟1
2𝑟2 sin(𝑟1𝑟2 − 𝑟1 − 𝑟2 + 1) , 𝑖𝑛 𝑄 

 

0.3 

 

0.4 0.0185 0.0158 0.0027 
 

0.7 

 

0.8 0.0124 0.0107 0.0017 

 

0.4 

 

0.4 0.0212 0.0178 0.0034 
 

0.8 

 

0.8 0.0094 0.0082 0.0012 

 

0.5 

 

0.4 0.0221 0.0185 0.0036 
 

0.9 

 

0.8 0.0053 0.0046 0.0007 

 

0.6 

 

0.4 0.0212 0.0177 0.0035 
 

0.1 

 

0.9 0.0030 0.0026 0.0004 

 

0.7 

 

0.4 0.0185 0.0156 0.0029 
 

0.2 

 

0.9 0.0053 0.0045 0.0008 

 

0.8 

 

0.4 0.0141 0.0119 0.0022 
 

0.3 

 

0.9 0.0070 0.0059 0.0011 

 

0.9 

 

0.4 0.0079 0.0067 0.0012 
 

0.4 

 

0.9 0.0079 0.0067 0.0012 

 

0.1 

 

0.5 0.0083 0.0071 0.0012 
 

0.5 

 

0.9 0.0083 0.0071 0.0012 

 

0.2 

 

0.5 0.0147 0.0125 0.0022 
 

0.6 

 

0.9 0.0079 0.0069 0.0010 

 

0.3 

 

0.5 0.0193 0.0163 0.0030 
 

0.7 

 

0.9 0.0070 0.0061 0.0009 

 

0.4 

 

0.5 0.0221 0.0185 0.0036 
 

0.8 

 

0.9 0.0053 0.0046 0.0007 

  

    0. 9      0.9     

 

 

0.0030 0.0026 0.0004 
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𝑋𝑡(𝑟, 0) = 𝑋1(𝑟), 𝑖𝑛 𝑄 

𝑋(𝑟, 𝑡) = 0, 𝑜𝑛 𝐸 = 𝜕𝑄 × 𝑆 

Where,𝑔(𝑟, 𝑡, 𝑋) = 𝑒−2𝑡[𝑟2 sin(𝑟1𝑟2 − 𝑟1 − 𝑟2 + 1) (5𝑟1
2 − 2 − 𝑟1

2 sin(𝑟1
2𝑟2 sin(𝑟1𝑟2 − 𝑟1 − 𝑟2 +

1) 𝑒−2𝑡) + (𝑟1
4 − 2𝑟1

3 + 𝑟1
2) + (𝑟1

2𝑟2
2 − 2𝑟1

2𝑟2 + 𝑟1
2)) − 2𝑟1 cos(𝑟1𝑟2 − 𝑟1 − 𝑟2 + 1)(𝑟1(𝑟1 − 1) +

2𝑟2(𝑟2 − 1))]. 

Where the exact solution of this problem is𝑋(𝑟, 𝑡) = 𝑟1
2𝑟2 sin(𝑟1𝑟2 − 𝑟1 − 𝑟2 + 1) 𝑒−2𝑡 

The MCNGM was used to solve this problem with D=9, Y=20 and T=1, the numerical results are given at 

�̂� = 0.5in the Table (2) and are shown in Figure (2). 

Table2: Comparison between exact and approximation solutions 

 

𝑟1 𝑟2 exact approximation Absolute 

error 
𝑟1 𝑟2 exact approximation Absolute 

error 

 

0.1 

 

0.1 0.0003 0.0002 0.0001 
 

0.5 

 

0.5 0.0114 0.0095 0.0019 

 

0.2 

 

0.1 0.0010 0.0009 0.0001 
 

0.6 

 

0.5 0.0132 0.0109 0.0023 

 

0.3 

 

0.1 0.0020 0.0017 0.0003 
 

0.7 

 

0.5 0.0135 0.0112 0.0023 

 

0.4 

 

0.1 0.0030 0.0026 0.0004 
 

0.8 

 

0.5 0.0118 0.0099 0.0019 

 

0.5 

 

0.1 0.0040 0.0034 0.0006 
 

0.9 

 

0.5 0.0074 0.0063 0.0011 

 

0.6 

 

0.1 0.0047 0.0039 0.0008 
 

0.1 

 

0.6 0.0008 0.0007 0.0001 

 

0.7 

 

0.1 0.0048 0.0040 0.0008 
 

0.2 

 

0.6 0.0028 0.0025 0.0003 

 

0.8 

 

0.1 0.0042 0.0036 0.0006 
 

0.3 

 

0.6 0.0055 0.0048 0.0007 

 

0.9 

 

0.1 0.0027 0.0023 0.0004 
 

0.4 

 

0.6 0.0084 0.0071 0.0013 

 

0.1 

 

0.2 0.0005 0.0004 0.0001 
 

0.5 

 

0.6 0.0110 0.0092 0.0018 

 

0.2 

 

0.2 0.0018 0.0015 0.0003 
 

0.6 

 

0.6 0.0127 0.0106 0.0021 

 

0.3 

 

0.2 0.0035 0.0031 0.0004 
 

0.7 

 

0.6 0.0129 0.0109 0.0020 

 

0.4 

 

0.2 0.0054 0.0047 0.0007 
 

0.8 

 

0.6 0.0113 0.0096 0.0017 

 

0.5 

 

0.2 0.0072 0.0061 0.0011 
 

0.9 

 

0.6 0.0071 0.0062 0.0009 

 

0.6 

 

0.2 0.0083 0.0070 0.0013 
 

0.1 

 

0.7 0.0007 0.0006 0.0001 

 

0.7 

 

0.2 0.0086 0.0072 0.0014 
 

0.2 

 

0.7 0.0024 0.0022 0.0002 
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0.8 

 

0.2 0.0075 0.0063 0.0012 
 

0.3 

 

0.7 0.0048 0.0042 0.0006 

 

0.9 

 

0.2 0.0048 0.0040 0.0008 
 

0.4 

 

0.7 0.0074 0.0063 0.0011 

 

0.1 

 

0.3 0.0007 0.0006 0.0001 
 

0.5 

 

0.7 0.0096 0.0081 0.0015 

 

0.2 

 

0.3 0.0023 0.0021 0.0002 
 

0.6 

 

0.7 0.0111 0.0094 0.0017 

 

0.3 

 

0.3 0.0047 0.0041 0.0006 
 

0.7 

 

0.7 0.0113 0.0097 0.0016 

 

0.4 

 

0.3 0.0072 0.0062 0.0010 
 

0.8 

 

0.7 0.0099 0.0085 0.0014 

 

0.5 

 

0.3 0.0095 0.0080 0.0015 
 

0.9 

 

0.7 0.0063 0.0054 0.0009 

 

0.6 

 

0.3 0.0110 0.0092 0.0018 
 

0.1 

 

0.8 0.0005 0.0005 0.0000 

 

0.7 

 

0.3 0.0113 0.0094 0.0019 
 

0.2 

 

0.8 0.0019 0.0017 0.0002 

 

0.8 

 

0.3 0.0099 0.0083 0.0016 
 

0.3 

 

0.8 0.0037 0.0033 0.0004 

 

0.9 

 

0.3 0.0063 0.0053 0.0010 
 

0.4 

 

0.8 0.0056 0.0048 0.0008 

 

0.1 

 

0.4 0.0008 0.0007 0.0001 
 

0.5 

 

0.8 0.0073 0.0062 0.0011 

 

0.2 

 

0.4 0.0027 0.0024 0.0003 
 

0.6 

 

0.8 0.0085 0.0072 0.0013 

 

0.3 

 

0.4 0.0054 0.0047 0.0007 
 

0.7 

 

0.8 0.0086 0.0075 0.0011 

 

0.4 

 

0.4 0.0083 0.0071 0.0012 
 

0.8 

 

0.8 0.0075 0.0066 0.0009 

 

0.5 

 

0.4 0.0109 0.0091 0.0018 
 

0.9 

 

0.8 0.0048 0.0042 0.0006 

 

0.6 

 

0.4 0.0126 0.0105 0.0021 
 

0.1 

 

0.9 0.0003 0.0003 0.0000 

 

0.7 

 

0.4 0.0129 0.0107 0.0022 
 

0.2 

 

0.9 0.0011 0.0010 0.0001 

 

0.8 

 

0.4 0.0113 0.0094 0.0019 
 

0.3 

 

0.9 0.0021 0.0018 0.0003 

 

0.9 

 

0.4 0.0071 0.0060 0.0011 
 

0.4 

 

0.9 0.0032 0.0027 0.0005 

 

0.1 

 

0.5 0.0008 0.0007 0.0001 
 

0.5 

 

0.9 0.0041 0.0035 0.0006 

 

0.2 

 

0.5 0.0029 0.0025 0.0004 
 

0.6 

 

0.9 0.0048 0.0041 0.0007 

 

0.3 

 

0.5 0.0057 0.0049 0.0008 
 

0.7 

 

0.9 0.0049 0.0042 0.0007 

 

0.4 

 

0.5 0.0087 0.0074 0.0013 
 

0.8 

 

0.9 0.0042 0.0037 0.0006 

 

0.9 0.9 0.0027 0.0024 0.0003 
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Figure2: shows the exact and the approximation solutions 

 

7. Conclusions 

From the solutions for the above given examples, one can conclude that: 

The MCNGM was used successfully to find the APSOL of the NLHPDES. The uniqueness of the APSOL 

for the weak form (which was obtained from the PrCrT) was proved. The GFEM was applied easily and the 

elements in the GNAS are in analytic form (exact) comparing with other methods that the elements are in 

approximate or in a full discrete form. The cholesky method which used inside the PrCrT was very efficient 

and fast to solve the GLAS because it saves a lot of calculations. The approximation solution for the two 

examples illustrate the accuracy and the efficiency of the proposed method. It is important to mention here 

that the approximate vector solution  are given at the value of �̂� = 0.5 to brief the size of the paper, in fact 

same results with same accuracy were obtained at any value of �̂� provided this value belong to S. 
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