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1. Introduction  

In recent years, information security has received more and 

more attention due to the development of science and 

technology. AL-Hussain and Mahmood [1] presented the 

spectrum sensing techniques with wideband signals and 

discussed energy detection with compressive sensing (CS). 

AlAzawi and Kadhim [2] used speech scrambling with chaotic 

techniques to decrease the Segmental Spectral Signal to Noise 

ratio. While Hatem [3] used CS in one step to present a 

combine's compression and encryption Moreover, various 

methods of information encryption have been proposed to 

prevent leakage of information during transmission and storage. 

There is also an important role for image encryption in this 

field. Double random phase encryption was first proposed by 

Refregier and Javidi in 1995[4]. As a consequence, Image 

encryption systems use a variety of optical transformations [5]-

[8]. Abdul-Kareem and Al-Jawher [9] proposed a new 

algorithm based on two chaotic systems, GWO, and CS for 

image compression and encryption to provide effective image 

protection and reduce redundant data. Decryption can be 

accomplished by attacking the image outline when the 

ciphertext and other data are known [10]. There have been 

several new image encryption methods proposed over the past 

few years [11]-[22] to increase the security of encryption 

systems. Fourier transforms with phase-truncation have been 

used in cryptosystems, Photon-counting polarimetric methods, 

ghost imaging theory, and optical interference techniques have 

been proposed [11]-[17]. The field of image encryption has seen 

several new principles and techniques proposed in recent years, 

some of them using QR code and digital holography for 

quadrature phase coding [18]-[22]. The QR Code principle has 

been used for many purposes, but it has also been suggested for 

use in image encryption. QR Code can be used to encrypt image 

information to ensure its security and difficulty for hackers to 

decode. This type of encryption makes it possible to effectively 

protect the data in images. As for digital holography, quadrature 

phase encryption refers to the use of encryption techniques in 

the stages of digital image processing, such as converting 

images into three-dimensional holograms, which adds a layer 

of complexity and security to the data contained in the images 

[23]. 
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These innovations and principles in the field of image 

encryption reflect the ongoing development in the field of 

information security and the ongoing quest to develop more 

effective and secure encryption techniques to protect sensitive 

data. 

Using diffraction imaging, researchers have recently discovered 

an optical image encryption and conversion method proposed 

by Unde et al [24]. Several optical encryption schemes have 

been proposed in the field of compressed sensing theory and 

optical encryption methods at present, and both of these fields 

are very active fields [25]-[26]. In 2006, compressive sensing 

[27] was introduced in the field of digital image processing. The 

Nyquist sampling theorem is broken by compressive sensing 

because it allows us to reconstruct original signals from just a 

few measurements. Signal processing has benefited greatly 

from it. As a result, the original signal can be reduced to a few 

small measurements, saving time and space in transmission and 

storage. Since with the information contained in these 

measurements [28], the original signal can be recreated. Image 

encryption also uses compressed sensing [29], [30]. The signal 

itself must be sparse or be able to be sparsely processed for 

compressive sensing to be successful. To implement sparse 

processing, it is necessary to process the original signal sparsely 

first if it is not sparse but can be sparsely processed. There are 

many redundant details in an image that can be compressed 

using compressed sensing in the field of image processing. 

Grayscale images make up the plaintext of images encrypted 

using compressed sensing, while measurement matrices 

provide the key information. 

 The contribution of this work can be summarized as: 

1. The first step in the decomposition process is to decompose 

the original color image into three sub-images (R, G, and 

B) by the theory of tricolor. A discrete wavelet transform 

(DWT) is used to decompose the sub-images sparsely. 

2. Block Compressive Sensing (BCS) can be used as a one-

step process for encryption by using the measurement 

matrix as a secret key which is generated using the 3D 

logistic chaotic map.  BCS algorithm used an individual 

image reconstruction algorithm that leverages 𝑙1 norm 

minimization to promote signal sparsity, and a smoothing 

operator to enhance image quality. 

3. Scrambling technique based on 2D Henon chaotic map is 

used as second-level security which is applied for the 

compressed image. 

4. The proposed system is compared with traditional image 

encryption based on CS in PSNR, SSIM, key space 

analysis, and time encryption.          

The remainder of the paper is organized as follows: CS and 

chaotic systems are discussed in Section 2; Compressive 

Sensing and Scrambling Algorithms are explained in Section 3.  

 

2. Compressive Sensing  

A mathematical theory of compressive sensing (CS) [31] is 

considered in this section. The theory of CS is founded on the 

principle of signal sparsity. Consider a real-valued n-

dimensional signal 𝑥 ∈ ℝ𝑛  with a sparsifying transformΨ ∈
ℝ𝑛×𝑛. The n-dimensional coefficient vector 𝜃 is calculated by 

𝜃 = Ψ𝑥. We say that 𝑥 is a k-sparse signal in the transform 

domain Ψ if the coefficient vector θ has k non-zero coefficients 

(k << n). The k value is calculated as 𝑘 = ‖𝜃‖0 where 

‖. ‖𝑝 represents the 𝑙𝑝norm.  

The theory of CS shows that it is possible to efficiently capture 

the important information contained within a signal that has a 

sparse nature, by using only a limited number of measurements. 

If Φ ∈ ℝ𝑚×𝑛 is a measurement matrix with m less than n, then 

the signal x can be acquired through non-adaptive, linear 

measurements. This is represented by 𝑦 =  𝛷𝑥, where 𝑦 ∈ ℝ𝑚 

(m < n) is the set of the compressive sensing measurements. The 

problem of retrieving the sparse signal x from the measurement 

vector y is challenging because m < n and the equations are 

underdetermined. This leads to an infinite number of solutions, 

making efficient signal reconstruction impossible without 

adding the signal sparsity as a constraint. 

CS theory states that the k-sparse signal x can be reconstructed 

exactly with great probability through convex optimization, if 

𝑚 ≥ 𝑐𝑘 𝑙𝑛(𝑛), where c is a constant value. Let's define the ratio 

𝑚/𝑛 as the compression ratio in the CS. then the correct signal 

recovery is achieved by solving the following optimization 

problem,  

Min
𝜃

‖𝜃‖0      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑦 = 𝛷𝑥 = 𝛷Ψ−1𝜃                        (1)                

Where Ψ−1is the inverse transform of Ψ matrix.  

It has been demonstrated that the limited isometry property 

(RIP) of a measurement matrix 𝛷 can aid in signal recovery 

[31] when the measurement matrix is maximally incoherent 

concerning the transform matrix Ψ. 

 

3. Block Compressive Sensing and Scrambling Algorithms   

3.1. Creation of the Measurement Matrix 

The matrix of measurement 𝛷 is produced using the three-

dimensional chaotic logistic map [32], which is described by: 

{

𝑥𝑖+1 = 𝛼𝑥𝑖(1 − 𝑥𝑖) + 𝛽𝑦𝑖
2𝑥𝑖 + 𝛾𝑧𝑖

3

𝑦𝑖+1 = 𝛼𝑦𝑖(1 − 𝑦𝑖) + 𝛽𝑧𝑖
2𝑦𝑖 + 𝛾𝑥𝑖

3

𝑧𝑖+1 = 𝛼𝑧𝑖(1 − 𝑧𝑖) + 𝛽𝑥𝑖
2𝑧𝑖 + 𝛾𝑦𝑖

3

                                 (2)                               

Where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖  ∈ [0,1] are the values of the ith iteration of the 

3D logistic map. 𝛼, 𝛽, 𝛾 are the control parameters that satisfy 

the range [3.53, 3.81], [0, 0.022], and [0, 0.015], respectively to 

get the 3D logistic map as chaotic behavior.   

To maintain the variables of the 3D chaotic logistic map within 

the range of 0 and 255, the three variables are multiplied by the 

factor 107 and then take the mod operation with 256 as follows: 

{

𝑥𝑖+1 = 𝑚𝑜𝑑 ((𝑥𝑖+1 ∗ 107), 256)

𝑦𝑖+1 = 𝑚𝑜𝑑 ((𝑦𝑖+1 ∗ 107), 256)

𝑧𝑖+1 = 𝑚𝑜𝑑 ((𝑧𝑖+1 ∗ 107), 256)

                                      (3)                           
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The 𝑧𝑖 variable is used as a switching control to select either 𝑥𝑖 

or 𝑦𝑖   and the following modification is applied to it: 

𝑠𝑒𝑙 = 𝑚𝑜𝑑(𝑓𝑙𝑜𝑜𝑟(𝑧𝑖+1), 2)                                                 (4)                           

In each ith iteration, if sel =0 the measurement matrix 𝛷 takes  

𝑥𝑖+1, else (sel=1) 𝑦𝑖+1 is taken. Therefore, the matrix 𝛷 takes 

either x or y depending on the z value, and the result is written 

as: 

𝛷 = (

(𝑥1, 𝑦1) … (𝑥𝑚(𝑛−1)+1, 𝑦𝑚(𝑛−1)+1)

⋮ ⋱ ⋮
(𝑥𝑚 , 𝑦𝑚) ⋯ (𝑥𝑚𝑛 , 𝑦𝑚𝑛)

)                 (5)                                            

 

3.2. Block Compressive Sensing-Based Image 

Reconstruction 

A block compressive sensing (BCS) method is an iterative 

reconstruction algorithm proposed in [24] by Unde. in which 

the image I∈ ℝ𝑁1×𝑁2 is divided into A×A blocks which are 

sampled independently with identical or unlike measurement 

matrices. Suppose 𝑠𝑖 is a vector representation of ith A×A block 

with n =A2 pixels after raster scanning. Suppose 𝛷𝐴 is a 𝑚𝐴 × 𝑛 

measurement matrix, where 𝑚𝐴 is the number of measurements 

occupied per block. The projection of 𝑠𝑖 onto 𝛷𝐴 is 𝑧𝑖 = 𝛷𝐴𝑠𝑖.  

FOCUSS (FOcal Underdetermined System Solver) is an 

iterative algorithm commonly used in compressed sensing for 

sparse signal reconstruction. It is often used in conjunction with 

the BCS framework. In some cases, the straightforward 

application of FOCUS in the BCS framework can lead to severe 

blocking artifacts. This is because FOCUS assumes that the 

signal is sparse in the time domain and uses a soft thresholding 

technique to enforce sparsity. However, when applied to 

individual blocks, this can result in sharp edges at the block 

boundaries, which can cause noticeable artifacts. In problem in 

the FOCUS algorithm can be expressed as [20]: 

min
𝜃𝑖

‖𝜃𝑖‖1     𝑠. 𝑡.     𝑧𝑖 = 𝛷𝐴Ψ−1𝜃𝑖                                          (6) 

To solve this problem, the Lagrangian method is proposed to 

recover the original signal according to 𝑠𝑖 = Ψ−1𝜃𝑖, where each 

block is solved independently.  For each iteration, the 

reconstruction problem as depicted in [20] is expressed as 

min
𝑠𝑖

𝑓(𝑠𝑖) = ‖Ψ𝑠𝑖‖1     𝑠. 𝑡.     𝑧𝑖 = 𝛷𝐴𝑠𝑖                                (7)            

Eq. (8) As a result, sparse solutions are obtained by 

minimization of the 𝑙1 norm of the signal relative to the sparsity 

basis Ψ under equality constraints. For each iteration, the 

Lagrangian method is used to solve Eq. (8), and Wiener filtering 

is utilized for the smoothing operator. The recursive form of the 

reconstructed signal for ith iteration is derived in [20] and can 

be expressed as 

𝑠𝑖
(𝐾+1)

= Ψ−1Π−1 (𝑠𝜓
(𝐾)

) 𝐵𝜓𝜙
𝑇  (𝐵𝜓𝜙

 Π−1  (𝑠𝜓
(𝐾)

) 𝐵𝜓𝜙
𝑇 )

−1

𝑧𝑖  (8)          

Where Ψ is sparsifying transform, Π−1 (𝑠𝜓
(𝐾)

) = 𝑑𝑖𝑎𝑔 (|𝑠𝜓
(𝐾)

|), 

𝐵𝜓𝜙
 = 𝛷𝐴Ψ−1, and  𝑠𝜓 = Ψ𝑠𝑖. Algorithm 1 shows the BSC-

based FOCUSS algorithm for the Kth iteration in conjunction 

with the Wiener filtering. 

Algorithm 1 : BCS-FOCUSS Algorithm 

function 𝑠(𝐾+1)=BCS_FOCUSS (𝑠(𝐾), z, 𝛷𝐴, Ψ) 

 �̂�(𝐾) = 𝑊𝑖𝑒𝑛𝑒𝑟 (𝑠(𝐾)) 

for each block i 

𝐵𝜓𝜙
 = 𝛷𝐴Ψ−1 

𝑠𝜓 = Ψ�̂�𝑖 

Π−1(𝑠𝜓
(𝐾)

) = 𝑑𝑖𝑎𝑔(|𝑠𝜓
(𝐾)

|) 

𝑠𝑖
(𝐾+1)

= Ψ−1Π−1(𝑠𝜓
(𝐾)

)𝐵𝜓𝜙
𝑇  (𝐵𝜓𝜙

 Π−1 (𝑠𝜓
(𝐾)

)𝐵𝜓𝜙
𝑇 )

−1
𝑧𝑖 

 

3.3. Scrambling-based 2D Henon-Sine chaotic map  

The 2D Henon-Sine chaotic map that is described in [33] is used 

to generate the permutation index for scrambling the signal 

which is defined by: 

{
𝑥𝑖+1 = (1 − 𝑎 𝑠𝑖𝑛2(𝑥𝑖) + 𝑦𝑖) 𝑚𝑜𝑑 1
𝑦𝑖+1 = 𝑏 𝑥𝑖  𝑚𝑜𝑑 1                                 

                                   (9) 

where the a and b parameters have the range (−∞, +∞).   

The algorithm of scrambling and descrambling functions is 

described in algorithm 2. In the first, the initialization of x(1), 

y(1), a, and b of the 2D Henon-Sine chaotic map is set. Then 

equation (9) is used to generate the chaotic sequence of length 

t1*t2, where t1 and t2 are the row and column number of the 

input matrix sin. sort function is applied to the x sequence to 

produce the index permutation (IP) vector that is used to 

scramble the input matrix after being converted to a 1D vector 

using the reshape function when sel=0. When sel=1 the 

algorithm is used to descramble the input matrix. The same key, 

IP, is used to descramble the scrambling matrix.         

Algorithm 2: Scrambling and Descrambling algorithm 

function 𝑠𝑜𝑢𝑡=scrambling_descrambling (𝑠𝑖𝑛, sel) 

 [t1,t2]=size(𝑠𝑖𝑛) 

% initialization 𝑥(1), 𝑦(1), a, b, L=t1*t2 

for each i=1:L-1 

 applied equation (6) 

[~, IP]=sort (x) 

if  sel=0 

xr=reshape(𝑠𝑖𝑛, 1, t1*t2); 

xs=xr(IP); 

𝑠𝑜𝑢𝑡=reshape(xs, t1, t2); 

else 

sr=reshape(𝑠𝑖𝑛, 1, t1*t2); 

sd(IP)=sr; 

sout=reshape(sd, t1,t2); 

end 

  

 



Journal of Engineering and Sustainable Development, (Vol. 28, No. 05, September 2024)                                  ISSN 2520-0917 

 

659 

4.  Proposed Image Encryption System Based on 

Compressive Sensing 

Fig. 1 shows the proposed image encryption and decryption 

algorithm based on CS and scrambling techniques that are 

explained in the previous section.  

 

 

Figure 1. Image encryption and decryption system.

 

4.1. Encryption Algorithm  

The encryption process comprises several steps: 

Step 1: Color image decomposition. According to tricolor 

theory, color images are divided into three sub-images (R, G, 

and B). 

Step 2: The input three channels I1, I2, I3 of size (N1×N2) for 

each is divided into non-overlapping blocks of a specified size 

(A×A) and each block is reshaped to a column vector, 𝑠𝑖, i=1,.., 

A2.  

Step 3: In the domain of Discrete Wavelet Transforms (DWT), 

sparse representation is present. Sub-images are treated using 

DWT according to Eq. (2), where I1, I2, and I3 exhibit sparsity, 

meaning that a significant portion of their elements are zero. 

The small number of non-zero coefficients in these transformed 

sub-images indicates that most of the information in the sub-

images is concentrated in one or a few coefficients. 

Step 4: The random measurement matrix (𝛷𝐴) is generated 

according to subsection (4.1) and used to compress the image 

block by projecting it onto a lower-dimensional subspace, 

reducing the amount of data needed to represent the image. The 

compressed image is expressed as 𝑧𝑖 = 𝛷𝐴𝑠𝑖 ∈ ℝ1×𝐶𝑅.𝐴2
, where 

CR is the compression ratio. 

Step 5: The ith compressed image, 𝑧𝑖 , is then scrambled using a 

proposed scrambling algorithm based on the 2D Henon map 

that is explained in Algorithm 2. The ith scrambled vector, 𝑐𝑖 , 
is defined as 
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𝑐_𝑖 = 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑖𝑛𝑔_𝑑𝑒𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑖𝑛𝑔 (𝑧_𝑖, 1) (10) 

Step 4: The ith encrypted image is obtained by reshaping the 

scrambling vector to the matrix of size (A×A), Ei ∈ ℝ𝐴×𝐴.    

4.2. Decryption Algorithm 

The decryption process comprises several steps: 

Step 1: The ith encrypted image is reshaped to vector,  �̂�𝑖 ∈

ℝ1×(𝐴2). 

Step 2:  The ith encrypted vector, �̂�𝑖 , is then descrambled using 

a proposed scrambling algorithm based on the 2D Henon map 

that is explained in Algorithm 2. The ith descrambled vector, �̂�𝑖, 
is defined as 

𝑧 ̂_𝑖 = 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑖𝑛𝑔_𝑑𝑒𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑖𝑛𝑔 (𝑐 ̂_𝑖, 2) (11) 

Step 3:   BCS-FOCUSS Algorithm that is processed in 

Algorithm 1 is used to reconstruct vector �̂�𝑖 ∈ ℝ1×𝐴2
. 

Step 4: reshaping the reconstructed vector into a block image 

and reshaping the block matrix to decrypted image Î ∈ ℝ𝑁1×𝑁2  

 

5. Experimental Results and Analysis 

As a test platform, we chose the Barbara picture with 256 x 256 

pixels as plaintext, and MATLAB (R2020b) was used for the 

experiment. 

The secret key parameters include: the 3D Logistic chaotic map 

(𝑥0=0.9455233676, 𝑦0=0.34556674, and 𝑧0= 0.56763883, 

𝛼=3.6, 𝛽=0.0012, and 𝛾=0.0012), 2D Henon chaotic map 

(𝑥0=0.977857033414, 𝑦0==0.564792, a = 1.4, and b = 0.3). 

Using BCS, we sample 32×32 pixels for each block if they are 

not overlapping and use DCT as the sparsifying transform. 

Assume CR = 0.25. and number of DWT=5. 

Fig. 2 shows the original images. and the color plaintext, its red 

channel green, and blue channels, respectively R, G, and B. 

 

Figure 2. The original image an RGB channels 

Fig. 3 shows the decryption results when all the keys are 

correct.

 

 
 

 
Figure 3. Original and reconstructed image and cipher image 

 

 

As shown in Fig. 3(a) represents the ciphertext. A decrypted R 

and G component as well as B and color images can be seen in 

Fig. 3(b)-(e). We performed grayscale histogram analysis on 

three original images, including the encrypted image and its 

three counterparts, to objectively analyze the effects of the 

decrypted image. R, G, and B channels of the original image 

were analyzed. 
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Figure 4. The grayscale histograms of (a) original R, (b) original G, (c) original B, (d) recovered R, (e) recovered G, and (f) 

recovered B. 

Fig. 4(a)–(c) depicts the grayscale histograms of the original R, 

G, and B images, represented as the original image histograms. 

Additionally, Fig. 4(d)–(f) displays the grayscale histograms of 

the three decrypted images, corresponding to the R, G, and B 

channels, respectively 

A grayscale histogram involves counting pixels in a digital 

image based on their grayscale values, providing insights into 

the distribution of grayscale tones. In Fig. 4, it is evident that 

the grayscale histogram distributions of the three decrypted 

images closely resemble those of the original images. 

Furthermore, the peak positions in both sets of histograms are 

identical. 

5.1. Peak signal-to-noise ratio (PSNR) Results 

The assessment of the decrypted image quality is frequently 

conducted through PSNR, which is defined by. 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔
2552

1

𝑁1𝑁2
∑ ∑ (𝐼(𝑖,𝑗)−𝐼(𝑖,𝑗))2𝑁2

𝑗=1
𝑁1
𝑖=1

                         (12) 

The dimensions of the image are 𝑁1 and 𝑁2, and the pixel values 

of the original image are I(i, j) and Î(i, j). The decrypted image 

will have lower distortion if the PSNR is higher. 

Table 1 shows the PSNRs (dB) of the proposed system for 

different CRs = 0.4, 0.55, 0.7 with different BARBARA images 

in comparison with different conventional schemes. From this 

table, it can be noticed that the suggested algorithm gives a 

higher value of PSNR (dB).  

 

 

Table 1. PSNRs (dB) comparisons for different 256×256 

images and CR. 

Images 

(256×256) 
CR  Ours MRAMP SAMP OMP 

B
A

R
B

A
R

A
 

0.4 R 26.6 20.1 24.7 25.6 

G 26.9 21.2 25 24.4 

B 26.9 21.8 25.2 24 

0.55 R 28.5 27.2 26.3 29 

G 28.7 27.2 26.8 26.6 

B 28.8 26.8 26.6 26.4 

0.7 R 31.1 29.6 26.4 29 

G 31.4 31.4 27.3 29.1 

B 31.4 30.2 26.9 28.8 

 

In Table 2, the correlation coefficients for R, G, and B channels 

increase as compression ratios increase and the correlation 

coefficient is shown in the equation below. 

𝑟1 =
∑𝑖  (𝑥𝑖−𝑥𝑚)(𝑦𝑖−𝑦𝑚)

√∑𝑖  (𝑥𝑖−𝑥𝑚)2√∑𝑖  (𝑦𝑖−𝑦𝑚)2
                                              (13) 

 Images 1 and 2 are referred to by their intensity values as 𝑥𝑖, 

𝑦𝑖 , 𝑥𝑚, and 𝑦𝑚, respectively, where 𝑥𝑖 is the intensity of the 𝑖𝑡ℎ 

pixel in image 1, and 𝑦𝑖  is the intensity of the 𝑖𝑡ℎpixel in image 

2. 

As a result, higher compression ratios are associated with better 

image recovery. The higher the compression ratio, the more 

image information is retained, resulting in better recovery 

results. 
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Table 2. Coefficients of correlation between recovered images 

and original images using different reconstruction methods. 
Im

a
g

es
 

(2
5

6
×

2
5

6
) 

CR  Ours MRAMP SAMP OMP 

B
A

R
B

A
R

A
 

0.4 R 0.9640 0.9590 0.9637 0.9559 

G 0.9601 0.9506 0.9627 0.9549 

B 0.9605 0.9502 0.9655 0.9608 

0.55 R 0.9862 0.9860 0.9749 0.9800 

G 0.9853 0.9842 0.9727 0.9765 

B 0.9846 0.9831 0.9742 0.9782 

0.7 R 0.9904 0.9903 0.9768 0.9851 

G 0.9902 0.9897 0.9742 0.9843 

B 0.9892 0.9888 0.9762 0.9834 

 

5.2 NPCR and UACI 

In NPCR, which stands for Number of Pixels Change Rate, it 

indicates that a given pixel in a plain image has changed a 

certain number of times. A cryptosystem can resist plain-text 

attacks if NPCR converges, which shows more sensitivity to 

plain-text changes. These two metrics are calculated by 

dividing the difference in intensity between the plain and cipher 

images by the UACI value. 

𝑈𝐴𝐶 =
1

 Width × Height 
∑𝑖,𝑗  (

𝑐1(𝑖,𝑗)−𝑐2(𝑖,𝑗)

255
) ×

100%                 (14)   

𝑁𝑃𝐶𝑅 =
∑  𝑖,𝑗  𝐷(𝑖,𝑗)

 Width × Height 
× 100%                                          (15) 

c1(i, j) and c2(i, j) An encrypted image before and after 

changing one pixel of a plain image. A pixel's value after 

changing is shown in Table 3. 

 

Table 3. UACI and NPCR values of test images 

Test images NPCR (%) UACI (%) 

Barbara 99.6 33.48 

Peppers 99.62 33.46 

 

5.3. Time of encryption algorithm 

Time encryption algorithms are among the most interesting and 

challenging algorithms to develop in different fields. Based on 

different images, Table 4 shows the encryption time of the 

proposed algorithm with CR = 0.25.  

 

Table 4. Encryption time with different images (unit: s). 

Images Time 

Barbara 0.046443 

Peppers 0.020311 

 

 

 

5.4. Key Space Analysis 

The key space (KS) is the size of the total of all parameters 

utilized in the encryption system. The KS should be greater than 

200100 to robust against brute-force attacks [20], [33]. In our 

system, the secret key consists of the 3D Logistic chaotic map 

parameter (𝛼, 𝜇, 𝛾, 𝑥0, 𝑦0, 𝑧0) and 2D henon chaotic map 

(𝑎, 𝑏, 𝑥0, 𝑦0). Using the IEEE-754 standard with double 

precision, each parameters take 10-15, therefore, (1015)10 ≈
2489. Therefore, the suggested algorithm can resist brute-force 

attacks.  

6. Conclusion 

This paper introduced a new image encryption algorithm based 

on CS and scrambling techniques. Using a 3D Logistic chaotic 

map system to generate the measurement matrix. Block 

compressive sensing (BCS) algorithm is proposed in this work 

in which an individual image reconstruction algorithm that 

leverages 𝑙1 norm minimization to promote signal sparsity, 

and a smoothing operator to enhance image quality. The 

compressed image was scrambled using the 2D Henon map for 

better security. A fast image encryption algorithm was 

developed using this method and a 3D logical chaotic map 

system. Using simulation results, the proposed algorithms have 

a high probability of resisting a brute-force attack and of 

recovering good images with minimal measurement 

requirements. In addition, this algorithm has a faster encryption 

time than most others. Due to its good encryption effect, the 

proposed encryption algorithm is suitable for real-time 

applications. In the field of cryptography, index modulation 

coupled with a 5D chaotic map presents an intriguing avenue 

for future research. 
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