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 الملخـــص

         تمت في هذا البحث دراسة الاستقرارية لنظام يمثل مائعـا بـين لـوحين              
متوازيين لا نهائيين يسخن من الأسفل والاعتماد على انتقال الحـرارة بالتوصـيل             

  .والحمل والإشعاع
    وقد نوقش الموضوع تحت تأثير عـدد مـن المعلمـات ذات دلالـة فيزيائيـة                

ة ، إذ  تبين أن استقرارية النظام تعتمد على نسبة الحـرارة             مستخدمين طريقة عددي  
بين اللوحين، وكذلك على معامل التمدد الحراري كما استخدمت طريقة  تحليلية تـم              

  . من خلالها الحصول على صورة واضحة للجريان بتأثير التسخين
 

ABSTRACT 
                A model of fluid flow with heat transfer by conduction, 
convection and radiation has been discussed for stability with 
respect to restricted parameters (k,α,r,T*) which are proportional 
to: wave numbers, thermal expansion coefficient, combination of 
many numbers (Re,Pr,Ec,Bo,W,γ ) and the ratio of walls 
temperatures, respectively using numerical technique which 
illustrate that the stability of the system depends on the 
parameters T* and α. 

A clear picture of the flow is shown by using an analytical 
method. 
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Introduction: 
 Heat transfer in fluid flow is an important field in the 
mathematical modeling because of its wide range of applications 
such as designing of the cooling system for nuclear reactor, 
pressure measurements, turbomachinery and other engineering 
applications. 

 

 The principle of stability of fluid flow with heat transfer 
and its applications has been investigated by many authors such 
as Lorenz [1] and Yorke [3] and others. 

In this paper a model of heat transfer by conduction, 
convection and radiation in a fluid flow between two infinite 
parallel flat plates has been considered. 

The first like model without heating from below was 
investigated by Logan [2]. 
 
Model and Governing differential Equations: 

Consider an ideal fluid confined between two infinite 
parallel plates Y=0, Y=d in X Z Y space separated by a 
distance d, and heated from below, which is under the influence 
of a constant gravitation field g acting in the negative Y direction 
as shown in the following figure: 

 
 
 
 
 
 
 

T=T2 

T=T1 
d X 

Y 

Z 

Y=d 

Y=0 
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          Using Boussinisque approximation and the optical thick 
limit and if the temperature  differences between the walls and 
the fluid is small [4] the non- dimensional differential equations 
(in the new plane x z y , where x=X/d ,z=Z/d, and y=Y/d) govern 
the problem are : 
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 (γ: specific heat ratio ,Pr: prandtl number ,Re: reynold number, 
 Ec: Eckert number ,Bo: Boltzman number , w: Bouguer 
number,and β :thermal expansion coefficient) . With the 
boundary conditions (non-dimensional): 
u = v = w = 0         when  y = 0, 1 

1=θ              when  y = 0 

1

2

T
T

=θ           when  y = 1 

 



Raf. J. Of Comp. Sc. And Math’s.,Vol. .1, No.1.2004 
 

 11 

Stability Analysis: 
        Any system whatsoever is bound to be disturbed, a basic 
question therefore is “will the disturbance gradually die  down  or 
will  it grow in  amplitude in such a  way that  the system dose  
not return  to its original  state ?” 
          In the  field of  fluid mechanics  the  broad  study  of  
stability  is concerned  , in  part ,  with  the determination  of  the  
critical  values  ,  if any , of the flow  parameters  which  
distinguish the  two  different  regimes  associated  with  the  
answer to   the  above  question .  
The functions u, v , w , p , and θ  are written as: 
u = u1+u2 (x, y, z, t) 
 v = v1+v2 (x, y, z, t) 
w = w1+w2 (x, y, z, t)    
 p = p1+p2 (x, y, z, t) 
θ = θ1+θ2 (x, y, z, t) 
where : 
 u1, v1, w1, p1, and θ1 represent the steady state  
and 
 u2, v2, w2, p2, and θ2 represent the disturbance. 
 
Steady state: 

In this case the functions u1 ,v1 ,...... , θ1 , are independent 
of the time variable  t. 

 
Here we take the motionless (u1 =v1 = w1=o) then we can show 
that: 
P1 = P1 (y) and θ1 = θ1 (y) 
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Unsteady state:    
The equations of the three dimensional disturbance are: 
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with the boundary conditions : u2 = v2 =w2 = θ2 =0 , y =0,1 
We attempt to find a solution of the form: 
u2 = U (y) eat ei (k1

x+k
2
z) 

v2 = V (y) eat ei (k1
 x+k

2
 z)

    (3) 
- - - 
- - - 
θ2 = θ (y) eat ei (k

1
 x+k

2
 z) 

Where k1,k2 are  the wave numbers and "a" is the speed 
number(a=a1+ia2). 
Substituting  (3) in system (2) and using the linearized theory we 
have: 
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where T*=(T2-T1)/T1  ,  (T1: temperature of the lower wall , 
T2: temperature of the upper wall) 
Numerical technique: 

     A numerical technique known as Galerkin  method is used . 
From system (4) and by eliminating the pressure function in 
equation (3) using equations (1), (2)and (4) we get: 
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Applying Galerkin method on (5) and using the boundary 
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Which are square matrices of order n x n . 
The constants Bn and Dn satisfy the homogenous algebraic  

equations: 
x1 Bn + y1 Dn = 0 
x2 Bn + y2 Dn = 0     
or in a matrices from: 
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system (7) has a non-trivial  solution if  
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Or: 
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We conclude the following: 
(1) The system is stable if α and T* have the same signs. 
(2) The system is unstable if α and T* have different signs. 
(3) The system is in neutral stability if  T* = 0, or  α = 0 . 
Analytical Technique: 

In this section the unsteady state “ perturbation” in three 
dimensions is discussed and tested for satisfying Boundary 
conditions, and cases which gives us a clear picture of the flow 
are shown. 
By eliminating θ  in system (5) we can write: 
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      In order to find a solution satisfying the boundary condition, 
we must investigate all cases we get from the characteristic 
equation. 
m4+L1m2 +L2=0 
which is algebraic equation of degree four, it has four roots 
Thus: 

[ ]2
2
11

2 4
2
1 LLLm −±−=       (10) 

For D2 there are three cases (Here “a” is real): 
04  .1 2

2
1 <− LL   04   .2 2

2
1 =− LL   04   .3 2

1 >− LL  



Raf. J. Of Comp. Sc. And Math’s.,Vol. .1, No.1.2004 
 

 

 16 

each one has many cases. 
  By investigating those cases and applying the boundary 
conditions (9) 
the nontrivial solution holds at the following:  
i) 0,04 121 <−>− LLL   and:   2
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In this paper we illustrate the case i only. 
The general solution here can be written as:  
V(y)=c1+c2y+c3 cos.δ y+c4sin δ y ,     where the roots of the 
characteristic equation (10) are : 
λ1= λ2 = 0, λ3= iα, and λ4 = -i 
The boundary condition (9) gives the particular solution: 
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To get a clear picture of the flow by examining two 
dimensional disturbance, and the case n=1, k=1, (x,y) 
plane.Therefore k1=1, k2=0, w2=0. 
 Then: atixeyeiu )2sin()2(2 ππ=    and       atixeeyv ))2cos(1(2 π−=  
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,and the real solution is: xyeu at sin)2sin()2(2 ππ−=  and 
xeyv at cos))2cos(1(2 −=  

We study the velocity direction field  
<u2, v2> for: π20 ≤≤ x  10 ≤≤ y  
by noting the following facts: 
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The above figure is a diagram indicating the sign of u2 and 
the directions of the velocity filed <u1, v2> are shown in the 
following figure: 
 

 
 
 
 
 
 
 
 
 
 
   Figure (1) the directions of the velocity vector. 
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The following figure depicts schematically typical streamlines 
(obtained from the above figure) viewed from the positive z 
direction: 
 
 
 
y 
 
 
 
 
 
 
 
 
 
 
 
                  
                      Figure (2): the streamlines. 
Conclusion: -  

The effect of heating from below was clear, and the ratio 
of the temperatures of the two plates plays significant parameter 
to the stability. 

The analytical method gives us a clear picture of the flow 
which is a result of heating effect.      
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