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ABSTRACT
A model of fluid flow with heat transfer by conduction,
convection and radiation has been discussed for stability with
respect to restricted parameters (k,a,r,T ) which are proportional

to: wave numbers, thermal expansion coefficient, combination of
many numbers (Re,Pr,Ec,Bo,W,g) and the ratio of walls
temperatures, respectively using numerical techniqgue which
illustrate that the stability of the system depends on the
parameters T* and a.

A clear picture of the flow is shown by using an analytical
method.
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Introduction:

Heat transfer in fluid flow is an important field in the
mathematical modeling because of its wide range of applications
such as desgning of the cooling system for nuclear reactor,
pressure measurements, turbomachinery and other engineering
applications.

The principle of stability of fluid flow with heat transfer
and its applications has been investigated by many authors such
aslLorenz [1] and Yorke [3] and others.

In this paper a model of heat transfer by conduction,
convection and radiation in a fluid flow between two infinite
parallel flat plates has been considered.

The first like model without heating from below was
investigated by Logan [2].

Model and Gover ning differential Equations:

Consider an ideal fluid confined between two infinite
paralel plates Y=0, Y=d in X Z Y space separated by a
distance d, and heated from below, which is under the influence
of a constant gravitation field g acting in the negative Y direction
as shown in the following figure:

Y
T=T
Y=d | 2
X d
| T=T,
Y=0
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Using Boussinisque approximation and the optical thick
limit and if the temperature differences between the walls and
the fluid is small [4] the non- dimensional differential equations

(inthe new plane x z 'y , where x=X/d ,z=Z/d, and y=Y /d) govern
the problem are :

L e ;|
™x My 1z
Du__fp 2
Dt T
Dv Tp
—=-—-11- 1 T 3 1
oy bl e
D_W:-E 4
=~ g T———
Dq 2
—— S RN O oo 5
Dt g J
where R=

a:le , R:1+u1+vl+wl

Dt it qIx I\ 9z
(g specific heat ratio ,Pr: prandtl number ,Re: reynold number,
Ec. Eckert number ,Bo: Boltzman number , w: Bouguer
number,and b :thermal expansion coefficient).  With the
boundary conditions (non-dimensional):
u=v=w=0 when y=0,1
q=1 when y=0

q= when y=1

b—'_l ||\)_|
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Stability Analysis:

Any system whatsoever is bound to be disturbed, a basic
guestion therefore is “will the disturbance gradually die down or
will it grow in amplitude in such a way that the system dose
not return to itsorigina state ?’

In the field of fluid mechanics the broad study of
stability isconcerned , in part, with the determination of the
critical values , if any , of the flow parameters which
distinguish the two different regimes associated with the
answer to the above question.

The functionsu, v, w, p,and q arewritten as.

u=ugtuz (X, Y,z 1)
v=vitva (X, Y, zZ, 1)
w=wtws (X, Y, Z, t) }
P=pitp2(X, Y,z 1)
q=0:t02 (X, Y,z 1) J
where :

Uz, V1, Wy, p1, and gz represent the steady state

and
Uz, V2, W2, P2, and g represent the disturbance.

Steady state:
In this case the functions u; ,vq ,...... , 01, are independent
of the time variable t.

Here we take the motionless (u; =v; = w;=0) then we can show
that:

P =P1(y) and g1 =01 (y)
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Unsteady state:
The equations of the three dimensional disturbance are:
flu, + v, + w,

=X B 1
™ty 1z )
Duz — ﬂpz 2
DL = g —
Dv, __ TP, .

e LA, s 3 2
o= g A > @
L [ 4
Dt 9z
Dd, _ o

=RNZQ, oo, 5
ot d,

with the boundary conditions: u, =v,=w,=q,=0,y =0,1
We attempt to find a solution of the form:

Up = U (y) eat ei (k1X+k22) N
V, = V (y) eat el (k1 x+k2 2) (3)
- - - ~

J

G2 =q (y) € € 477
Where ki,k, are
number(a=a;+iay).
Substituting (3) in system (2) and using the linearized theory we
have:

the wave numbers and "a"' is the speed

- H \
ikU +V+ik, W=0 ...oooiiiiiiiee 1
AV =-1KP e, 2
av =-Pl+aq e, 3y 4
AW =-iK, P e, 4
(a+ RKk?) T _
q(u;_ = - %?V =0 i 5)
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where T*=(T,-T,)/T1 , (Ty: temperature of the lower wall ,
To: temperature of the upper wall)
Numerical technique:

A numerical technique known as Galerkin method is used .
From system (4) and by eliminating the pressure function in
equation (3) using equations (1), (2)and (4) we get:

(a+Rk?) T’
¢ ——7’q-—V= 1
q = —d-zv=0 (1)

2
V& k2 +%q20 2)

(5)

Applying Galerkin method on (5) and using the boundary
conditions we get:

¥
a(y) =8 B, sin(np)y. , Bn: constants.
n=0
N oz 2 % <
With theresidua R, = § }_ea%zp 2 B+RK an 1 D, t’];,sin(np)yi'J
n=01 & R g R 1] %
And:
¥
V(y) =& (D, sin(mp)y) , D, constants.

m=0

| | | Gak? ‘ v
With the residua R, :g'i igaiBn - (n’p? +k*)D, +Hs‘n(np)yy-
o & @ a

Take the residuals orthogonal to sin ( mp )y Then:

1
JR.}sin(mp)ydy =0
0

1
JR.}sin(mp)ydy=0
0
In more convenient we write;
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‘e a+Rk?0 . .
X, (n,m) = cgnzpz +Trsn(np)ysn(mp)ydy
0 [}
laak? o . .
xz(n,m>:c‘§’e‘a %sn(np)ysn(mp)ydy

() = T/ Jsinrp) ysin(rp) vy

1

Y, (n, m):—d(nzp2 +k2)sin(np)ysin(mp)ydy  mEL2,...n

0

Which are square matrices of order nx n..

The constants B, and D, satisfy the homogenous algebraic
equations.

Xx:Bn+y;Dn=0

XoBn+y,Dn=0

or in amatrices from:

6 ¥:106B,u_&u }

&, Y.0eD.10 &
system (7) hasanon-trivial solution if
X1 Y1
X, Ys
evaluate:

(7)

=0 , usng “Matlab” soft were (with n = 2) to

e, y,u

1) Xx-=
) &, V.0

2) X]
(3) Solution of the equation [X|= 0 with respect to ( a).

1
o - r16p* +k* +8p?%c): [(16p4 +K* +8p%k?)°r? - 16p°K%aT * - 4k'aT *?
8p? + 2k?
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Or:

1
= r(p4’Lk4+2pzkz)i[(p“+k“+2p2k2)2r2_ 4p2kzaT*—4k4aT*.F

a
2p? + 2k?

We conclude the following:

(1) The system isstable if a and T* have the same signs.
(2) The system isungtable if a and T* have different signs.
(3) The system isin neutral stability if T* =0,0or a =0.
Analytical Technique:

In this section the unsteady state “ perturbation” in three
dimensions is discussed and tested for satisfying Boundary
conditions, and cases which gives us a clear picture of the flow
are shown.

By eliminating g in system (5) we can write:

V@ +LVe+rLV =0 (8
Where: Ll:-¢@+2k29 , L2:6?<4+3k2-ikzg
éR o g R aR g
With the boundary conditions:
V(0)=V(D) =V(0)=V(1)=0 (9)

In order to find a solution satisfying the boundary condition,
we must investigate all cases we get from the characteristic
equation.
m*+L;m? +L,=0
which is algebraic equation of degree four, it has four roots
Thus:

e :%[ L, +4L2 - 4L2] (10)

For D? there are three cases (Here “a” is real):
1. L2-4L,<0 2. 12-4L,=0 3. L2- 4L>0
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each one has many cases.

By investigating those cases and applying the boundary
conditions (9)
the nontrivial solution holds at the following:

)L, - 4L,>0,-L, <0 and: |- L|=4L2- 4L,
i) L2 - 4L, >0,-L,<0 and: |- L|>y/LI- 4L,

In this paper we illustrate the case i only.

The general solution here can be written as:

V(y)=Ci+Cy+c3 cos.d y+c,sindy,  where the roots of the
characteristic equation (10) are :

| 1:| 2:O,| 3:ia,and| 4:'i

The boundary condition (9) givesthe particular solution:

VvV, =C, (1— cos(2np)y), where a =2np

from relations in system (4) we can find the other functions. Uy,
Pn W, and g, which establish the perturbation functions u,, v,
W>,p2, andqzas

i (kyx=k,2)

u, —i—[2np]sm(2np)e

_C(l_ COS(an)y) at i(k1x+k22)

i (kyx+k,2)

w, —i—[2np]sm(2np)ye

i (Kyx+ky2)

P,=- F(an)sin(an)yea‘e

. ae 8"1+(2 P)o

Cos(znp)yue e (kyx+k,2)

To get a clear picture of the flow by examining two
dimensional disturbance, and the case n=1, k=1, (X,y)
plane.Therefore ky=1, k,=0, w,=0.

Then: u, =i(2p)sin(p)ye*e* and v, =(1- cos(2p)y)e*e™
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.and the rea solution is  u,=-(2p)sin(2p)ye* snx and
v, =(1- cos(2y))e* cosx
We study the velocity direction field
<up, Vo> for: 0£x£2p O£y£l
by noting the following facts:
37) V2
u,<0 when: v2><0 when:
1) O<x<p, O<y< 1/2 P P
2) p<x<2p, Ya<y<l 2 2
u;=0 when: V,=0 when:
y:O’l X:B ,ﬁ
x=0, p 2 2
2)y=0,1
U, > 0 when Vo> > 0 when
1) O<x<p , l/2<y<1 1) 0<x<P and
2) p<x<2p, O<y<l/2 2
2) P cx<zp
2
The above figure is a diagram indicating the sign of u, and
the directions of the velocity filed <ui, v,> are shown in the
following figure:
vo> 0 Vo< 0 Vo< 0 Vo> 0
U,> O/ U,> O\ U< O/ u,< O\
AN - . e
V>0 V<0 V<0 V>0
U,<0 U<0 Uu,>0 U,>0 > X
0 P D >

Figure (1) the directions of the velocity vector.
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The following figure depicts schematically typical streamlines
(obtained from the above figure) viewed from the positive z
direction:

1/2

2p

Figure (2): the streamlines.
Conclusion: -

The effect of heating from below was clear, and the ratio
of the temperatures of the two plates plays significant parameter
to the stability.

The analytica method gives us a clear picture of the flow
which isaresult of heating effect.
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