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1. Introduction  

After the end of the Cold War, the Western nations' navy shifted 

from being based in the deep sea to being based offshore. The 

port region's safety is crucial to the economies, politics, and 

defenses of coastal states and localities. As a result, several 

nations have given attack defense a lot of attention. The port 

region's technological capabilities. Because of this, there has 

been much interest in underwater surveillance systems for 

commercial management, military blockade, and safety defense 

in recent years. For both military and civil applications, 

underwater surveillance systems must be able to detect and 

identify entering and leaving boats as well as underwater 

vehicles [1]-[]2]. The army began using underwater acoustic 

communication systems (UWACS) extensively in the late 19th 

century [3-[4]. Underwater environments are home to various 

relevant auditory signals that vessel propellers, marine 

mammals, and other ambient organisms emit—autographs as a 

token of appreciation. As a result, passive radar systems use 

sound to detect and categorize nearby objects for critical 

applications like navigation and surveillance [5]. 

Target radiation noise is utilized in underwater acoustic target 

passive detection technology, which uses a radar system to 

detect and identify the kind of target. Generally, the hull 

constructions and mechanical vibration properties of various 

ship targets and propeller construction vary. These causes cause 

disparities in radiated noise. Hydrophones record a complex 

and hazy image of the ship's radiated noise because of the gap 

in operating conditions on board and the interference from time- 

and space-varying underwater acoustic channels and ocean 

noise. The challenges associated with underwater audio signal 

detection increase with complexity and fuzziness. As a result, 

enhancing a radar system's underwater audio signal detection 

capabilities might be challenging [6]. The artificial intelligence 

approach makes it possible to model complicated data and is 
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appropriate for designing algorithms in intricate settings. 

Several researchers have used artificial intelligence to detect 

and recognize underwater audio targets [6]. It may be broadly 

classified into two categories: deep learning and standard 

machine learning. Classifier design and feature extraction are 

traditional machine-learning techniques [6]. Using 

conventional techniques, researchers extract a variety of data 

from the ship's radiated noise signal, including signal structure 

features [7], Time-frequency analysis and frequency 

characteristics [8]–[]9], and auditory perception aspects [10–

[11]. Next, the retrieved characteristics are fed into classic 

machine learning classifiers, including the one based on a basic 

neural network or the approach based on statistical analysis.  

While classic machine learning methods can complete specific 

tasks, the complexity of the undersea environment, the variety 

of ship target operating circumstances, the extraction of features 

from excessive artificial involvement, and the simplicity of 

classifier design all restrict recognition accuracy. Researchers 

used deep learning for underwater acoustic signal recognition 

to address these issues.  

CNN can recognize distinct items in visual input, give each 

object a learnable weight, and then distinguish one object from 

another. Another advantage of CNN is that it requires much less 

pre-processing than other classification methods. 

This work studies one of the advanced deep learning types 

(DensNet). Because DensNet duplicates the data several times, 

an input data preprocessing stage is added to overcome this 

problem.  

This paper uses the wavelet transform as a preprocessing stage 

and the DenseNet neural network  as a classifier. Section 2 

presents related works that recognize underwater signals. 

Section 3 describes the fundamentals of DenseNet. Section 4 

presents the dataset used in this work. Section 6 describes the 

details of the DenseNet model. Section 6 shows the results with 

discussions, and finally, section 6 presents the work's 

conclusion. 

2. Related Works 

Underwater Acoustic (UA) signal detection and recognition has 

long been achieved by skillfully manipulating handmade 

aspects, including temporal and spectral parameters; 

nevertheless, their efficiency significantly impacts the sonar 

system's ultimate performance. Many feature extraction 

algorithms have been investigated to address this problem by 

capturing the acoustic properties of propellers, which may be 

divided into three groups: time [12], frequency [13], and time-

frequency combination domains [14]. 

Time-frequency analysis methods are extensively employed for 

classifying UA signals because they are better appropriate for 

nonstationary signals and are inspired by human auditory 

perception. Bark-wavelet analysis and the Hilbert-Huang 

transform were investigated. 

Zeng and Wang [15] proposed UA signal frequency 

decomposition and signal reconstruction based on 

instantaneous frequency and amplitude  . To model up to 16 UA 

targets with the gamma tone coefficient. Zhang et al. [16] 

looked at several standard classifiers, including decision tree 

(DT), support vector machine (SVM), and k-nearest neighbor 

(KNN).   

Several machine learning (ML) recognition methods have been 

extensively used to increase accuracy 

 in the past ten years. 

Yuan et al. [17] investigated an innovative supervised feature 

separation method to optimize the deep features extracted by 

the one-dimensional convolutional auto-encoder-decoder 

model to enhance the precision of underwater acoustic target 

categorization on the data limit. Despite a satneeds to display 

moretrategy displays many shortcomings, such as the Fourier 

transform's high complexity for data transformation and its 

delicate performance. In the presence of additive noise.  

Deep learning (DL), which has recently made significant 

progress in many different academic fields [18], has performed 

very well. For instance, Wang et al. [19] used a modified 

empirical mode decomposition (MEMD) and deep learning to 

train the GFCC feature. The GMM layer of the network reduces 

redundant features and increases the recognition rate. Another 

study [20] looks into a multimodal deep learning (DL) approach 

for ship recognition using ship-radiated sound. This approach 

involves simultaneously extracting deep features from the 

visual and auditory modalities and combining them to a 

moderate degree, perhaps to increase the accuracy and 

dependability of sonar systems. However, in addition to the 

requirement of multimodal synchronization, this technique 

incurs high computational costs [21]. A dense convolutional 

neural network was utilized for automatically training 

representative features, eliminating the need for expert 

knowledge in feature extraction and domain translation [5]. The 

CNN-based classifier outperforms other current CNN and ML 

models in an accuracy competition, reaching a recognition 

accuracy at SNR 0 dB equal to 98.85%. 

The general formulation of the problem statement is as follows: 

It requires accurate identification of the signal type, which 

results from precise feature extraction and classification. 

The objectives of the paper are: 

1. It preprocesses the input into the network to get good 

data representation, improving the classification 

accuracy.  

2. The use of a dense network of CNN types improves 

classification accuracy. 

3. Compared to related works, the above two factors 

result in the best signal categorization accuracy. 

 

3. Densely Connected Convolutional Networks  

To address the issue of gradient vanishing caused by overly 

deep learning, the Densely Connected Convolutional Networks 

is offered, which decreases the parameters due to adding bypass 

multiplexing, making sure the neural network's layers are deep 

enough to extract enough features. Fig.1 depicts the neural 

network topology of DenseNet. As shown in Fig. 1, the input of 

each layer is derived from the output of all preceding levels. 
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From the input data, each neural network layer will extract 

features that will become more pronounced as the layer depth 

increases. Through feature reuse and bypass setup, DenseNet 

significantly decreases the number of network parameters and, 

to some extent, resolves the gradient vanishing issue [22]. 

4. Dataset Description  

Doan [5] created the dataset used in this work. A passive sonar 

system records a data set at a sampling rate of 22050 Hz, 

consisting of 11 underwater acoustic signals (representing 11 

classes for recognition) and a single noisy signal for 

performance testing. 

 

Figure 1. DenseNet neural network 

 

A sonar specialist with years of experience utilizing acoustic-

based sonar systems for target detection and reidentification 

labels each signal. 

To test recognition models, the signals were subjected to the 

noise with a 2 dB step size and an SNR (standard deviation of 

the received signal power divided by the noise power) ranging 

from −20 to 10 dB. Each signal is successively split into 1000 

observation frames as a preprocessing step before data 

modification; each frame contains 4096 amplitude samples. A 

total of 192000 signal frames are gathered for 12 UA signals 

tested at various SNRs. The data set is then split into 70% for 

training and 30% for testing at random. 

5.  CNN Model   

The proposed method has two parts. The first part applies a 

wavelet transform to the input data to get an efficient data set 

resonation for the CNN. 

The second part uses DenseNet, which is used in [5]. Fig.2 

shows the flowchart for the proposed method. The model 

classifies 11 underwater acoustic signals and a single blank 

signal. As part of the data preparation procedure, the continuous 

audio signal is divided into many frames in the time domain, 

each having a length of   4096 samples.  

At the start of the network, a batch normalization layer follows 

the input layer to help with the optimization process throughout 

the training phase. As shown in Fig.3 with Table 1, CNN is 

constructed by multiple convolutional blocks stacked, or 

"cTonv-blocks," each comprising activation, max-pooling, and 

convolutional layers. 

 

                  
Figure 2. Flow chart of the proposed method 

 

To create 32 feature maps, the convolutional layer is equipped 

with 32 one-dimension kernels measuring 7. This allows for a 

precise design. Next, a max-pooling layer is set up with a pool 

length of 3, and spatial pooling is used to downsample the 

output feature map y by removing any weak features that may 

exist. The dimension size of the output is reduced by defining 

the stride of (1, 2), which lowers the computing volume for 

several subsequent layers. In the network design, the activation 

layer comes after the max-pooling layer and is usually crucial 

in CNNs.  

Due to rapid convergence, the (eLU) function is typically 

considered in several renowned CNN designs. Nevertheless, it 

indicates a barrier where information vanishes for input values 

smaller than zero, which the (eLU) function appears to be able 

to surmount to improve network training efficiency.  

In UATC-DenseNet, there are many skip connections and a 

backbone flow. Three convolutional blocks stack the flow to 

extract deep features. Meanwhile, skip connections are 

carefully examined to enable the gradient flow farther into the 

network.

 

Start 

Dataset Loading 

Dataset Preprocessing with Multiresolution 

MR-DensNet Construction 

Model Training 

Dataset Splitting (70% Training + 30% Testing) 

Test the Training Model 

Recognition Result 

End 
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Figure 3. Structure of the CNN 

 

In contrast to certain traditional CNNs, the skip connection 

protects the network from the vanishing gradient issue while 

maximizing the use of feature maps collected from several 

previous conv-blocks. The three most common skip connection 

strategies are addition, sidewise concatenation, and depth 

concatenation.  

5. Discussions and results  

The paper's technique categorizes 12 different types of signals 

using a dense CNN network with several filters. The simulation 

is Matlab 2022a. Table 2 shows the CNN Training Parameters.
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Table 1. Layers of the CNN

 Name Type Activations 

1 imageinput Image Input 1(S) x 4096(S) x 1(C) x 1(B)  

2 batchnorm_1 Batch Normalization 1(S) x 4096(S) x 1(C) x 1(B)  

3 conv_1 Convolution 1(S) x 4096(S) x 32(C) x 1(B)  

4 maxpool_1 Max Pooling 1(S) x 2048(S) x 32(C) x 1(B)  

5 maxpool_2 Max Pooling 1(S) x 2048(S) x 1(C) x 1(B)  

6 maxpool_5_1 Max Pooling 1(S) x 1024(S) x 1(C) x 1(B)  

7 elu_1 ELU 1(S) x 2048(S) x 32(C) x 1(B)  

8 Depthcat_1 Depth concatenation 1(S) x 2048(S) x 33(C) x 1(B)  

9 batchnomi_3_1 Batch Normalization 1(S) x 2048(S) x 33(C) x 1(B)  

10 maxpool_4_1 1 Max Pooling 1(S) x 1024(S) x 33(C) x 1(B) 

11 Conv_3_1 Convolution 1(S) x 2048(S) x 32(C) x 1(B)  

12 maxpool_3_1_1 Max Pooling 1(S) x 1024(S) x 32(C) x 1(B)  

13 elu_2_1 ELU 1(S) x 1024(S) x 32(C) x 1(B)  

14 maxpool 4_1_2_1 Max Pooling 1(S) x 512(S) x 33(C) x 1(B)  

15 depthcat_2_1 Depth concatenation 1(S) x 1024(S) x 66(C) x 1(B)  

16 batchnorm_3_2_1 Batch Normalization 1(S) x 1024(S) x 66(C) x 1(B)  

17 maxpool_4_2_1 Max Pooling 1(S) x 512(S) x 66(C) x 1(B)  

18 maxpool_5_2_1 Max Pooling 1(S) x 512(S) x 1(C) x 1(B)  

19 conv_3_2_1 Convolution 1(S) x 1024(S) x 32(C) x 1(B)  

20 maxpool_3_2_1_1 Max Pooling 1(S) x 512(S) x 32(C) x 1(B)  

21 elu_2_2_1 ELU 1(S) x 512(S) x 32(C) x 1(B)  

22 deptheat_2_2_2_2 Depth concatenation 1(S) x 512(S) x 132(C) x 1(B) 

23 avgpool2d Average Pooling 1(S) x 64(S) x 132(C) x 1(B)  

24 elu ELU 1(S) x 64(S) x 132(C) x 1(B)  

25 dropout Dropout 1(S) x 64(S) x 132(C) x 1(B)  

26 fc Fully Connected 1(S) x 1(S) x 12(C) x 1(B)  

27 softmax Softmax 1(S) x 1(S) x 12(C) x 1(B)  

28 classoutput Classification Output 1(S) x 1(S) x 12(C) x 1(B)  

Table 2. CNN Training Parameters 

Value Parameter 

20 MaxEpochs 

64 batchSize 

0.001 InitialLearnRate 

5 LearnRateDropPeriod 

0.1 LearnRateDropFactor 

0.0001  L2Regularization 
 

This work is done on a Laptop Core i7-9750H CPU and 

NVIDIA GeForce RTX 2060 GPU.  

In the first experiment, the impact of the wavelet level on the 

overall accuracy is thoroughly investigated, in which the 

wavelet level decomposition configured varies in the set of {3, 

4, 5, 6, 7}.   

 

 

Figure 4. Detection accuracy with wavelet level 3 
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Figure 5. Detection accuracy with wavelet level 4 

 

Figure 6. Detection accuracy with wavelet level 5 

 

 

Figure 7. Detection accuracy with wavelet level 6 

 

According to the result in Fig (4-8), different wavelet levels to 

feed data to CNN allow for a unique analysis of UA signals. 

Multiple feature representations capture temporal correlations, 

which are then integrated via the skip-connection process in 

MR-DenseNet. Fig. 9 shows the performance comparison of all 

wavelet levels. The performance  of the wavelets levels is 

similar.  Wavelet level 5 is better than another wavelet level. 

The proposed network outperforms popular networks like 

CNN-ELM [23], ResNet18 [24], and SqueezeNet [25] in 

detection accuracy—the obtained results in Fig.9.  

MR-DenseNet maximizes data representational features to 

attain greater accuracy, with gains ranging from 1%-9%. 

 

 

Figure 8. Detection accuracy with wavelet level 7 

 

 

Figure 9. Detection accuracy with all wavelet levels 

 

As shown in Fig. 10 at SNR = -20 dB, the MR-DenseNet 

reaches an accuracy of 50%, UATC-DenseNet almost reaches 

40%, and the other networks are less than 30%. This shows the 

importance of modifying the input data set. The proposed 

network performs significantly better at low SNRs. When the 
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wavelet transform is added, the five-level decomposition is 

combined with the Db2 basis function. The gathered 

underwater target signals are preprocessed using the wavelet 

decomposition technique, and the high-frequency underwater 

target noise signal coefficient is isolated. Still, the original 

underwater target signal remains useful after processing. The 

underwater target signal following wavelet transform 

decomposition serves as the input for CNN. This producer 

improves DensNet performance, as seen in Fig. 9.  

 

 

Figure 10. Compares BL, VGG, RN, and proposed CNN. 

 
6. Conclusion: 

Our work revealed the assessment of MR-DenseNet with 

different wavelet levels for UA target detection and recognition 

at varying SNRs and compared it to other current works. MR-

DenseNet recognizes the acoustic radar signals more correctly 

due to its efficient data preprocessing with deeper network 

design. MR-DenseNet outperforms different CNNs on 12-

target detection. With such accuracy, MR-DenseNet's future is 

promising, and it can be used in underwater radar systems to 

categorize acoustic objects effectively. The additional process 

for the dataset is the limitation of the proposed method. This 

work validates the practical applicability using an actual 

passive sonar dataset evaluation. This exemplifies the power of 

this methodology and its possible use in actual underwater 

situations. It can be used for another application that requires 

recognition. 
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