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Abstract

The formation of subsurface cavities in karstic rocks causes serious engineering problems for
shallow and deep foundations. These cavities restrict the urban development and trigger
significant geotechnical and geoenvironmental hazards. In this work, 2D Electrical Resistivity
Tomography (ERT) technique was adopted to simulate subsurface cavities commonly formed
in limestones using Wenner, Wenner-Schlumberger and Dipole- Dipole arrays. Air and water
filled cavities were modelled utilizing blocky L1 norm and smooth L2 norm optimization
methods. The results showed that subsurface cavities can well be detected particularly at low
resistivity noise levels. Their geometry and position are reasonably indicated using L1 norm
method due to the sharp resistivity variations especially for air filled cavity model while L2
norm method produces gradual resistivity boundaries for both air and water filled cavities.
Dipole- Dipole array and L1 norm method perform better in delineating geometry and position
of both air and water filled cavities. It is suggested that ERT technique using Dipole- Dipole
array, as non- invasive tool, can be adopted for detecting subsurface cavities in karstic rocks
to avoid the catastrophic effects of these features.
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Introduction

Natural and man- made cavities in subsurface rocks bring significant geotechnical challenges
and problems for environmental and civil engineers. In particular, cavities developed very often
due to dissolution of soluble Karstic rocks such as limestone and evaporate cause variable
environmental and geotechnical hazards such as roads subsidence, development of fissures in
civil buildings and collapsing of soil and engineering structures [1]. The dissolution of karstic

rocks might lead to features such as voids, cavities, caves, sinkholes and karst topography. The
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term cavity is commonly used to denote these karst features [2]. The formation of subsurface
cavities lead to restrict the utilization and development of urban areas that are underline by
karstic rocks. This problem is worldwide as karst train covers about 7-10% of earth's surface
[3]. Costly and time consuming drilling methods have traditionally been used to locate the
subsurface cavities as part of geotechnical site investigations. Electrical Resistivity
Tomography (ERT) technique offers cost effective and non invasive alternative tool to identify
the subsurface features and to determine the appropriate location of test borings needed [4].
Significant advances in this method have taken place with the advent of automated resistivity
systems and robust data inversion software that can be used to address wide range of problems
[5, 6, 7]. In the literature, ERT technique has routinely been used for environmental and
geotechnical investigations [8] to detect, for instance, sinkholes [4], buried fractures [9] and
cavities [10]. Numerical modelling of subsurface cavities using ERT technique has been
adopted [11, 12, 13]. However, the available studies have focus on delineation of common air
filled cavities and sinkholes available due to the acidic effects of natural water. These studies
were effective in detection this type of cavities. In the nature, the natural and man-made cavities
can be filled with air and water. In addition, a common occurring question in ERT investigations
is which of the standard electrode arrays will perform better in delineating the subsurface
features. Therefore, this work focuses on application of ERT technique for simulating air and
water filled cavities underneath the ground surface using Wenner, Wenner-Schlumberger and
Dipole- dipole arrays. Resistivity forward modelling and inversion software have been used to

achieve this goal using blocky and smooth optimization methods [14].

ERT Technique: Data Acquisition and Interpretation
The main principle of the traditional resistivity method is to inject DC or low frequency current
into the subsurface medium through two current electrodes and measuring the resulting voltage

drop across another two potential electrodes [15]. The measured voltage drop is proportional to
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the electrical resistivity which can be related to the characteristic properties of the medium, that
Is:

Where, p is the soil resistivity (Ohm.m), AV is the voltage drop (Volts), Iis the current (Amps),
and K is the geometric factor (meter) that accounts for the electrode array.

The more recent and effective ERT technique is based on using large number of electrodes and
multi electrode and multi channel resistivity systems [7]. In this method, the resistivity
measurements are collected along profiles and grids to generate 2D and 3D sections using
appropriate interpretation software [16]. The resistivity measurements can be acquired using
different electrode arrays of different characteristics. Depending on the relative position of the
current and potential electrodes, the characteristic features of the electrode arrays such as signal
strength, lateral coverage and sensitivity to vertical and horizontal resistivity changes are
different [17, 18]. In this study, Wenner (W), Wenner- Schlumberger (WS) and Dipole-Dipole
(DD) arrays have been chosen (figure 1). Wenner array has a high signal strength and sensitivity
to the vertical resistivity changes. Wenner- Schlumberger array is a combination of Wenner
and Schlumberger arrays. It offers good signal strength and moderate sensitivity to detect both
horizontal and vertical structures. Dipole-dipole array is very sensitive to horizontal resistivity
changes with higher data coverage but low signal response [6, 18]. 2D resistivity measurements
are usually collected using different electrode spacing (a) and (n) separation. The resistivity
data obtained are presented in apparent resistivity pseudosections which give a qualitative
approximation of subsurface resistivity distribution. To obtained a true subsurface resistivity

picture, an inversion procedure is used [16].

\[g(())li -1r3:ti\rl)9;/2d'><Adzliri<|)rzo(|)/i(7) 24237/d] 200 P ISSN: 2222-8373



http://www.djps.uodiyala.edu.iq/pages?id=141

DIYALA JOURNAL FOR PURE SCIENCES

Numerical Modelling of Subsurface Cavities Using 2D Electrical
Resistivity Tomography Technique

Asem Ahmed Hassan

(@) (b) (b)

Figure (1): Electrode arrays a) Wenner array b) Wenner- Schlumberger array c)
Dipole- Dipole array: C1 and C2 are current electrodes; P1 and P2 are potential
electrodes; a and n are electrode spacing and separation factor, respectively

Numerical Modelling Using ERT Technique

Methodology

The goal of the ERT numerical modelling is to simulate real scenarios and to examine the
effectiveness of the method applied before carrying out costly actual laboratory and field
investigations [19, 20]. It has increasingly been used to simulate different features such as
fractures [17], faults [21], Cavities [13] and soil cracks [22]. Numerical modelling using ERT
technique is a procedure of two-step [19]: Firstly, a synthetic resistivity model is created
based on the user prior information (i.e. forward modelling); and secondly, the model is
inverted to reconstruct the subsurface true resistivity distribution (i.e. inverse modelling).
In the current study, 2D forward modelling RES2DMOD ver. 3.01 [23] and 2D inversion
RES2DINV ver. 3.71 [24] software have been used. RES2DMOD is finite difference software
that determines the apparent resistivity values for a synthetic survey carried out with a user

defined electrode arrangement and resistivity distribution [23, 25]. RES2DINV uses finite
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difference method based on the regularized least squares optimization procedure [24, 26] to
produce true 2D resistivity model from the apparent resistivity data. The software iteratively
determines the model resistivity values that will closely produce the measured apparent
resistivity data.

The Synthetic Resistivity Model

In the current work, air and water filled cavities in limestone have been modelled. A synthetic
model, shown in figure (2a) which consists of limestone host rocks (100 Ohm.m) with air filled
cavity (10000 Ohm.m) and water filled of (20 Ohm.m) has been designed using RES2DMOD
software. The resistivity values of the model are within the common ranges of the materials
reported in literature [11, 13, 27]. Each cavity has (2.0m X 1.75m) dimensions and buried at
1m depth. The model has been discretized and simulated using RES2DMOD software (figure
2b). The total number of the electrodes was 36 with a minimum electrode spacing of 1m.

e g ©mm Water Filed Cavity Air Filled Cavity _
Depth Distance (m)
(m)ll.llﬂ 4.00 8.00 12.9 16.0 20.9 24.0 28.9 32.0

10.0
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Figure (2) The resistivity synthetic model: a) Air and water filled cavities model

b) model discretization

Once the model file is supplied, RES2DMOD is used to calculate the apparent resistivity section
of W, WS and DD arrays and the results are saved to be used for input in RES2DINV software
to produce the true resistivity sections. The final results are the measured and calculated
apparent resistivity sections, and the final inverse resistivity model. To simulate real field
conditions, adding scattered Gaussian resistivity noise is a common practice in resistivity
modelling [28]. First, the calculations are made for the model with 0% noise then scattered 5%,
10% and 25% noise values are added. Second, the synthetic apparent resistivity data are then
inverted utilizing blocky L1 norm and smooth L2 norm optimization methods. The L1 norm
attempts to minimize the absolute difference (Abs.) between the measured and the calculated
apparent resistivity values while the L2 norm (the conventional least-squares standard method)
attempts to minimize the square of difference (RMS) between the measured and calculated

apparent resistivity values [14].
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Results and Discussion

As mentioned earlier, the outcomes of the ERT modelling are three resistivity sections. As an
example, Figure (3) shows the resulted resistivity sections of the model (no noise added) using
WS array and L1 norm method: the measured apparent resistivity pseudosection (up), the
calculated apparent resistivity pseudosection (middel) and the final true resistivity inverse
section (down) after 3 iterations. The low absolute (Abs.) error (0.57%) indicates low absolute
difference between the measured and calculated apparent resistivity sections. The inverted
resistivity section captures clearly the modelled air and water filled cavities. After that only
final inverse resistivity sections of L1 norm and L2 norm methods for the W, WS and DD arrays
will be presented and discussed.

ps7 Cavity Model
00 4.90 S.pO 1%.0 1@.0 Zq.O 21}.0 28‘.0 32‘_0 m

462

Measured Apparent Resistivity Pseudosection

PsZ 00 400 8.00 120 16.0 200 240 280 320 m.

0519f
1.56:
248
341
162
555
647

Calculated Apparent Resistivity Pseudosection

Depth  Iteration 3 Abs. error = 0.57 %
00 4.90 S.pO 1%.0 1@.0 Zq.O 21}.0 2§.0 32‘_0 m

Water Filled Cavity # Air Filled Cavity

Inverse Model Resistivity Section

-----I:I----EI------
299 4138 386 82.1 15 225 316
Resistivity in ohmm Unit electrode spacing 1.00 m.

Figure (3):The resistivity sections of the air and water filled model with 0% noise using

WS array and L1 norm method
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The inverted resistivity sections of 0%, 5%, 10% and 25% noise models using W array and L1
norm method is shown in figure (4). The resistivity sections reflect satisfactory the modelled
cavities particularly at no or low noise levels. However, at extraordinary high (25%) noise level
(figure 4d), both cavities are not detected. The inverted resistivity sections of 0%, 5%, 10% and
25% noise models using W array and L2 norm method is presented in figure (5). Although the
modelled cavities can still be detected, their shape are more exaggerated and smeared
comparing to L1 norm sections shown is figure (4), as L2 norm method tends to produce more
gradual resistivity variations than L1 method [14]. Therefore, the shape of water filled cavity is
relatively more exaggerated. The low resistivity contrast in the water filled cavity case
comparing to the air filled cavity is another reason. Similarly, at extraordinary high (25%) noise
level both cavities are not captured. As a comparison, L1 norm method performs better in
reflecting the shape of the modelled cavities than L2 norm method, particularly for air filled
cavity and low noise level. The inverted resistivity sections of 0%, 5%, 10% and 25% noise
models using WS array and L1 norm method is shown in figure (6). It can be seen that position
and shape of the modelled cavities are well detected. L1 norm method captures the boundaries
of the modelled cavities, particularly at no or low noise levels as it tends to produce models
with sharp boundaries between different regions with different resistivity values [14]. However,
the cavities are smeared and poorly resolved in figure (6d) due to the addition of extraordinary
high (25%) noise value. The inverted resistivity sections of 0%, 5%, 10% and 25% noise models
using WS array and L2 norm method is presented in figure (7). Although that the modelled
cavities are captured in the inverted sections, L2 norm method showed again gradual resistivity
variations and boundaries between the host rocks and the cavities. Therefore, the shape of the
cavities are relatively exaggerated and their positions are poorly indicated compared to the
sections produced using L1 norm method. Again, at 25% noise level, the cavities are smeared

and poorly indicated and the water filled cavity is relatively more smeared. However, as a
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comparison, the resistivity sections produced using WS array and L1 norm method reflected
better the modelled cavities than W array using L1 norm method.
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Figure (4) The inverted resistivity sections using W array and L1 norm method with

different noise levels
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Figure (5) The inverted resistivity sections using W array and L2 norm method with

different noise levels
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Figure (6) The inverted resistivity sections using WS array and L1 norm method with

different noise levels
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Figure (7) The inverted resistivity sections using WS array and L2 norm method with

different noise levels

The inverted resistivity sections of 0%, 5%, 10% and 25% noise models using DD array and
L1 norm method is shown in figure (8). Compared to the resistivity sections produced using L1

norm method for W and WS arrays, DD array captured more clearly the modelled cavities.
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Their shape and position are obviously more evident even at 25% noise levels, particularly for
air filled cavity. This method is more successful in delimiting the resistivity transition between
the cavity and the host rocks for both air and filled cavities. This finding aggress with some
case histories for air filled cavities reported in the literature [10, 11]. Finally, the inverted
resistivity sections of 0%, 5%, 10% and 25% noise models using DD array and L2 norm method
is presented in figure (9). Although the modelled cavities are reasonably indicated in the
resistivity sections, their shape are relatively smeared and exaggerated comparing to L1 norm
sections. Gradual resistivity boundaries between the cavities and the host rocks are noticed, and
at high noise (25%) levels the cavities are poorly resolved.

It can be summarized that:

1. Air and water filled cavities can reasonably be detected using ERT numerical modelling
particularly at low noise levels.

2. The shape and position of the modelled cavities are better indicated using L1 norm method
due to sharp resistivity variations especially for air filled cavity model.

3. L2 norm method produces gradual resistivity boundaries for both air and water filled cavities.
4. Compared to W and WS arrays, DD array using L1 norm performs the best in capturing the
modelled cavities even at high noise levels. Therefore, it is recommended to be used for

detecting both air and water filled cavities in karst areas.
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Figure (8) The inverted resistivity sections using array DD and L1 norm method with

different noise levels
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Inverse Model Resistivity Section
. EI----EI- [ . -
229 340 503 T48 m 243 359
Resistivity in ohm m Unit electrode spacing 1.00 m.

¢) 10% noise

Depth Keration 3 RMS error=26.1 %
00 400

Inverse Model Resistivity Section
I I N N (N ) N [ (.
278 405 590 859 125 182 265 386
Resisfivity in ohm.m Unit electrode spacing 1.00 m.

d) 25% noise

Figure (9) The inverted resistivity sections using DD array and L2 norm method with

different noise levels
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Conclusions

2D Electrical Resistivity Tomography technique was adopted for simulating air and water filled
subsurface cavities commonly formed in limestones. Wenner, Werner- Schlumberger and
Dipole- Dpole arrays were implemented using blocky L1 norm and smooth L2 norm
optimization methods. The results indicated that the modelled cavities can reasonably be
detected particularly at low noise levels. The L1 norm exhibits better sensitivity to resistivity
variations in the examined models particularly for air filled cavities due to sharp boundaries
expected, while L2 norm tends to produce gradual resistivity variations. Dipole- Dpole array
using blocky L1 norm method performs better compared to Wenner and Werner- Schlumberger
arrays in detecting the modelled cavities even at high noise levels. Therefore, it is recommended

to be used for delineating the subsurface cavities in karst areas.
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