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 الملخص

في هذا البحث تم التطرق إلى صنف جديد من خوارزميات المتري المتغيـر              

وتمت كذلك دراسـة بعـض النتـائج    . على وفق تقنية خاصــة بالقياـس  الذاتي    

  . النظرية التي تؤكد التقارب الشامل للخوارزمية الجديدة المقترحة 

Abstract 

  In this paper a class of self-scaling VM-algorithms for 

unconstrained optimization is investigated. Some theoretical 

results are given on the scaling strategies that guarantee the 

global convergence of the new proposed algorithm. 
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1. Introduction    

  Consider the unconstrained optimization problem 

min nRx∈
 f(x) where f is a nonlinear differentiable function. 

Assume that an exact line search is used at the beginning of each 

iteration k, and that for an estimate vector xk there is a symmetric 

and positive definite matrix Bk. The new iteration is computed by   

kkk gBd 1−−                                                                              (1) 

1,1 ≥+=+ kdxx kkkk λ                                                              (2) 

where gk is the gradient of the objective function at kx . kλ  is 

a steplength satisfies exact line search strategy, i.e. 

k
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k
T
kk

T
kkk dgddxg βλ ≥+ )(              (4) 

for 
2
10 ≤≤ α and 1≤≤ βα . See Fletcher [6] for the details of 

standard VM step. For the next iteration Bk+, is updated by Al-

Bayati's VM-update i.e. 
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See Al-Bayati [1 ,2] for more details and properties of this 

algorithm. 
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2. New Suggestion 

In this section we describe the prototype for the new 

suggested class of algorithms with self-scaling strategies: 

Algorithm: 

1-For a starting point x, and non singular matrix V 1 ; set k =1.                        

2- Terminate if ε<+1kg , ε  is a small positive real number.                              

3-Compute 
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kλ is computed ;by exact line search . 

4- Update 
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5- Compute the scaling parameter 0≥kσ and , 0≥kµ  such 

that kk µσ ≤ . If w; represents the column of Wk  Put 

],.......,[ 21 nk cccdiagC = where kσ  = 0.5 and kµ =1 
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 6-Set kkk CWV =+1  

 7-set k = k +1 and go to step (1) 

Note that: 
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1- In the above algorithm 
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and the update is performed directly on Vk . 

2-It will be shown that one has considered freedom in choosing 

kδ and kµ  of every iteration, while still maintaining global 

convergence of the above algorithm. It is necessary that the 

choice of these values be made carefully. 

 

3. Global Convergence of the New Algorithm 

In this section, we prove that the new algorithm suggested 

in section (2) with an appropriate choice of the scaling 

parameters is globally convergent on strictly convex objective 

functions. 

Lemma 3.1: For any nxn matrices A and C, where C   diagonal 

matrix  

Tr( TACA )=tr( TAA )+tr[(C-1) TAA ]                 (7)           

Where tr, denotes trace of any matrix see [7]. 

Proof: For any two matrices A and B 

tr (AB) = tr (BA) 

=> 
)()()(

)()(
AAtrACAtrAAtr

ACAtrACAtr
TTT

TT

−+=

=  

Eq. (7) follows directly from the last equality # 
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Lemma3.2: Let h(u) = In u-u for u>0  

Let ∋∃>> 4321       0,0 δδδδ and  

    )()(],0(      ],0( 31 δδ ≤−⇒∈∈ xhyhxyandx (8) 

And 

  )()(),[  [ 42 δδ ≤−⇒∞∈∈ xhyhxyandx  (9) 

Proof: To prove eq.(8) we first note that h(u) is strictly 

concave and its maximum occurs at u =1. If  ))1,min(,0( 1δ∈x   

we conclude that for any       Y∈(o, X]. 

h(y)-h(x)<0 since h(u) is strictly increasing for 0 < u<- 1. 

On the other hand, if  ]),1,[min( 11 δδ∈x then for any   

],0( xy∈  we have h(y) - h(x) _< h [min ( 1δ  , 1), - h( 1δ )]. Thus 

eq.(8) holds in either case with 3δ  = h [min ( 1δ , 1) - h( 1δ )]. 

We can prove eq.(9) in a similar line with 4δ  = h [max (b2 , 1) 

- h( 2δ )]. Details and explanations can be found in [3]. 

    Now let G(x) denotes the Hessian matrix of f at x. 

Let D(x)-{x E R n ; f(x) <- f( X )} be the level set of f at 

x . Let x, be the starting point. Assume also 

(1) f is twice continuously differentiable. (2) D(xl) is 

convex. 

(3) 0>∃m  and nRzM ∈∀∋  and x )( 1xD∈  
22 )( zMzxGzzm T ≤≤ Where the norm is norm two. 
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These three assumptions readily imply that f is strictly 

convex in D(xl). Also 3 is a unique minimizer x* of f in D(xl) 

and for any positive defined matrix B, we define 

y (B) = tr (B) - In (det (B))  (10) 

    This result has been used by Byrd and Nocedal [4] and 

Griewank  [5] in their analysis of QN methods. 

Let us defne 

kkk
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T
k

k sBs
sBs

=θcos                                                             (11) 

So that Ok is the angle between the search direction dk and 

the steepest - descent direction- gk . Define also 
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k ss
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q =                                                                      (12) 

Also assume that the scaling parameters 6k and ~tk are 

bounded such that for all k. 

minmax , µµσσ ≤≤ kk  for some  minmax µσ ≤                         .(13) 

The following new theorem provides the foundation for the 

proof of global convergence of our new suggested algorithm 

given in section 2. It generalizes a similar result given by Byrd 

and Nocedal [4] for their algorithm but for the case of unscaled 

BFGS algorithm. 

Theorem 3.3: Let x, be a starting point for which f satisfies 

eq.(7) and let BI be a positive definite starting Hessian 

approximation. Let {xk} be generated by the new proposed 
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algorithm with 6k and ~tk satisfying eq.(13 ) and for any p  

E (0, 1) 1 a constant (3 , 3 for any k > 1 the relation Cos 0j >_ (3, 

holds for at least [Pk] values of ],1[ kj ∈  

Proof: We note that the symmetric matrices Bk = Vk Vk = 

Wk_ I C k_~ Wk 1 generated by the algorithm are positive 

definite, because Wk_ I are nonsingular as a consequence of the 

Al-Bayati [2] update, and the Ck_, are nonsingular by 

construction. 

Using the definition (10) of yr , eq.(6) and lemma (3.1), we 

have 
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Where w is the i th Column of Wk now scaling up and 

down the set of indices of the column Wk as 

):],1[( kik wniI σ≤∈=                                                  (14) 

And 

):],1[( kik wniJ µ≥∈=               (15)  

Therefore by defining the scalar c in our new proposed 

algorithm 
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We will now involve lemma (3.2) with max1 σδ = and 

min2 µδ = since kiw σ≤ for kIi ∈ whereas kiw µ≥ for kJi ∈  we can 

therefore apply eq.(8) to each term of the first summation, and 

eq.(9) to each term of the 2nd summation to obtain 

431 )()( δδψψ nnwwB T
kkk ++≤+                                             (16) 

for the constants 3δ  and  4δ  given by lemma (3.2). 

Now step (4) of our new suggested algorithm indicates that 

the matrix is T
kk ww Al-Bayati's update of Bk. Therefore by the 

same procedure of [4] we can claim that )( 1+kBψ is bounded 

and 1cos Bj ≥θ . 

To ensure that the new algorithm generates a sequence of 

{xk} that converge to x*, i.e. 

∞≤−∑
∞
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k
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and )( *
1

*
1 ffrff k

k −≤−+                                         .(18) 

for some constant )1,0[∈r  

To prove (18) let us start with 

))(cos1( *2
5

*
1 ffff kkk −−≤−+ θδ (see [3] for the theoretical 

explanations). 
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Now since 1cos βθ ≥j then 
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The assumption on f also implies that *2*
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(19) Therefore combining (19) with (18) we obtain 
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(since the series is genomeritic  and it converges to a finite sum) 

This proves the global convergence of our new proposed 

algorithm. # 

 

4. Final Remarks 

We have described in this paper the conditions under which 

a new automatic self-scaling algorithm based on the direct form 

of Al-Bayati's VM-Update [2] can be proven to be globally 

convergent. It should be noted that using extra theoretical results 

the super linear convergence of this new algorithm may be found. 

Also some sort of numerical experiments needs to inform the 

effectiveness of the new proposed algorithm. This will be 

certainly done in our next research paper. 

It is also possible to describe another similar algorithm based 

on the inverse scaled-BFGS algorithm. Also a column-scaling 
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algorithm which was proposed by Siegel [9] may be modified 

and implemented with this family of algorithms by Nocedal [8]. 

However, optimal values of 6k, ~Ik selected in the new 

algorithm may be described in our further work, but for this 

proposed algorithm let 6k=0.5 and ~t,,=1. It might occasionally 

be better to increase 6k and to decrease ~tk . in any case, the 

theory developed in this paper will prove to be useful for 

analyzing the global convergence of the algorithm and it may be 

useful to prove the super linear convergent of the new proposed 

algorithm in the following research paper. 
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