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Abstract
In this paper a class of self-scaling VM-algorithms for
unconstrained optimization is investigated. Some theoretica
results are given on the scaling strategies that guarantee the

global convergence of the new proposed algorithm.
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1. Introduction
Consider the unconstrained optimization problem

min . . f(x) where f is a nonlinear differentiable function.

xl R

Assume that an exact line search is used at the beginning of each
iteration k, and that for an estimate vector xy thereis a symmetric

and positive definite matrix By. The new iteration is computed by
d, - B,'0, 1)
Xeo =X +1,d, k31 2
where g is the gradient of the objective function at x,. |, IS
a steplength satisfies exact line search strategy, i.e.
f(x, +1,d)E f(x)+al g.d, 3

g(x, +1,d,)"d, 3 bggd, 4
for 0fa £%anda £b £1. See Fletcher [6] for the details of

standard VM step. For the next iteration By, is updated by Al-
Bayati's VM-updatei.e.

B.s.s B, s/ By
 BssB SBy (59
S, By s, (S Vi)

By.. =By

Where
Sk = X - X U
|
Yv = Ok - gky (5b)

b

See Al-Bayati [1 ,2] for more details and properties of this
algorithm.
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2. New Suqggestion

In this section we describe the prototype for the new

suggested class of algorithms with self-scaling strategies:
Algorithm:
1-For a starting point x, and non singular matrix V ,; set k =1.
2- Terminate if |g,.,/|<e, e isasmall positive real number.
3-Compute
d, =V, V. 'g,
Xy = X, 1 d
| iscomputed ;by exact line search .
4- Update

T T
_Visesi Vi + S Vi Vi

W, =V, .
S:Vk Sy (yI Sk)z

Y Yx

5- Compute the scaling parameter s, 3 0and ,m 30 such

that s, £Em. If w; represents the column of Wy

C, =diag[c,,C,,......c,]Where s, =0.5and m =1

ok it [w]es,
i w
_1 om :

G =1 it Jw]>m
i Jwl
: S‘V_kryk otherwise
T Y

6-Set V,,, =W, C,
7-set k = k +1 and go to step (1)
Note that:
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1- In the above algorithm

B, =V, v
B, =V, V. ;, (6)
=W,,C2 W/, k3 1|'D
and the update is performed directly on V.
2-1t will be shown that one has considered freedom in choosing
dand m of every iteration, while sill maintaining globa
convergence of the above algorithm. It is necessary that the

choice of these values be made carefully.

3. Global Convergence of the New Algorithm

In this section, we prove that the new algorithm suggested
in section (2) with an appropriate choice of the scaling
parameters is globally convergent on strictly convex objective
functions.

Lemma 3.1:_For any nxn matrices A and C, where C diagonal
matrix

Tr( ACAT)=tr( AAT)+tr[(C-1) AAT] (7)
Where tr, denotes trace of any matrix see [7].

Proof: For any two matrices A and B

tr (AB) =tr (BA)

— tr(ACA") =tr (CAT A)

=tr (AAT) +tr(CA" A) - tr(ATA)

Eq. (7) follows directly from the last equality #
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Lemma3.2: Let h(u) = In u-u for u>0
Letd, >0,d, >0$d, and d,"

x1 (0,d,Jand yT (0,x]P h(y)- h(x) £d, (8)

And

x1 [d,and yT [x,¥)P h(y)- h(x) £d, (9)
Proof: To prove eq.(8) we first note that h(u) is strictly
concave and its maximum occurs at u =1. If xT (0,min(d,,1))
we conclude that forany YT (o, X].

h(y)-h(x)<0 since h(u) is strictly increasing for 0 < u<- 1.

On the other hand, if  xI [mind,),d,]Jthen for any
yl (0,x] we have h(y) - h(x) _< h [min (d, , 1), - h(d,)]. Thus
ed.(8) holds in either case with d, = h [min (d,, 1) - h(d,)].
We can prove eq.(9) in asimilar line with d, = h [max (b2, 1)
- h(d,)]. Details and explanations can be found in [3].

Now let G(x) denotes the Hessian matrix of f at x.
Let D(x)-{x ER n; f(x) <- f( X )} bethelevel set of f at
X . Let X, be the starting point. Assume also
(1) f is twice continuously differentiable. (2) D(x) is
convex.

(3) $m>0and M " zi R" and xI D(x,)

m|2|* £ 2 G(x)z £ M|Z|* Where the norm is norm two.
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These three assumptions readily imply that f is strictly
convex in D(x;). Also 3 is a unique minimizer x of f in D(x,)
and for any positive defined matrix B, we define

y (B) =tr (B) - In (det (B)) (10)

This result has been used by Byrd and Nocedal [4] and
Griewank [5] intheir analysis of QN methods.

Let usdefne
SI Bk Sk
COSQ, == — (11)
© IsdlBesd

So that Oy is the angle between the search direction dyx and
the steepest - descent direction- gx . Define also

T
= 5 By S (12)

k
Sk S

Also assume that the scaling parameters 6¢ and ~tk are
bounded such that for all k.

S ES u.m £m,, forsome s . £m;, (13)

The following new theorem provides the foundation for the
proof of global convergence of our new suggested algorithm
given in section 2. It generalizes a Smilar result given by Byrd
and Nocedal [4] for their agorithm but for the case of unscaled
BFGS algorithm.
Theorem 3.3: Let x, be a garting point for which f satisfies

eg.(7) and let B, be a podtive definite starting Hessan
approximation. Let {xy} be generated by the new proposed
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algorithm with 6, and ~tk satisfying eq.(13 ) and for any p
E(@O,1) 1 aconsgtant (3, 3for any k > 1 therelation Cos 0; >_ (3,
holds for at least [P,] valuesof jT [1k]

Proof: We note that the symmetric matrices Bx = Vi VK =
Wk_ | C k_ ~ Wk 1 generated by the algorithm are postive
definite, because W\__ | are nonsingular as a consequence of the
Al-Bayati [2] update, and the Cy_, are nonsngular by
construction.

Using the definition (10) of yr , eq.(6) and lemma (3.1), we
have

Y (Bywy) =tr(By.y) - In(det(B,.,))

=tr (W, CW,) - In(det(W, CeW,"))

=trWW,) - tr[(C¢ - DWIW,)] - In(detW,W,7) - In(det(C,))
=y W W) +tr((Cy - DWW, ) - Indet(Cy)

Y W)+ 4 [(C2 - Dlw]* - Inc?)

Where w is the i th Column of Wy now scaling up and
down the set of indices of the column Wy as

L =@T [Ln]:|w]£s,) (14)
And
J =@ [:Ln]:”Wi”3 m) (15)

Therefore by defining the scalar ¢ in our new proposed
algorithm
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m, U
4

5
- TIw " In

Y (Br) =y (WW, jl |-
w%ll || || || y %II || p

a
=y () + & [onfw |7 - ) - ans 2 - s 7))+ & [anfw 7 - ) - anre - o)

We will now involve lemma (3.2) with d,=s__,and

d, =my.since |w,|£s for il I, whereas|w |2 mfor il J, we can
therefore apply eg.(8) to each term of the first summation, and

eg.(9) to each term of the 2nd summation to obtain
Y (Bea) £Y (W) +nd, +nd, (16)

for the congtants d, and d, given by lemma (3.2).
Now step (4) of our new suggested algorithm indicates that
the matrix is w,w, Al-Bayati's update of By. Therefore by the

same procedure of [4] we can claim that y (B,,,)is bounded

andcosq; 3 B;.
To ensure that the new algorithm generates a sequence of

{xd} that convergetox , i.e.

||xk - x*||£¥ a7
1

and f. -t Er (f,- ) (18)

Qlox

=
1

for some constant r1 [0,])

To prove (18) let usstart with

fo,- f £@-dgcos’q,)(f, - f7) (see[3] for the theoretical

explanations).
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Now since cosq, 2 b, then
for = 7 EQ- dsb?)(F - ) Er(f, - £7)

With  r=(- d.b2)1 [01)
The assumption on f also implies that %r’rﬂxk - x’”||2 £f -

(19) Therefore combining (19) with (18) we obtain

1
g e 24 NI G A I 1V S
A lx - x[eD28 (f,- 1)2e i TR oy gy
o=t m .= é m 0 o=t
(since the seriesis genomeritic and it convergesto afinite sum)
This proves the global convergence of our new proposed

algorithm. #

4. Final Remarks

We have described in this paper the conditions under which
a new automatic self-scaling algorithm based on the direct form
of Al-Bayati's VM-Update [2] can be proven to be globally
convergent. It should be noted that using extra theoretical results
the super linear convergence of this new algorithm may be found.
Also some sort of numerical experiments needs to inform the
effectiveness of the new proposed algorithm. This will be
certainly done in our next research paper.

It is also possible to describe another similar algorithm based

on the inverse scaled-BFGS algorithm. Also a column-scaling
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algorithm which was proposed by Siegel [9] may be modified
and implemented with this family of algorithms by Nocedal [8].
However, optimal values of 6k, ~lk selected in the new
algorithm may be described in our further work, but for this
proposed algorithm let 6,=0.5 and ~t,,=1. It might occasionally
be better to increase 6 and to decrease ~tx . in any case, the
theory developed in this paper will prove to be useful for
analyzing the global convergence of the algorithm and it may be
useful to prove the super linear convergent of the new proposed

algorithm in the following research paper.
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