On ERT And MERT-Rings

Zubayda M. Ibraheem

Dept. Of Mathematics, College of Computer and Mathematical Sciences, University of Mosul.

Received on: 26/6/2002

Accepted on: 1/9/2002

في الحلقات من النوع ERT و MERT

الملخص

ERT الهدف الرئيس من البحث هو دراسة الحلقات من المنط II- لهدف الرئيس من البحث هو دراسة الحلقات المنتظمة من النمط MERT

ABSTRACT

The main purpose of this paper is to study ERT and MERT rings, in order to study the connection between such rings and II-regular rings.

27

1-Introduction:

Throughout this paper, *R* denotes an associative ring with identity, and all modules are unitary right R-module. Recall that; 1- An ideal I of the ring *R* is essential if I has a non-zero intersection with every non-zero ideal of *R*; 2- A ring R is said to be Π -regular if for every *a* in *R* there exist a positive integer *n* and *b* in *R* such that $a^n = a^n b a^n 3$ - A right R-module M is said to be GP- injective if, for any $0^{-1} a \in R$, there exists a positive integer n such that $a^{n-1}0$ and any right R-homomorphism of $a^n R$ into *M* extends to one of R into *M*. 4- For any element *a* in *R*, *r*(*a*), *I*(*a*) denote the right annihilator of *a* and the left annihilator of a, respectively.

2- ERT-R1NGS:

Following [3J, a ring R is said to be ERT-ring if every essential right ideal of R is a two-sided ideal.

Definition 2-1:

A ring *R* is said to be right weakly regular if for all a in *R*, there exists b in *RaR* such that a = ab, or equivalently every right ideal of R is idempotent.

We begin this section with the following main result:

Theorem 2.2:

If R is ERT-ring with every essential right ideal is idempotent, then R is weakly regular.

Proof:

For any $a \in R$, if RaR not essential, then there exists an ideal I, such that $K = RaR \oplus I$ is essential then $K = K^2$.

In order to prove that *R* is weakly regular, we need to prove $RaR = (RaR)^2$.

For $a \in K$, we have $a \in K^2$, that is $a \in (RaR \oplus I)^2$ Thus a = (rar' + i)(sas' + i') for some r, r' s, $s' \in R$ and $i, i' \in I$. This implies that a = (rar' + i)sas' + (rar' + i)i' $= rar'sas' + isas' + (rar^{1} + i)i'$

but $isas' \in I \cap RaR = 0$, also we have $(rar' + i)i' \in RaR \cap I = 0$. Therefore $a = (rar')(sas') \in (RaR)^2$, this implies that RaR $I(RaR)^2$ Thus $RaR = (RaR)^2$, this proves that R is weakly regular ring.

Following [2], the singular submodule of R is

 $Y(R) = \{y \in R, r(y) \text{ is essential right ideal of } R\}.$

Theorem 2.3:

Let R be a semi-prime ERT right GP-injective ring. Then R is a right non singular.

Proof:

Let *E* be an essential right ideal of *R*. Then *E* is a two-sided ideal, and hence l(E) is a two-sided ideal *ofR*. Now $(l(E) \cap E)^2 I(E)E = 0$. Since *R* is semi-prime, then $l(E) \cap E = 0$, whence l(E) = 0. This proves that *R* is right non singular.

3- MERT-R1NGS:

Following [3], a ring R is said to be MERT-ring if every maximal essential right ideal of/? is a two-sided ideal.

Theorem 3.1:

Let R be an MERT-ring, if for any maximal right ideal A/of R, and for any $b \in M$, bR/bM is GP-injective, then R is strongly Pi-regular ring.

Proof:

Let *b* be a non-zero element in R, we claim that $b^n r + r(b'') = R$. If $b^n r + r(b^n)^{-1} R$, let M be a maximal right ideal containing $b^n r + r(b^n)$. Then *M* is essential right ideal of R.

If bR = bM, then b = bc, for some c in M, this implies $(1-c) \in r(b) \tilde{I} r(b^n) \tilde{I} M$, therefore $I \in M$, this contradics M¹R.

Now, since R/M @ bR/bM. Then R/M is GP-injective. Now, define $f: b^n R @ R / M by f(b^n r) = r + M$, note that f is a well-defined R-homomorphism.

Since R/M is GP-injective, then there exists $c \in R$, such that: I+M=f(b'')=cb''+M and so $(1-c b^n) \in M$, since $b^n \in M$, and R is MERT-ring, this implies that M is a two-sided ideal, and hence $\in c b'' \in M$.

Thus $I \in M$, a contradiction.

Therefore $b^n R + r(b^n) = R$.

In particular $l=b^n u+v; v \in r(b^n), u \in R$.

Thus $b^n = b^{2n} u$ and therefore R is strongly \prod -regular ring.

Theorem 3.2:

If *R* is MERT-ring with every simple singular right ideal is GP-injective, then Y(R)=0.

Proof:

If $Y(R) \stackrel{1}{0}$, by Lemma (7) of [6], there exists $0 \stackrel{1}{y} \in Y(R)$ with $y^2=0$. Let *L* be a maximal right ideal of *R*, set L = y R + r(y), we claim that *L* is essential right ideal of R. Suppose this is not true, then there exists a non-zero ideal *T* of R such that $L \cap T = (0)$. Then $yRT \subseteq LT \subseteq L \cap T = 0$ implies $T \subseteq r(y) \subseteq L$, so

L C *T*=(0). This contradiction proves that *L* is an essential right ideal, that is *R*/*L* is

simple singular and hence R/L is GP-injective.

Now; Let $f;yR \longrightarrow R/L$ be defined by f(yr)=r+L, then f is a well-defined R-

homomorphism.

Since *R*/*L* is GP-injective, so $S c \hat{I} R$, such that l+L=f(y)=cy+L.

Hence l+L=cy+L, implies that $1-cy\hat{I}L$.

Since *R* is MERT, then *eye L* and thus $1 \hat{I} L$, a contradiction. Therefore Y(R) = [0].

Following [1], a ring *R* is zero insertive (briefly ZI) if for *a*, *b* $\hat{I}R$, *ab=0* implies *aRb=0*.

Theorem 3.3:

Let R be a ZT ring. If every simple singular rightsmodules is GP-injective which is left self-injective, then R is strongly H-regular ring.

Proof:

Since R is simple singular GP-injective, then R is semiprime, by Lemma (4)

of [5].

Thus for any left ideal I, $L(I) \ C \ l = 0$.

Since *R* is simple singular GP-injective and ZI, then *R* is reduced and hence r(a)=l(a) for any element *a* in *R*.

Thus $l(r(a)) \subseteq l(a) = l(l(a)) \subseteq l(a) = 0$.

Since R is left self-injective ring, then aR is a right annihilator, by Proposition (4)of[4].

Since $r(a) I r(a^n)$, then $a^n R = r(a^{fl})$.

Now, since $R = r(l(r(a))) + r(l(a))_9$ then we have $R = r(l(r(a^n)) + r(l(a^n))) = r(a^n) + a^n R$ In particular, for some *b* in *R*, and d in $r(a^n)$. Thus $a'' = a^{n^2} b$.

Therefore *R* is strongly \prod -regular.

REFERENCES

- Kirn. N.M., Nam. S.B. and Kirn. J.Y. (1999); "On simple singular GP-Injective Modules"; <u>Communication In Algebra</u>, 27(5), 2087-2096.
- [2] Kim. N.M., Nam. S.B. and Kirn. J.Y. (1995); "On simple GP-injective Modules"; <u>Communications In Algebra</u>, 23(14), 5437-5444.
- [3] Ming R.Y.C. (1980); "On V-Rings and Prime Rings"; Journal of Algebra. 62, 13-20.
- [4] Ming R.Y.C. (1980); "On Von-Neumann regular ring"; Math. J.Okayama Univ. vol. 22. No. 2.
- [5] Ming R.Y.C. (1976); "On annihilator ideals"; Math. J. Okayama Univ. 19,51-53.
- [6] Ming R.Y.C. (1983); "On quasi-injectivity and Von-Neumann regularity", Montash, Math, 95, 25-32.