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Abstract
An agorithm for unconstrained minimization is proposed
which is invariant to a non-linear scaling of a strictly convex
guadratic function and which generates mutually conjugate
directions for extended quadratic function. It is derived for
inexact line searches and is designed for general use, it compares

favorably numerical tests [over eight test functions and
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dimensionaly up to (2-100)] with the H/S, DX, F/R, P/R, and
A/B agorithms on which this new algorithm is based]. |

1. Introduction:

The searches related with Conjugate Gradient method begin
to apply inexact line searches; i.e not to iterate until the “line
minima” is found to some predetermined (small) tolerance in
order to reduce the number of function evaluations (NOF).

In order to show improvement of the local rate of
convergence and the efficiency of the traditional CG-method
several well-known methods are discussed later, namely Dixon
(1975) and Nazareth (1977).

The type of these algorithms has quadratic termination
property by using an error vector even if inexact searches are
used, while Sloboda (1982) presented an algorithm which retains
the quadratic termination property without using an error vectors.

In this paper we develop a new general way of the CG
algorithm with inexact line searches. This new algorithm is
similar to that derived by Dixon (1975) CG method with inexact
line searches but does not require the correction term as extra
vector storage and different formulais obtained.

2. General Background:

In this section we shall present a brief description of the
Dixon Sloboda, Nazareth and Nocedal agorithms.We shall then
discuss properties of these algorithms.
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2.1 The Dixon’s M ethod (1975):

In Dixon’s method the idea is to determine directions
parallel to the CG directions (for a quadratic) without line
searches, and so0 he develops a conjugate set. Explicitly, the
search directionsdy k=1, 2, ..., aregiven by

Oie1 = - gk+1+ bk dy,
whered;=-g; ,

and O,,b, are etimation values defined below. The new
iterate isdefined as:

Xir1= Xk + kO, k3
where | ¢ is chosen simply to satisfy conditions defined in the

line search subprogram. The gradient gyis estimate of the
gradients at the points x, that we would have reached, if we had
performed exact line searches along the di. for a quadratic, these
gradients can be evaluated exactly, and defined from:

T
k+ldk

O =9, +(1- ﬁ)yk K3
- 3 - gTd
O = Ot YEd: Yy

and the approximated expressions for the coefficient  (rather
than the “true” Bx which occurs in classical CG methods ) are
defined:
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T /= —
b, =910 9) | (Hegenesand Stiefel , 1952)
d (G- T)

i

— . - 9.
b = d:T1

4l

(Dixon, 1975)

we have used these formula in the computations which are
reported later.

After n steps the error vector used to find the minimum of
quadratic.

Dixon’s method moves along a direction parallel to the
CG direction, and so retains the property of the quadratic
convergence. (Dixon, 1975).

2.2 The Soboda M ethod (1982):

Sloboda developed an agorithm which generates
conjugate direction with imperfect searches and has the quadratic
termination property without using an error vector. The algorithm
for general function is asfollows:

The Outline of the SLO-Algorithm:
Mset X0 » éozgmdo:' 9
Step (2) : Fork=1,2,...,n

Compute X1 = X + & ék where ¢ chosen to

satisfy the condition of the line search

Step (3) : If |g,..|<e then stop, else go to step (5)
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Step (4) : If k=n+1 then set k=0 and go to step (1), else compute

é(gkﬂ B gk)T @k ":IA
T ng !

gkﬂ = (gk+1 - gk) -

A

€
e O« 9« t

ékﬂ <e gotostep (1), elseset k=k+1 , compute

Step(5) . If

- ~ 80k - 9i) G Us
dk+1=-9k+1+e( k+1 k) 'l\(+1'.ﬁk1

A

@(gk+1' gk)Tdk g
set k=k+1, and go to step (3)

2.3 The Multi-Step Method, Nazar eth and Nocedal
(1978):

Nazareth and Nocedal show that with inexact line searches
a natural extension of conjugate gradient method, the algorithm
can be obtained of thismethod is called NAZ- NOC.

This agorithm is considered as a modification of Gram —
Schmidt orthogonalization process, where Nazareth and Nocedal
show that not all the coefficients of the Gram-Schmidt process
must be computed at every iteration , then suggested the
following agorithm :

Step (1) : Setx;,di=-g; &=0
Step (2) : Fork=1.2,........ ,n compute

T e
0

dk+1 =-0Okn +?l§rgk :dk +ek
k“k @

Step (3) : Check for convergence .
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If |9..|<e then stop, else go to step (4)
Step (4) : if k<n, set k=k+1 , compute

y;—-lgkﬂ d

& =6t k-1 3
Yi-10k 1

go to step (2) , else set k=1 and go to step (1)

The algorithm will have quadratic termination property
when using the error term e.; in the extra step, even if
Implemented without line search.

3. The New CG —Method with Inexact L ine Searches:
In this section a new general way for the conjugate
gradient type methods is presented. This new approach has the
property of the quadratic termination even if the line search is not
exact and the extra correction term is not essential.
Now let the gy be the gradient of the quadratic function
and let

ng+1dk
ngyk

=0 ‘o1 Geer - Yi &)

Where yi = g w1— 0k, then the following lemmais hold.
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Lemma(1):
For the quadratic function, the term g "1 Which is defined

in eq.(1) is equivalent to that the gradient gy+1 which is obtained
by Hestenes and Stiefel method in (1952).

Proof:

Let We Let’s define gi=Gx - b , and dy = - go where g is the
gradient of quadratic function. The biothogonlization process of
Hestenes and Stiefel is asfollows:

Xir 1=Xc+ | « di , where

| k= - 9% for exact line searches and G is a symmetric
9'«Gd,

positive define matrix . Thus

O+1=0k+ 1 kG dy , 2

and

T
dk+1: -gk+1+ >:kagk+l dk

kY
Now, in order to prove that gy.1 which is obtained by
Hestenes and Stiefel exact line searches algorithm is identical to

theterm g "\, whichisdefinedin eq.(1), we proceed as follows:

;
From the definition of | - - ngdk ,then rewriting eq.(2),
9, Gd,
we get
;
d
Ok+1= Ok I g, 3)

9, Gd,
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Now multiplying and dividing the second term of the eq. (3) by
| , it becomes as:

— 9, d Gd
Ok+1= Jk —g[GI d. K s

from the definition we have yw= Qgw+1- 9 k = |« G dk , then
replacing yx instead of | G dk in the above equation then we get:
ged,
T
k Sk

which isdefined in eq.(1) as:

Ok+1= Ok~ Yk, thusthisequationisidentical to the equation

;
g*k+l:gk_ ngdk Yo

9 Yy
thus the is of vectors g,,.......... ,g, isorthogonal as in Hestenes

and Stiefel method in quadratic function . From the above

argument we have the following two corollaries.

Coroallary (1):
The term g .. Which is defined in eq.(1) is used to be

obtained by the following form:

.
gaakﬂ' gkggkﬂ * *
1L T « Odk + g k+l:_dk+1 (4)

)
d« ggkﬂ_ ey

P
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Is parallel to that search direction given by Hestenes and
Stiefel algorithm for quadratic function.

Coroallary (2):
The search direction which is defined in eq. (4) is a
descent direction even if for non-quadratic functionsi.e.

*T
dk+1 gk+l < 0.

Proof:
Re-write the direction in eq. (4)
Al == G +b7d,,
Multiplying this direction by g*k+1, then we have:
ditaGies = - GnaGien + b G

2

and then A\, Q.1 = - [0in
(which is aways negative relation) .

Thisresult istrue, because we have d;g,., =0 ,it is easy to prove

thisresult as follows:

We have

gl O

Y (5)
OV

gt<+1 == 0O
SO Yk =0k+1 — Ok - Now multiply eqg. (5) by d; ,then we obtain the

following result:
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* dTgk
dr . =d’q - —X T ,
k gk 1 k gk g:yk gk yk
thus, we get :
df 9y =0

4. The Outline of the New Algorithm:
Step (1) : dy - =go=- g.

Step (2): For k=1,2... compute
Xkr1 = X+ k di , for compute . where | isthe

step size.

Step (3): Check for convergence |g,.,|> , then stop.

Otherwise go to step (4).
Step (4) : Compute ., as defined in eg. (1)
Step (5) : Find the new search direction

* *

dist =- Gyt b idy ,where

N *T *
bk:-—gkﬂTg*kl , 6
dk gk
. YO km ,
bk= * * y
i O«
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* *T *
b =- g k+1g k+1
= =

digwx ' 8

s Vg
k T )
Y i

These definitionsof b, ineq. (6) dueto Dixon (1975); b*k in
eq.(7), due to Polok and Ribiere (1969) ; b*k ineg. (8) dueto

Al-Bayati and Al- Assady (1996); b*k in eg. (9) due to Hestenes

and Stiefel (1952).

Step (6): Check for restarting criterion if k = n then
set k = 0 and go to step (1) else go to step 2.

Because of the orthogonality property and the lemma (1) are
held, this algorithm is identical to the original (H/S, Hestenes And
Stiefel), (P/R; Polok and Ribiere), (DX; Dixon), and (AB; Al-
Assady and Al-Bayaiti) algorithms in quadratic function.

Generally function is reduced P/R and A/B agorithms even it
Inexact searches can be used asit well be shown in Corollary (2).

5. Numerical Results:

Several standard test functions were minimized to compare
the new algorithm with standard CG algorithms. The same line
search was employed in each of the agorithms. The cubic
interpolation, and the algorithms were terminated if the norm of
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the gradient was reduced below 1" 10° .We tabulate for all the

algorithms the number of calls of the function evaluation (NOF),

and the number of iterations (NOI). Overall totals are aso given
for NOF and NOI with each algorithm.

Table (1) contains the numerical results for the new
algorithm with (DX) formula and the standard CG a gorithm with
the same formula. In this table we see that the new algorithm is
more efficient than the standard CG agorithm, this is obtained
from the NOF and the NOI of both algorithms.

Table (2) includes the results of the standard CG (H/S)
formula and the new with (H/S) formula, this table indicates that
the new algorithm is better than the standard CG (H/S) in (4) out
of (12) casesand in (5) cases they are comparable.

Table (3) gives the comparison between the results of the
new (A/B) algorithm which is presented in eq. (1) with classical
CG (A/B), theresultsin this table indicate that the new method is
better than the classical CG (A/B) algorithm in (6) out of (12)
cases.

In table (4) we have compared the new algorithm with (P/R)
formula with standard CG (P/R). It is obvious that the new
algorithm improves the standard (P/R) algorithm in about
(80.2%) NOI and (79.6%) NOF.
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In table (5) we represent a numerical example to show that
the performance of suggested algorithm is quick and has better
performance since it requires less time to execute.
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Table (1)

Comparative performance of the two algorithms for a group of

test functions, by using p : (DX).

: Standard CG New method
Test function N
NOI(NOF) NOI(NOF)
4 | 76(197) 40(105)
Powell 40 |104(219) 85(189)
100 | 114(241) 107(223)
4 | 37(85 22(47
Wood (&) (47
20 | 64(176) 54(127)
Rosen 2 | 37(88) 32(76)
: 2 |17(48) 17(48)
Cubic
100 | 64(138) 40(96)
Dixon 10 | 27(56) 24(50)
Beale 2 | 10(26) 10(25)
Reciep 30 |8(22) 7(20)
3-Powsell 3 |15(34) 13(29)
Total 573(1330) 451(1035)
Tools Standard CG NEW
NOI 100 78.7
NOF 100 77.8
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Table (2)

Comparative performance of the two algorithms for a group of

test functions, by using p :(H/S).

: Standard CG New method
Test function N
NOI(NOF) NOI(NOF)
4 |50(114) 54(128)
Powell 20 | 34(78) 31 (75)
100 | 105(244) 105(230)
4 | 21(46 23(49
ny— (46) (49)
40 | 48(101) 45(93)
Rosen 2 | 31(73) 31(73)
: 2 |18(50) 18(50)
Cubic
00 |13(35) 13(35)
Dixon 10 | 22(46) 21(44)
Beale 2 |10(26) 10(26)
Reciep 30 | 9(24) 9(24)
3-Powell 3 | 18(40) 19(41)
Total 379(877) 379(868)
Tools Standard CG NEW
NOI 100 100
NOF 100 98.9
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Table (3)

Comparative performance of the two algorithms for a group of

test functions, by using p : (A/p).

: Standard CG New method
Test function N
NOI(NOF) NOI(NOF)
4 | 65(144) 40(105)
Powell 20 |68(155) 65(146)
100 | 105(250) 107(223)
4 | 25(58 22(47
ny— (58) (47)
20 | 44(95) 54(127)
Rosen 2 | 31(73) 32(76)
: 2 |19(52) 17(48)
Cubic
100 | 14(36) 40(96)
Dixon 10 | 23(48) 24(50)
Beale 2 |10(26) 10(25)
Reciep 30 |9(24) 7(20)
3-Powell 3 |19(41) 13(29)
Total 432(1002) 431(992)
Tools Standard CG NEW
NOI 100 99.7
NOF 100 99
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Table (4)

Comparative performance of the two algorithms for group of test

functions, by using B :(P/R).

: Standard CG New method
Test function N
NOI(NOF) NOI(NOF)
4 | 77(183) 57(150)
Powell 20 | 76(173) 41 (87)
100 | 105(227) 93(188)
4 | 33(75 26(56
Wood (79) (%)
20 |44(93) 33(70)
Rosen 2 | 31(73) 31(73)
: 2 119(52) 19(52)
Cubic
100 | 16(38) 12(32)
Dixon 10 | 22(46) 21(44)
Beale 2 |10(26) 10(26)
Reciep 30 | 9(24) 9(24)
3-Powsell 3 |18(43) 17 (37)
Total 460(1053) 369(839)
Tools Standard CG NEW
NOI 100 80.2
NOF 100 79.6
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Table(b)
Thetime of the execute, (sec) of the powell function at
Dimension 100 by using p:H/S .

Standard CG M ethod New Method
3.2517 1.9284
6. Appendix:
1- Generaized Powell Function:

n/4

f(x)= é [(X4.5 +1OX4i-2)2 +5(Xy0 - X)) H(Xg 5 - 2X4i-1)4 +10(X4.5 = Xy )]
i=1

X0=(3,-1,0,1,...)".

2- Generalized Wood Function:

n/4
f(X) =a 1oq(x4i-2 - Xii-s)z] + (1' X4i-3)2 +9(X4i - Xii-l)z + (1' Xii-l)z

i=2

+1O'1[(X4i-2 - 1)2 + (X4i - 1)2] +19'8(X4i-2 - 1)2(X4i - 1) ’

Xo=(-3,-1,-3,-1,..)".
3- Generalized Rosenbrock Function:

n/2

f(x) = é [1OO(X2i - X;i—l)z +(1- X2i-l)2] » %= (-1.2,1; )T

4- Cubic Function:

f(x)= :’célz[lOO(x2i - x5 )2+ (- X,,)%] X0=(-1.2,1;...)

i=1

T

5- Generalized Dixon Function:

£(x) = & [@- %)2+ (@ %)% +8 (¢ - %.)°],

i=1 i=1
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Xo=(-1;..)".
6- Generdlized Beale Function:

f(X) — gz}[l.S— X2i-1(1' X5 )] +[22-25' X2i-1(1' Xzzi )] g,
2§ +[2635- x,,(1- x2)] b

Xo=(1,1;...)".
7-Generalized Reciep Function:
y°] 2
F) =81 (- 54X, + 5y,
i=1 1 (Xs.1 = Xq.2) ?;

Xo=(2,5,1;...)".
8- Generalized 3-Powell Function:

X=(0,1,2;..)".
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