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  الملخــص

 المقيـدة و التـي اختـصت    في هذا البحث تم تقديم خوارزمية للامثلية غير    
بالتقييس غير الخطي للدوال التربيعية المحدبة بشدة وعممـت لاتجاهـات مترافقـة       

واشتقت صيغة لخط البحث غير التـام وصـممت         . موزعة لتوسيع الدالة التربيعية   
كما تمت مقارنة هذه الطريقة مع الطرائق الـسابقة لثمـاني دوال            . للاستخدام العام 

وقد كانـت  . H/S, DX, F/R,  P/R. A/Bمع صيغ ) ١٠٠-٢(اختباريه وبأبعاد 
  .من الخوارزميات الأصلية" نتائج الخوارزمية الجديدة اكثر كفاءة

 

Abstract 
 An algorithm for unconstrained minimization is proposed 

which is invariant to a non-linear scaling of a strictly convex 

quadratic function and which generates mutually conjugate 

directions for extended quadratic function. It is derived for 

inexact line searches and is designed for general use, it compares 

favorably numerical tests [over eight test functions and  
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dimensionally up to (2-100)] with the H/S, DX, F/R, P/R, and 

A/B algorithms on which this new algorithm is based].| 

1. Introduction: 
The searches related with Conjugate Gradient method begin 

to apply inexact line searches; i.e not to iterate until the “line 

minima” is found to some predetermined (small) tolerance in 
order to reduce the number of function evaluations (NOF). 

In order to show improvement of the local rate of 
convergence and the efficiency of the traditional CG-method 
several well-known methods are discussed later, namely Dixon 

(1975) and Nazareth (1977).  
  The type of these algorithms has quadratic termination 
property by using an error vector even if inexact searches are 

used, while Sloboda (1982) presented an algorithm which retains 
the quadratic termination property without using an error vectors. 

In this paper we develop a new general way of the CG 

algorithm with inexact line searches. This new algorithm is 
similar to that derived by Dixon (1975) CG method with inexact 
line searches but does not require the correction term as extra 
vector storage and different formula is obtained. 

 
2.  General Background: 

       In this section we shall present a brief description of the 

Dixon Sloboda, Nazareth and Nocedal algorithms.We shall then 
discuss properties of these algorithms. 
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2.1 The Dixon’s Method (1975): 
  In Dixon’s method the idea is to determine directions 

parallel to the CG directions (for a quadratic) without line 
searches, and so he develops a conjugate set. Explicitly, the 
search directions dk, k= 1, 2, …,  are given by  

dk+ 1 =  - g
−

k+ 1+ β
−

k   d k   ,  

where d1 = - g1  ,  

  and −−
kkg β, are estimation values defined below. The new 

iterate is defined as:  

 xk+1= x k  +  k dk , k ≥  ١  

where λ k is chosen simply to satisfy conditions defined in the 

line search subprogram. The gradient 
−

g k is estimate of the 

gradients at the points xk that we would have reached, if we had 
performed exact line searches along the dk. for a quadratic, these 
gradients can be evaluated exactly, and defined from:  
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  and the approximated expressions for the coefficient  k (rather 

than the “true” βk  which occurs in classical CG methods ) are 
defined: 
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++β  ,   (Hestenes and Stiefel , 1952) 

 
we have used these formula in the computations which are 
reported later. 

After n steps the error vector used to find the minimum of 
quadratic. 

 Dixon’s method moves along a direction parallel to the 

CG direction, and so retains the property of the quadratic 
convergence. (Dixon, 1975). 

 
2.2 The Sloboda Method (1982):  
 Sloboda developed an algorithm which generates 
conjugate direction with imperfect searches and has the quadratic 
termination property without using an error vector. The algorithm 

for general function is as follows: 
 

The Outline of the SLO-Algorithm: 

Step (1) : Set x0 , 00

^

00

^

, gdgg −==  

Step (2) : For k = 1,2,…, n 

Compute xk+ 1 =  xk +    k 
kd

^  where   k  chosen to 

satisfy the condition of the line search  

Step (3) : If  ε<+1kg  then stop , else go to step (5) 

k
T

k

k
T
k

k gd
gg 11 ++−

=β  
(Dixon , 1975) 
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Step (4) : If k=n+1 then set k=0 and go to step (1), else compute  
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Step(5) : If ε<+1k

^
g   go to step (1) , else set k=k+1   , compute  

( )
( ) k

k
T

kk

k
T

kk
kk d

dgg
ggggd ˆ
ˆ

ˆˆˆ
1

11
11













−

−
+−=

+

++
++  ,    

set  k=k+1 , and go to step (3)  

 
2.3 The Multi-Step Method, Nazareth and Nocedal 
(1978): 
 Nazareth and Nocedal show that with inexact line searches 
a natural extension of conjugate gradient method, the algorithm 
can be obtained of this method is called NAZ- NOC. 

 This algorithm is considered as a modification of Gram – 
Schmidt orthogonalization process, where Nazareth and Nocedal  
show that not all the coefficients of the Gram-Schmidt process 
must be computed at every iteration , then suggested the 
following algorithm : 

Step (1) : Set x1 , d1=-g1 , e1 =  0 

Step (2) : For k= 1,2,……..,n compute  

kk
k

T
k

k
T
k

kk ed
dy
gy

gd +







+−= ++ 11  

Step (3) : Check for convergence . 
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If  ε<+1kg  then stop, else go to step (4) 

Step (4) : if k<n , set k=k+1 , compute  

 1
11

11
1 −

−−

+−
− += k

k
T
k

k
T
k

kk d
dy
gyee  , 

go to step (2) , else set k=1 and go to step (1)  
 The algorithm will have quadratic termination property 

when using the error term ek+ 1 in the extra step, even if 
implemented without line search. 
 
3. The New CG –Method with Inexact Line Searches: 
 In this section a new general way for the conjugate 
gradient type methods is presented. This new approach has the 
property of the quadratic termination even if the line search is not 

exact and the extra correction term is not essential. 
 Now let the gk be the gradient of the quadratic function 

and let  

= 1
*

+kg  gk+1 -                                           )1(1
k

kk
T

kk
T

y
yg
dg +   

  
Where   yk = g k+1 – gk , then the following lemma is hold.    
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Lemma(1): 

For the quadratic function, the term 1k
*g +  which is defined 

in eq.(1) is equivalent to that the gradient gk+1   which is obtained 
by Hestenes and Stiefel method in (1952). 

 
Proof: 
Let We Let’s define gk=Gx k- b , and d0 = - g0 where gk is the 

gradient of quadratic function. The biothogonlization process of 
Hestenes and Stiefel is as follows: 

xk+1=xk+ λk dk , where  

λk= - 
kk

T
kk

T

Gdg
dg   for exact line searches and G is a symmetric 

positive define matrix . Thus  

gk+ 1=gk +  λk G d k  ,                                                                    (2)  

and  

dk+ 1= -gk+1 + k
kk

T
1kk

T

d
yd

gy +  

Now, in order to prove that gk+1 which is obtained by 
Hestenes and Stiefel exact line searches algorithm is identical to 

the term 1k
*g +  which is defined in eq.(1), we proceed as follows: 

From the definition of λk=  
k

T
k

k
T
k

Gdg
dg

−  ,then rewriting eq.(2), 

we get  

gk+ 1= gk- 
k

T
k

k
T
k

Gdg
dg  G dk                                                               (3) 
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Now multiplying and dividing the second term of the eq. (3) by 

λ, it becomes as:  

gk+ 1= gk- 
k

T
k

k
T
k

dGg
dg
λ

  G dk  ,  

from the definition we have yk= gk+ 1- g k = λk G dk , then 

replacing yk instead of  λk G dk  in the above equation then we get: 

gk+1= gk- 
k

T
k

k
T
k

yg
dg  yk,  thus this equation is identical  to the equation 

which is defined in eq.(1) as:  

1k
*g + =g k 

_
 k

kk
T

kk
T

y
yg
dg    ,   

thus the is of vectors  
**

k0 g.,,.........g  is orthogonal as in Hestenes 

and Stiefel method in quadratic function . From the above 

argument we have the following two corollaries. 
 

Corollary (1): 

 The term 1k
*g +  which is defined in eq.(1) is used to be 

obtained by the following form: 

,
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Raf. J. Of Comp. Sc. And Math’s.,Vol. .1, No.1.2004 
 

 41 

is parallel to that search direction given by Hestenes and 

Stiefel algorithm for quadratic function. 

 

Corollary (2): 
 The search direction which is defined in eq. (4) is a 
descent direction even if for non-quadratic functions i.e.  

     
1k

T*

d
+

*
1+kg < 0. 

Proof: 
 Re-write the direction in eq. (4) 

k
**

1k
*

1k dgd β+−= ++ , 

Multiplying this direction by g*
k+1, then we have: 

*
1k

T
k

**
1k

T*
1k

*
1k

T*
1k gdgggd +++++ β+−=  

and then 
2*

1k
*

1k
T*

1k ggd +++ −=  

(which is always negative relation) .  

This result is true, because we have 0gd *
1k

T
k =+  ,it is easy to prove 

this result as follows: 
We have  

*
1kg +      =  - kg     k

k
T
k

k
T
k y

yg
gg

                                (5) 

So yk =gk+1 – gk . Now multiply eq. (5) by T
kd  ,then we obtain the 

following result: 
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k
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k1k

*
T
k yg
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gdgdgd −=+   , 

thus , we get : 

0g d 1k

*
T
k =+  

 

4. The Outline of the New Algorithm: 

Step (1) : 
*

0d  =- g0 = - 
*
g ٠ 

Step (2): For k=1,2… compute 

                   xk+1 =  xk +   k dk  , for compute   . where λ is the 

step size. 

Step (3): Check for convergence 1+kg > , then stop. 

Otherwise go to step (4). 

Step (4) : Compute *
1kg + as defined in eq. (1) 

Step (5) : Find the new search direction  

                  **
*

11
*

kkkk dgd β+−= ++  ,where 

*
β k = - *

k
T
k

1k
*T*

1k

gd
gg ++  ,    6  

*
β k = 

k
*T*

k

1k
*T

k

gg
gy +  ,    7  
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k
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k gd
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*

1
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1
* ++−=β   ,    8 

k
T
k

1k
*T

k
k

*

dy
gy +=β  ,    9  

These definitions of 
*

kβ  in eq. (6) due to Dixon   (1975); 
*

kβ in 

eq.(7), due to Polok and Ribiere  (1969) ; 
*

kβ   in eq. (8)  due to 

Al-Bayati  and Al- Assady (1996); 
*

kβ  in eq. (9) due to Hestenes 

and Stiefel (1952). 

 

Step (6): Check for restarting criterion if k = n then 

set k =  0 and go to step (1) else go to step 2.  

       Because of the orthogonality property and the lemma (1) are 
held, this algorithm is identical to the original (H/S, Hestenes And 
Stiefel), (P/R; Polok and Ribiere),  (DX; Dixon), and (AB; Al-
Assady and Al-Bayati) algorithms in quadratic function.   

            Generally function is reduced P/R and A/B algorithms even it       

       Inexact searches can be used as it well be shown in Corollary (2). 
 

5. Numerical Results: 
Several standard test functions were minimized to compare 

the new algorithm with standard CG algorithms. The same line 
search was employed in each of the algorithms. The cubic 
interpolation, and the algorithms were terminated if the norm of 
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the gradient was reduced below 5101 −×  .We tabulate for all the 

algorithms the number of calls of the function evaluation (NOF), 
and the number of iterations (NOI). Overall totals are also given 
for NOF and NOI with each algorithm. 

 
Table (1) contains the numerical results for the new 

algorithm with (DX) formula and the standard CG algorithm with 

the same formula. In this table we see that the new algorithm is 
more efficient than the standard CG algorithm, this is obtained 

from the NOF and the NOI of both algorithms.  
 
Table (2) includes the results of the standard CG (H/S) 

formula and the new with (H/S) formula, this table indicates that 
the new algorithm is better than the standard CG (H/S) in (4) out 
of (12) cases and in (5) cases they are comparable. 

 
Table (3) gives the comparison between the results of the 

new (A/B) algorithm which is presented in eq. (1) with classical 

CG (A/B), the results in this table indicate that the new method is 
better than the classical CG (A/B) algorithm in (6)  out of (12) 

cases. 
In table (4) we have compared the new algorithm with (P/R) 

formula with standard CG (P/R). It is obvious that the new 

algorithm improves the standard (P/R) algorithm in about 
(80.2%) NOI and (79.6%) NOF. 
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In table (5) we represent a numerical example to show that 

the performance of suggested algorithm is quick and has better 
performance since it requires less time to execute. 
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Table (1) 
Comparative performance of the two algorithms for a group of 

test functions, by using β :(DX). 
New  method Standard    CG 

NOI(NOF) NOI(NOF) 
N Test function 

40(105) 76(197) 4 
85(189) 104(219) 40 

107(223) 114(241) 100 

Powell 

22(47) 37(85) 4 

54(127) 64(176) 20 
Wood 

32(76) 37(88) 2 Rosen 
17(48) 17(48) 2 

40(96) 64(138)   100 
Cubic 

24(50) 27(56) 10 Dixon 

10(25) 10(26) 2 Beale 

7(20) 8(22) 30 Reciep 

13(29) 15(34) 3 3-Powell 

451(1035) 573(1330)  Total 

 

 

Tools Standard CG NEW   

NOI 100 78.7 

NOF 100 77.8 
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Table (2) 

Comparative performance of the two algorithms for a group of 

test functions, by using β :(H/S). 
New  method Standard    CG 

NOI(NOF) NOI(NOF) 
N Test function 

54(128) 50(114) 4 
31 (75) 34(78) 20 

105(230) 105(244) 100 

Powell 

23(49) 21(46) 4 

45(93) 48(101) 40 
Wood 

31(73) 31(73) 2 Rosen 
18(50) 18(50) 2 

13(35) 13(35)    100 
Cubic 

21(44) 22(46) 10 Dixon 

10(26) 10(26) 2 Beale 

9(24) 9(24) 30 Reciep 

19(41) 18(40) 3 3-Powell 

379(868) 379(877)  Total 

 

Tools Standard CG NEW   

NOI 100 100 

NOF 100 98.9 
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 Table (3) 
Comparative performance of the two algorithms for a group of 

test functions, by using β :(A/β). 
New  method Standard    CG 

NOI(NOF) NOI(NOF) 
N Test function 

40(105) 65(144) 4 
65(146) 68(155) 20 

107(223) 105(250) 100 

Powell 

22(47) 25(58) 4 

54(127) 44(95) 20 
Wood 

32(76) 31(73) 2 Rosen 
17(48) 19(52) 2 

40(96) 14(36)   100 
Cubic 

24(50) 23(48) 10 Dixon 

10(25) 10(26) 2 Beale 

7(20) 9(24) 30 Reciep 

13(29) 19(41) 3 3-Powell 

431(992) 432(1002)  Total 

 

 

Tools Standard CG NEW  

NOI 100 99.7 

NOF 100 99 
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Table (4) 
Comparative performance of the two algorithms for group of test  

functions,  by using  β :(P/R). 
New  method Standard    CG 

NOI(NOF) NOI(NOF) 
N Test function 

57(150) 77(183) 4 
41 (87) 76(173) 20 

93(188) 105(227)   100 

Powell 

26(56) 33(75) 4 

33(70) 44(93) 20 
Wood 

31(73) 31(73) 2 Rosen 
19(52) 19(52) 2 

12(32) 16(38) 100 
Cubic 

21(44) 22(46) 10 Dixon 

10(26) 10(26) 2 Beale 

9(24) 9(24) 30 Reciep 

17 (37) 18(43) 3 3-Powell 

369(839) 460(1053)  Total 

 

Tools Standard CG NEW  

NOI 100 80.2 

NOF 100 79.6 
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Table (5) 
The time of the execute, (sec) of the powell function at 

Dimension 100 by using β:H/S . 

Standard CG Method New Method 

3.2517 1.9284 

 
 
6. Appendix: 

1- Generalized Powell Function: 

∑
=

−−−−−− −+−+−++=
4/

1

4
434

4
1424414

2
2434 ])(10)2()(5)10[()(

n

i
iiiiiiii xxxxxxxxxf

  x0=(3,-1,0,1,…)T. 

2- Generalized Wood Function:                                

    22
14

22
144

2
34

22
3424

4/

2

)1()(9)1(])[(100)( −−−−−
=

−+−+−+−= ∑ iiiiii

n

i

xxxxxxxf  

                 )1()1(8.19])1()1[(1.10 4
2

24
2

4
2

24 −−+−+−+ −− iiii xxxx , 
       x0=(-3,-1,-3,-1,…)T. 

3- Generalized Rosenbrock  Function: 

     [ ]∑
=

−− −+−=
2/

1

2
12

22
122 )1()(100)(

n

i
iii xxxxf , x0=(-1.2,1;…)T. 

4- Cubic Function: 

   ∑
=

−− −+−=
2/

1

2
12

23
122 ])1()(100[)(

n

i
iii xxxxf ,x0=(-1.2,1;…)T. 

5- Generalized Dixon Function: 

   ∑ ∑
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=
−−+−+−=
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i
iin xxxxxf

1

1

1

3
1

222
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     x0=(-1;…)T. 

6- Generalized Beale Function: 

    
[ ] [ ]

[ ]∑
=

−

−−













−−+
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=

2/

1
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22
212

2
212

)1(635.2

)1(25.2)1(5.1
)(

n

i
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iiii

xx

xxxx
xf , 

     x0=(1,1;…)T. 
7-Generalized Reciep Function: 

    ∑
= −−

−−








−
++−=

3/

1
2

2313

2
32

19
2

13 )(
)5()(

n

i ii

i
ii xx

x
xxxf , 

     x0=(2,5,1;…)T. 

8- Generalized 3-Powell Function: 
       

       x0=(0,1,2;…)T. 
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