
 

754  

Journal of Engineering and Sustainable Development 

Vol. 28, No. 06, November 2024 

https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd 

ISSN 2520-0917 

Research Article 

https://doi.org/10.31272/jeasd.28.6.8 

 

Work of This Research is 
Licensed under CC BY

Enhanced Speech Command Recognition using 

Convolutional Neural Networks  
Inas Jawad Kadhim1*, Tawfeeq E. Abdulabbas2, Riyadh Ali3, Ali F. Hassoon4, Prashan Premaratne5 

 
1Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq 
2,3,4Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq 
5 School of Electrical and Computer and Telecommunications Engineering, University of Wollongong, NSW, 2522, Australia 

 
1https://orcid.org/0000-0001-9404-5653 
2https://orcid.org/0000-0001-8919-1891 
3https://orcid.org/0000-0002-1347-1632 
4https://orcid.org/0000-0002-4981-8407 

 *Email: inasjk@mtu.edu.iq 

 

1. Introduction  

Speech is a crucial mode of communication that allows 

individuals to articulate their thoughts, concepts, and 

requirements [1]-[3]. The proliferation of advanced technology 

and the growing number of smart devices have revolutionized 

how humans interact with machines, enabling voice to become 

a highly efficient means of communication [4]. The present 

research focuses on speech command recognition (SCR), a 

subset of automatic speech recognition (ASR). SCR involves 

the recognition of short-spoken commands, an essential process 

in machine learning to understand and respond to human 

instructions by associating auditory information with words 

from language sources [5]. The cognitive system makes 

communication between humans and machines much easier and 

more accessible. 

The advent of intelligent virtual assistants such as Google 

Assistant, Amazon Alexa, Apple Siri, and Microsoft Cortana 

has led to widespread and practical use of speech recognition 

technology [6]. This technology is utilized in voice dialing, call 

routing, search, and fundamental data entry tasks [7]. 

Furthermore, the increasing presence of mobile assistants, 

sophisticated robots that can understand and respond to voice 

instructions, and home automation systems like Amazon Echo 

and Google Home have significantly contributed to the growing 

need for communication between humans and machines 

through speech [8]. In addition, SCR has found critical practical 

applications in various fields, such as medicine [1], education 

[2], and support for the disabled and visually impaired [4],[9]. 

Due to the limited resources of small devices, such as those 

mentioned in references [10]-[12], there is an urgent 

requirement for lightweight, real-time applications to meet the 

increasing demand. 
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Two main classifications of voice recognition techniques exist: 

classical approaches and deep learning-based methods. 

Classical methodologies prioritize extracting unique 

characteristics from unprocessed speech data, employing 

techniques like the Fourier transform to translate the time-based 

representation of speech into the frequency-based 

representation [12],[13]. Afterward, these features are retrieved 

and represented using phonetic models, such as the hidden 

Markov model (HMM), to depict the sequence of phonemes in 

words [14]. Recently, there has been a tendency to merge neural 

networks with HMM-based approaches to improve 

performance [15],[16]. Deep learning approaches have become 

the prevailing trend in speech recognition, exceeding standard 

machine learning methods in accuracy and ease of application 

[17]. In [18], researchers trained recurrent deep neural networks 

(RNNs) with numerous layers to effectively incorporate long-

term context. As a result, these networks achieved a test phase 

error rate of 17.7% on the TIMIT phoneme recognition 

standard. A separate study [19] devised a deep learning system 

that exhibited encouraging outcomes in English language 

acquisition. Deep learning was utilized in [20] to categorize 

speech, resulting in a 66.22% accuracy rate. As successful 

applications demonstrate, deep learning techniques have 

effectively recognized speech emotion [21],[22]. 

Furthermore, researchers have investigated the modification of 

deep learning models to accurately identify speech commands 

in different languages and situations. As an illustration, in 

reference [23], a model successfully attained high accuracy in 

identifying Bengali short voice commands. This was 

accomplished using pre-trained models and extracting Mel-

frequency cepstral coefficients (MFCC) characteristics. The 

study in reference [24] employed a repeated neural network 

(RNN) to identify Arabic numerals. The RNN utilized long 

short-term memory (LSTM) cells to handle time-dependent 

challenges effectively. Another method called CNN-PPG [25] 

has been developed to combine convolutional neural networks 

(CNNs) and phonetic posterior gram (PPG) algorithms to 

recognize verbal commands. This method shows remarkable 

accuracy and achieves 93.49%. In [26], the authors used a log-

mel spectrogram and a deep image classification model, 

yielding exceptional accuracy on ten commands. However, its 

performance was slightly affected by the presence of noise. 

An important challenge in previous research has been to 

achieve high accuracy in predicting signals, especially in 

situations of background noise and time presentation in 

different languages and speech patterns. Researchers have 

carefully tried to improve the robustness of speech command 

recognition devices to maintain their effectiveness in different 

settings. 

The present study proposes a network to improve the accuracy 

of identifying single-word spoken commands from real-time 

microphone inputs. The objective is to accurately identify a 

predefined set of terms from brief audio recordings in quiet and 

noisy environments. Leveraging the structured design of CNNs, 

this learning network is trained using the Google speech dataset. 

The audio spectrum is transformed using MFCC, adding noise 

to enhance results. 

The remainder of this study is organized as follows: Section 2 

outlines the design of the convolutional neural network. Section 

3 provides details on the materials and methods employed. 

Section 4 presents the results and subsequence discussion, 

while Section 5 provides the conclusion. 

2. The architecture of convolutional neural networks 

The CNN comprises wrapped, subsampled, and fully connected 

neural layers [16]. The number of layers and how input data is 

passed between layers varies among networks. The wide range 

of parameters CNN explores goes beyond traditional voice 

feature recognition methods and can be learned through training 

examples. Voice recognition, ranking, and performance 

evaluation have become major topics with the advancement of 

CNN. In image processing, the image is used as the direct input, 

eliminating the need for pre-processing and automatically 

extracting features. CNN can recognize two-dimensional 

objects by designing a multi-layered grid, and the network 

structure is robust to image translation, zoom, and distortion 

[14],[15],[27].  

In sound processing, it is more complex than in image 

processing because sound has one dimension. Using an audio 

signal's waveform or time domain directly for processing 

operations is challenging. Using waveforms to detect and 

identify acoustic events is almost only possible if they occur in 

a dynamic media, such as a loud noise in a quiet environment 

[28]. The audio signal must be transformed into the frequency 

domain and represented in 2D through one of the conversion 

methods between the frequency and time domains, such as the 

auditory spectrum. 

Fig. 1 illustrates the basic steps in the deep learning process. 

Regardless of the network structure design or the problem 

addressed by deep learning, the process is always iterative. If 

the network fails to achieve the desired resolution, its 

architecture must be modified to improve it [29],[30]. 

In a supervised deep learning approach, the network is trained 

to extract features from speech commands and classify them 

based on a speech command classification dataset. At the 

testing stage, speech recognition is performed by linking a 

series of convolutional layers with pooling and a fully 

connected layer, forming a traditional CNN. The network 

consists of an input layer and an output layer connected by a 

series of intermediate layers. 

The convolution and pooling layers in Fig. 2 represent the 

feature extraction and learning process. Meanwhile, the fully 

connected layer and Softmax represent the classification stage. 

The next subsection will briefly discuss CNN's geometric 

layout and its most commonly used features for speech 

command recognition. 

 



Journal of Engineering and Sustainable Development, (Vol. 28, No. 06, November 2024)                                    ISSN 2520-0917 

 

756 

 

Figure 1. The main steps for the deep learning workflow 

 

Figure 2. Convolutional Neural Network 

 

2.1. Convolution layer 

Once the map of the input layer is realized, the convolution 

layer becomes a hidden layer and handles two-dimensional 

data. By applying certain random filters, a feature map is 

created that allows a CNN to understand the local aspects of the 

data. Each layer only processes a portion of the input elements 

instead of the total features from the previous layer. 

2.2. Poolling layer 

The pooling layer, a second layer, may be connected to the 

convolution layer. A stride, represented as an arbitrary-sized 

window, extracts feature maps and reduces their dimensions. 

The maximum, average, or total of windows can be extracted. 

This study used the maximum aggregation to obtain the highest 

possible values from each feature map window. 

2.3. Utilizing a rectified linear unit to activate (ReLU) 

Several nonlinear activation functions exist in the deep 

structure of CNNs. This research used rectified linear units 

(ReLUs) as a common alternative to the sigmoid tangent and 

logistic hyperbolic functions. ReLUs replace negative values in 

the matrix with zeros to produce the desired outcome. They are 

positioned between the pooling layer and the convolution layer. 

2.4. Fully connected layer with softmax 

The output feature maps of a CNN are connected to a fully 

connected layer, where each input and output is connected to a 

learnable weight. After the features are transformed by the 

stacking of layers and reduced by the grouping of layers, the 

final output of the grid is assigned, producing probabilities for 

each category in classification tasks. The number of output 

nodes in the fully connected final layer is typically equal to the 

number of classes. 

The softmax function activates the output unit and is connected 

to a fully connected layer for multi-class classification. The 

geometric structure of this network has a strong ability to 

recognize speech with high accuracy.  

 

3. Resources and techniques. 

Section 3.1 discusses the techniques and tools used for deep 

learning speech recognition and describes the dataset. Section 

3.2 showcases a CNN model for converting and classifying 

spectrograms. 

3.1. Dataset 

The dataset used in our research is Google Speech, which 

consists of 65,000 audio clips of speech commands taken from 

thousands of speakers from various parts of the world, recorded 

in varying quality [31]. Each audio file is a short word lasting 1 

second. Our study will identify ten specific terms: "Yes", "No", 

"Up", "Down", "Left", "Right", "On", "Off", "Stop", and "Go". 

Any other words will be classified as "Unknown". The dataset 

also includes audio clips containing only background noise, 

which we have named "Background." The audio data has a 

frequency of 16 kHz and a length of 1 second. Before creating 

the spectrogram, noise was added to the speech commands to 

simulate real-world conditions. 80% of the data was used for 

training, 10% for validation, and 10% for testing. 

3.2. Proposed architecture 

The exploratory study used MATLAB 2021a, an Intel Core i7 

5600 processor, 8 GB of RAM, SSD, and the Windows 10 

operating system, 64-bit edition.  

The raw audio signals were transformed into waveforms to 

determine the appropriate acoustic features and then processed 
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into spectrograms of various sizes [32]. Time and frequency are 

assigned as the axes of the spectra, forming 2D representations 

of the spectrogram. 

Spectral models provide more information than conventional 

hand-crafted features for audio analysis and have fewer 

dimensions than raw audio. Automatic voice recognition 

employs features from the MFCC approach. The Hann window 

used for analysis was 400 samples, with 50 filters in the 

auditory spectrogram. A Fast Fourier Transform (FFT) length 

of 512 samples was used with a window overlap of 240 samples 

and 16 kHz speech samples without zero padding. The spectral 

matrix over time was obtained, as shown in Fig. 3. 

 

 

Figure 3. Speech signal with auditory spectrogram 

 

Another objective of this work is to minimize the number of 

architectural layers to simplify the model and reduce runtime. 

This is achieved using convolutional layers with a wide enough 

convolution window, stride, and pooling layers to detect 

patterns and decrease dimensionality between neural layers. 

The results of updating the underlying CNN model using the 

backpropagation approach are shown in Table 1.  

There are eight hidden layers of ((([3 4] x15, [3 2] x 15) + batch, 

normalization layer + RELU activation function in each layer). 

Moreover, there are four max-pooling layers and one layer fully 

connected with the softmax layer. The number of weights is   

183345. 

 

4. Results and discussion 

To assess the performance of the proposed model, the precision, 

recall, accuracy, and F1-score were evaluated for training, 

validation, and testing datasets. The SCR dataset, consisting of 

10 English speech commands, was used in this study, 

employing CNN architecture. Fig. 4 illustrates the progress of 

accuracy and loss during the CNN training process. The curve 

in the figure shows the training process, while the black curve 

represents the validation process. The validation process curve 

comprises epochs, represented by columns of gray and white 

colors with black nodes. 

Table 1. Implemented CNN model configuration 

Parameter Range 

Hidden Layers for CNN 8 layers 

Validation data 10 % 

Max Epochs 20 

Mini batch size 128 

Learning Option Adam 

Shuffle every-epoch 

Initial Learn Rate 3×10−4 

Learn Rate Drop Factor 0.1 

Learn Rate Drop Period 20 

Learn Rate Schedule piecewise 

Max Iteration 3620 

Iteration per Epoch 181 

Input Nodes 98 × 50 

Output Nodes 1 
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Figure 4. Accuracy and loss vs iteration in training progress 

 

Fig. 5 and 6 display the training and validation data confusion 

matrix. The confusion matrix provides a visual representation 

of the performance of the speech recognition system. The 

matrix shows the number of samples from each true class that 

were predicted to belong to each class. The true class refers to 

the actual spoken command, while the predicted class 

represents the command the neural network recognizes and 

outputs as its prediction. The diagonal parts in the matrix 

correspond to the accurately categorized samples, whereas the 
off-diagonal elements reflect the incorrectly classified samples. 

Upon analyzing the confusion matrix of the training datasets, it 

is clear that the speech recognition system had outstanding 

results across different classes, displaying high accuracy rates. 

The "background" class, which included 3400 samples, 

obtained perfect categorization. The "yes" and "no" 

classifications demonstrated remarkable accuracy, correctly 

classifying 1844 and 1833 samples.  

 

 

Figure 5. Confusion matrix for training data 
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Figure 6. Confusion matrix for validation data 

 

The confusion matrix for the validation dataset demonstrates 

the voice recognition system's strong overall performance, with 

high accuracy rates for most classes. The "background" class 

achieved flawless classification, accurately identifying all 600 

samples. The "yes" and "no" classes demonstrated impressive 

accuracy, correctly classifying 248 and 246 samples, 

respectively. There was some misclassification in other classes, 

but the number is very small relative to the total sample size. 

The confusion matrix of the test data set reveals high accuracy 

rates of the ASR system for a wide range of classes, 

highlighting its proficiency in recognizing specific speech 

commands but particularly pointing to areas of improvement in 

dealing with background noise and misclassification of 

unknown commands. This emphasizes the necessity for 

increased adaptability to enhance the accuracy and robustness 

of the system, hence ensuring dependable performance in real-

life situations. To evaluate the performance of the proposed 

performance, the accuracy, recall, precision, and F1-score of the 

CNN can be calculated using the equations [33]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
                                                                 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
                                                                       (2) 

Accuracy =
Tp+Tn

Tp+Tn+Fp+Fn
                                                    (3) 

F1 − score =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                              (4) 

 

Where Tp is an accurate positive prediction, Tn is a true negative 

prediction, Fp is a false positive prediction, and Fn is a false 

negative prediction.  

Fig. 7, 8, and 9 show each speech group's precision, recall, and 

F1-score metrics during the training, validation, and testing 

phases. Inspection of Fig. 7 shows consistently high 

performance on the training dataset, with precision values 

ranging from 98.3% to 100% and 98.98% on average, and recall 

rates ranging from 97.5% to 99.9%, with an average of 99.15 

%. These results apply exactly class instances to reduce false 

negatives, demonstrating the model's assessment capabilities. 

Similarly, F1-scores ranged from 98.7% to 99.59%, averaging 

99.06%. In the validation set, Fig. 8, precision and recall 

metrics range from 91.2% to 99.1%, with an average F1-score 

of 94.68%, indicating a competitive performance of the model 

even when facing new observations. Fig. 9 presents the testing 

set assessment, revealing good precision and recall metrics 

ranging from 92.6% to 95.5%, with an average F1-score of 

95.27%, demonstrating consistent performance across various 

classes. Table 2 summarizes the proposed models' accuracy, 

recall, precision, and F1-score rates on the training, validation, 

and test datasets. The suggested model has achieved high-

performance metrics on all three datasets, indicating reliability 

and accuracy. The slight difference between the training, 

validation, and testing results demonstrates that the model is 

generalizing well to new data and is not overfitting the training 

data.  

Table 3 compares the suggested method's performance in 

speech command recognition to that of the state-of-the-art 

techniques to evaluate its overall effectiveness. The assessment 

of these techniques throughout the testing phase considered 

variables such as the frequency of commands, background 

noise, and instances of encountering unknown words. The 

results demonstrate that the suggested model outperformed 

existing techniques, attaining a testing accuracy of 94.8%. In 

comparison, the log-mel spectrogram and CNN-PPG 

approaches produced accuracy rates of 93.71% and 93.49%, 

respectively. 

 

Table 2. Overall Performance Metrics for the Proposed Model 

 Precision 

% 

Recall 

% 

Accuracy 

% 

F1-

score% 

Training Data 98.98 99.15 99.0 99.06 

Validation Data 94.53 94.88 95.1 94.68 
Testing Data 94.67 95.93 94.8 95.27 

 

Table 3. Comparison of the proposed model with state-of-the-

art techniques 

Methods 

No. of the 

speech 

command 

Presence 

of noise 

Unknown 

commands 

Test 

accuracy 

% 

Log-mel 

spectrogram 

deep image 

classification 

[28] 

10 yes yes 93.71 

CNN-PPG [26] 10 no no 93.49 

Proposed model 10 yes yes 94.8 
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Figure 7. Performance metrics for the training dataset 

 

Figure 8. Performance metrics for the validation dataset 

 

 

Figure 9. Performance metrics for the testing dataset 

 

5. Conclusion  

This study effectively implemented a convolutional neural 

network (CNN) integrated with Mel-frequency cepstral 

coefficients (MFCC) to develop an automated system for 

recognizing spoken commands. The efficacy of this approach 

was demonstrated using the Google Speech commands dataset, 

which comprises 65,000 audio recordings. The model exhibited 

proficiency in recognizing 10 predetermined spoken 

commands, including classifying unfamiliar commands and 

accurately categorizing background noise. Exceptional 

accuracy was achieved across all three datasets, with a training 

accuracy of 99.0%, a validation accuracy of 95.1%, and a 

testing accuracy of 94.8%. A significant breakthrough was 

achieved by using MFCC for feature extraction, coupled with 

the subsequent implementation of a CNN model for additional 

feature learning and classification. This approach increased 

precision and reduced the overall complexity of the model. 

While the study primarily focused on identifying spoken 

commands lasting one second, there is potential for improving 

the model's effectiveness with longer commands by refining 

feature selection. Future research will explore other CNN 

network architectures to enhance the effectiveness of the 

proposed model further.  
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