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ABSTRACT

A ring R is called a right dual ring if rI(T) = T for al
right ideals T of R. The main purpose of this paper is to
develop some basic properties of dua rings and to give the
connection between dual rings, regular rings and strongly
regular rings.
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1. INTRODUCTION

Throughout this paper, R represents an associative
ring with identity and al R-modules are unitary. Recall
that: (1) A ring R is reduced if R contains no non-zero
nilpotent element; (2) R is said to be von Neumann
regular (or just regular) ring if al aRa for every a in R; (3)
A right R-module M is cdled P-injective if, for any
principal right ideal | of R, every right R-homomorphism
of | into M extends to R. we say that, R is a right P-
injective ring if Rg is P-injective; (4) R is called right duo-
ring if every right ideal of R is a two- sded ideal; (5) For
evey a R, r(@ and 1(a) will stand respectively for right
and left annihilators of & (6) Y(R) will denote the right
singular ideal of R.

2. DUAL RINGS (BASIC PROPERTIEY).

Following [7], aring R is said to be a
right dual ring if rI(T)=T, for al right ideals T
of R. A left duaal ringissimilarly defined .
A ring R is caled dua ring if R is a right and left
dual ring.

Example. Let R be the set of all 2 x 2 matrices é‘: gg, with a, b,
& dY

c, d1 Z, (Thering of integers modulo 2).
A straightforward calculation, shows that R is a dual ring.
Following [1], aring R is said to be a right Ikeda-Nakayama
ring (right IN- ring) if I(A C B) =1 (A) +I (B) for al right ideals A
and B of R.
In [3], Hajarnavis and Norton Proved that:

Lemma 2.1. Every dua ring is IN- ring.
We begin this section with the following lemma.
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Lemma 2.2. Let R be aright dual ring, and let M; and M, be
right idealsof R. Then M1 1 M, if and only if (M) I [(M»).

Proof.

If My 1 My, then obvioudy [(M2) I 1(M»).

Conversely, assume that (M) [ [(M4). Thenri(M4) I rl(M,). By
duality of R, we have M1 M,.

The next proposition is adirect consequence of Lemma 2.2

Proposition 2.3. Let R be adual ring. Then

1- M is a maximal right ideal of R if and only if I(M) is
minimal left ideal.

2- M isaminima right ideal of R if and only if I(M) is
maximal left ideal.

Proof
(2). Let M be amaximal right ideal of R, and let L be a left ideal
of Rsuchthat (0)i L1 I(M). Thenby Lemmaz2.2,
R=r(0) E r(L) E rl(M) = M. By maximally of M, we have
r(L) =R, and thisimpliesL = I(R). Therefore L = (0).
Conversely, assume that I(M) isaminimal left ideal of R, and
let MI 11 Rforsomeright ideal | of R.
Then I(M) E I(1) E I(R) = (0). Hence I(I) =(0), so | =R
(2). Let M be a minimal right ideal of R, and let L be a left ideal
of RsuchthatIM)1 L1 R.
Then M = rl(M) E r(L) E r(R) = (0). So r(L) =(0) and hence
L=R.
Conversely, let (M) be a maximal left ideal, and let L be a
right ideal such that (0) I L1 M, then R=1(0) E I(L) E I(M) .
So I(L) = R. Hence L = (0).

Recall the following result of Nicholson and Y ousf
[5, Lemma 1.1].
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Lemma 2.4. The following conditions are equivalent
1- Rr isP-injective.

2-Ir(@=Rafor dl ainR.

3-1fr(b) i r(a),fora bl R,thenRal Rb.

4- I[bRCr(a)] = I(b) + Ra, forall a, bT R.

Theorem 2.5 Let R be aright Noetherian P-injective ring, and let
r(Ly € Ly) = r(Ly+r(L,) for al principal left ideals L, and L, of
R. Then Risaright dual ring.

Proof. Let0® al R. First weclaim that aR =rl(aR) .
Clearly aR | rl(aR). Let b T rl(aR). Then xb = 0 for al x 1
I(aR). Sincel(aR)i I(bR),then definef: Ra® Rb, by f(xa) = xb.
Clearly f isawell defined left R — homomorphism.
Since R is P-injective, there exists ¢l R such that xb = f(xa) = xac
for al x T R, whence b = acl aR, yielding aR = rl(aR).
Since R is right Noetherian, then by [4, Theorem 2.3.13], every
rightideal | of R can bewritteninthe form
| =aR+aR+....+aR, and thisimplies
() =r(l(&R) C 1 (&R) C....C | (aR))
=1l (&R) +rl (&R) +....+ 11 (aR)
—ayR+aR+....+ aR=l.

3.THE CONNECTION BETWEEN DUAL RINGS AND
REGULAR RINGS.

The Purpose of this section is to show the connection between
dual rings, regular rings and strongly regular rings.

Recall that aring R is strongly regular if for every al R, al

a’R . Clearly a strongly regular ring is a reduced regular ring.
We begin this section with the following result.
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Theorem 3.1. Let R be a reduced left or right dual ring. Then R
Is strongly regular.

Proof.
Let a be a non — zero element in R. Then r(a) = r(@) (R is
reduced). Since R isaleft dual ring, by [6, Theorem 11], RgisP-
injective, and hence Ra = Ir(a) (Lemma 2.4). Whence Ra = Ir(a)
= Ir(@) = Ra’. This implies that a = ra’, for some r I R.
Therefore R is strongly regular.

Next, we give other sufficient condition for dual ring to be

strongly regular.

Theorem 3.2. Let R be a semi-prime left dual ring and right duo-
ring. Then R isstrongly regular.

Proof.
Let0! al R, andlet!| =r(@) C aR, first we claim that
12 = (0).Suppose that 1> (0). Forany di I,di r@anddl aR=
Ra (R isaright duo-ring), so d = baforsomebi R, and aba=0.
Thus d? =0 and hence I? = (0). Since R is semi-prime, then I=(0).
Next, we claim that r(a) = r(&) , clearly r(@) i r(@). Letx 1 r(&).
Thena® = 0, so a(ax) = 0 and henceax 1 r(a@) , but ax T aR,
then axi aRCr(a) = (0). Therefore x T r(a). On the other hand
since R is aleft dual ring then Ra= Ir(a) = Ir(a%) = Ra?. Therefore
R isstrongly regular.
The next result provides a link between dua rings and
regular rings.

Theorem 3.3. Let R be aright non—singular dual ring. Then R is
regular ring.

Proof.

Let0! al R, then by [6. Theorem 11] and (Lemma 2.4), Ra=
Ir(@). Since R is a right non — singular ring, then Y(R) = 0 .
Whence r(a) is not essential right ideal of R. Then there exists a
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non-zero right ideal L of R such that r(a) A L is essential right
ideal of R. Now by Lemma 2.1 R isaright IN-ring. Then we
have Ir(a) +I(L) = I(r(@CL)=R. Whence it follows that Ra + I(L)
=R, whilelr(a) CI(L) I I(r(a) +L) = (0). So RaC I(L) = (0).
Thus Ra = Ir(a) is a direct summand. Therefore R is regular [2,
Theorem 1.1].

Before closing this section we present the following result.

Proposition 3.4. Let R be aregular ring.
Thenr(L; C Ly) =r(Lq) + r(L,) for al principal left idealsL, and
L, of R.

Proof.

Obvioudy r(L1) +r(Ly) I r(L: C Ly) always holds.

LetbT r(L:C Ly), definef;T Homg(L;, rR), i = 1.2 asfollows:
fi(a)=aq foral g1 L;andfy(a) =& (1-b) foral a1 L, . The
mapping f(agtap)=fi(a)+fx(a) is a well defined left
R-homomorphism,indeed if, & + & =gg+at, then
a- ay=-a*ta, 1 Li C L, .But bl r(L.CL,) therefore
a:b =aGb - Showing that f(g;+a,) =f(ag+at).Since R is

regular, then R is P-injective, so there existsc1 R such that f(a;
+ap) = (g + &) C.

This implies &g + a(1-b) = f (¢ + &)=(a1 + &)c, and therefore
a(1-c) + & (1-b-c) =Oforal a,1 Lyanda 1 L,. Itfollowsthat
1-cT r(Ly) and 1-b-cT r(Ly).

Therefore b=(1-c) — (1-b-c) T r(L4) +r(L>).

Thisshowsr(L,CL,) =r(Ly)+r(L,) for all principa left ideals
L;and L, of R.
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