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  الملخص

 فـي  T لكـل مثـالي أيمـن     rl(T)=T يمنـى إذا كـان        اثنينية  بأنها Rيقال للحلقة   
R .      وإيجـاد ،  الاثنينيـة  للحلقـات    الأساسـية   الخواص الهدف من هذا البحث هو تطوير بعض 

  والحلقـات المنتظمـة والحلقـات المنتظمـة         الاثنينيـة لحلقـات   ابعض العلاقات التي تـربط      
  .بقوة

 
ABSTRACT 

 
A ring R is called a right dual ring if rl(T) = T  for all 

right ideals T of R. The main  purpose of this  paper is to 
develop some basic properties of dual rings and to give the 
connection between dual rings, regular rings and strongly 
regular rings. 
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1. INTRODUCTION  
Throughout this paper, R represents an associative 

ring with identity and all R-modules are unitary. Recall 
that: (1) A ring R is reduced if R contains no non–zero 
nilpotent element ; (2) R is said to be von Neumann 
regular (or just regular) ring if a∈aRa for every a in R; (3) 
A right R-module M is called P-injective if, for any 
principal right ideal I of R, every right R-homomorphism 
of I into M extends to R. we say that, R is a right P-
injective ring if RR  is P-injective; (4) R is called right duo-
ring if every right ideal of R is a two- sided ideal; (5) For 
every a∈R, r(a) and l(a) will stand respectively for right 
and left annihilators of a; (6) Y(R) will denote the right 
singular ideal of R. 
 
2. DUAL RINGS (BASIC PROPERTIES). 

 
Following [7], a ring R is said to be a 

right dual ring if rl(T)=T, for all right ideals T 
of  R. A left dual ring is similarly defined . 

A ring R is called dual ring if R is a right and left 
dual ring. 

Example. Let R be the set of all 2 × 2 matrices 







dc
ba , with a, b, 

c, d ∈Z2 (The ring of integers modulo 2).  
A straightforward calculation, shows that R is a dual ring.  

Following [1], a ring R is said to be a right Ikeda-Nakayama 
ring (right IN- ring) if l(A ∩ B) = l (A) +l (B)  for all right ideals A 
and B of R. 

  In [3], Hajarnavis and Norton Proved that: 
 
Lemma 2.1. Every dual ring is IN- ring. 
   We begin this section with the following lemma. 
 

1 
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Lemma 2.2. Let R be a right dual ring, and let M1 and M2 be 
right ideals of R. Then M1 ⊆ M2 if and only if l(M2) ⊆  l(M1). 
 
Proof.  
If M1 ⊆ M2, then obviously l(M2) ⊆ l(M1). 
Conversely, assume that l(M2) ⊆ l(M1). Then rl(M1) ⊆ rl(M2). By 
duality of R, we have M1 ⊆ M2 . 

 
The next proposition is a direct consequence of Lemma 2.2   

 
Proposition 2.3. Let R be a dual ring. Then  
1- M is a maximal right ideal of R if and only if l(M) is 

minimal left ideal.  
2-  M is a minimal right ideal of R if and only if l(M) is 

maximal left ideal.  
 
Proof 

(1). Let M be a maximal right ideal of R, and let L be a left ideal 
of R such that (0) ⊆ L ⊆ l(M). Then by  Lemma 2.2 ,  
R=r(0) ⊇ r(L) ⊇ rl(M) = M. By maximally of M, we have  
r(L) = R, and this implies L = l(R). Therefore L = (0). 

Conversely, assume that l(M) is a minimal left ideal of R, and 
let M⊂ I ⊆ R for some right ideal I of R.  
Then l(M) ⊃ l(I) ⊇ l(R) = (0). Hence l(I) =(0), so I = R  

(2). Let M be a minimal right ideal of R, and let L be a left ideal 
of R such that l(M) ⊂ L ⊆ R. 

Then M = rl(M) ⊃ r(L) ⊇ r(R) = (0). So r(L) =(0) and hence  
L = R. 
Conversely, let l(M) be a maximal left ideal, and let L be a 

right ideal such that (0) ⊆ L ⊆ M, then R = l(0) ⊇ l(L) ⊇ l(M) .  
So l(L) = R. Hence L = (0). 

 
Recall the following result of Nicholson and Yousif  
[5, Lemma 1.1]. 
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Lemma 2.4.  The following conditions are equivalent  
1- RR is P-injective.  
2- lr(a)= Ra for all a in R. 
3- If r(b) ⊆ r(a), for a, b ∈ R, then Ra ⊆ Rb. 
4- l[bR∩r(a)] = l(b) + Ra, for all a, b ∈ R. 
 
Theorem 2.5 Let R be a right Noetherian P-injective ring, and let  
r(L1 ∩ L2) = r(L1)+r(L2) for all principal left ideals L1 and L2 of 
R.  Then R is a right dual ring. 
 
Proof. Let 0 ≠ a ∈ R. First we claim that aR = rl(aR) . 
Clearly aR ⊆ rl(aR). Let b ∈ rl(aR). Then xb = 0 for all x ∈ 
l(aR).  Since l(aR)⊆ l(bR),then   define f: Ra→ Rb, by f(xa) = xb. 
Clearly f is a well defined left R – homomorphism. 
Since R is P-injective, there exists c∈R such that xb = f(xa) = xac  
 for all x ∈ R, whence b = ac∈aR, yielding aR = rl(aR). 
Since R is right Noetherian, then by [4, Theorem 2.3.13], every 
right ideal I of  R  can  be written in the  form  
  I  = a1R+a2R+….+anR, and this implies  
rl(I)  = r(l(a1R) ∩ l (a2R) ∩….∩ l (anR)) 

= rl (a1R) + rl (a2R) +….+ rl (anR) 
= a1R + a2R +….+ anR =I. 

 
 
3.THE CONNECTION BETWEEN DUAL RINGS AND 

REGULAR RINGS . 
 
The Purpose of this section is to show the connection between 

dual rings, regular rings and strongly regular rings. 
 
   Recall that a ring R is  strongly regular if for every a ∈ R,  a∈ 
a2R . Clearly a strongly regular ring is a reduced regular ring. 
We begin this section with the following result.  
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Theorem 3.1. Let R be a reduced left or right dual ring. Then R 
is strongly regular.  
 
Proof.  
Let a be a non – zero element  in R. Then  r(a) = r(a2) (R is 
reduced). Since R is a left dual ring, by [6, Theorem 11], RR is P-
injective, and hence  Ra = lr(a) (Lemma 2.4). Whence Ra = lr(a) 
= lr(a2) = Ra2. This implies that a = ra2, for some r ∈ R. 
Therefore R is strongly regular. 

Next, we give other sufficient condition for dual ring to be 
strongly regular.  

 
Theorem 3.2. Let R be a semi-prime left dual ring and right duo- 
ring. Then R is strongly regular. 
 
Proof.  

Let 0 ≠ a ∈ R, and let I = r(a) ∩ aR, first we claim that  
I2 = (0).Suppose that I2 ≠ (0). For any d ∈ I, d ∈r(a) and d ∈ aR = 
Ra (R is a right duo-ring), so  d = ba for some b ∈ R, and aba=0. 
Thus d2 =0 and hence I2 = (0).  Since R is semi-prime, then I=(0). 
Next, we claim that r(a) = r(a2) , clearly r(a) ⊆ r(a2). Let x ∈ r(a2). 
Then a2x = 0, so a (ax) = 0 and hence ax ∈ r(a) , but ax ∈ aR, 
then ax∈aR∩r(a) = (0). Therefore x ∈ r(a). On the other hand 
since R is a left dual ring then Ra = lr(a) = lr(a2) = Ra2. Therefore 
R is strongly regular.  

The next result provides a link between dual rings and 
regular rings.  

 
Theorem 3.3. Let R be a right non–singular dual ring. Then R is 
regular ring.  
 
Proof.  
Let 0 ≠ a ∈ R, then by [6. Theorem 11]  and (Lemma 2.4), Ra = 
lr(a). Since R is a right non – singular ring, then Y(R) = 0 . 
Whence r(a) is not essential right ideal of R. Then there exists a 
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non-zero right ideal L of R such that r(a) ⊕ L is essential right 
ideal of R. Now by  Lemma 2.1  R is a right IN–ring. Then we 
have lr(a) +l(L) = l(r(a)∩L)=R. Whence it follows that Ra + l(L) 
= R, while lr(a) ∩l(L) ⊆ l(r(a) +L) = (0). So Ra ∩ l(L) = (0). 
Thus Ra = lr(a) is a direct summand. Therefore R is regular [2, 
Theorem 1.1]. 
Before closing this section we present the following result. 
 
Proposition 3.4. Let R be a regular ring.  
Then r(L1 ∩ L2) = r(L1) + r(L2) for all principal left ideals L1 and 
L2 of R. 
 
Proof.  
Obviously r(L1) + r(L2) ⊆ r(L1 ∩ L2) always holds.  
Let b ∈ r (L1 ∩ L2), define fi ∈ Hom R(Li, RR), i = 1.2 as follows: 
f1(a1)=a1  for all a1 ∈ L1 and f2(a2) = a2 (1-b) for all a2 ∈ L2 . The 
mapping f(a1+a2)=f1(a1)+f2(a2) is a well defined left  
R-homomorphism,indeed if, a1 + a2 = aa 21 ′′ +  then  

aaaa 2211 ′+−=′−  ∈ L1 ∩ L2 .But b∈r(L1∩L2) therefore 

baba ′= 22 . Showing that )(f)(f aaaa 2121 ′′ +=+ .Since R is 

regular, then RR is P-injective, so there exists c ∈ R such that f(a1 
+ a2) = (a1 + a2) c.  
This implies a1 + a2(1-b) = f (a1 + a2)=(a1 + a2)c, and therefore 
a1(1-c) + a2 (1-b-c) = 0 for all a1 ∈ L1 and a2 ∈ L2 . It follows that 
1-c ∈ r(L1) and 1-b-c ∈ r(L2). 
Therefore b=(1-c) – (1-b-c) ∈ r(L1) +r(L2).  
This shows r(L1∩L2) = r(L1)+r(L2)  for all principal left ideals 
L1 and L2 of R. 
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