

Anatomical and Phytochemical Study of *Glossostemon bruguieri* (Desf.) Sterculiaceae in Kurdistan Region of Iraq

Khalid Faiq Darweesh*

Karzan Mahmood Ahmed**

* Dept. of Biology, Faculty of education, Univ.of Garmian, Kurdistan, Iraq

Received 4 January 2016 ; Accepted 26 April 2016

<u>Abstract</u>

Glossostemon bruguieri named "ARAB QŌZI" or "MOGHAT", which is used in the traditional medicine for treatment various ailments, where no such study has been conducted so far. This investigations report for the first time the anatomical characters and identify the chemical constituents of methanolic extract for different parts of *G. bruguieri* by using modern sensitive gas chromatography – mass spectroscopy (GC-MS). The microscopic study showed the present of internal duct in all studied parts ,also present of oil drops in the cells of root ,cells with special bodies near the vascular bundle of leaves and its petioles and the present of (Stellate, dendroid and multicellular glandular) trichome in aerial parts of the plant. GC-MS analysis revealed the presence of many compounds in different parts of *G. bruguieri* different between the parts in relation to the anatomical structure which reflex the importance of the aerial parts of the plant in addition to traditional use of root.

Keywords: Glossostemon bruguier (Moghat), anatomy, phytochemical analysis.

دراسة تشريحية كيمياوية للنوع (Sterculiaceae) Glossostemon bruguieri النامية في اقليم كوردستان العراق

خالد فائق درویش * و کارزان محمود احمد * *

* قسم علوم الحياة - فاكلتي التربية - جامعة كرميان - كوردستان – عيراق. ** قسم الكيمياء- فاكلتي التربية-جامعة كرميان-كوردستان –عيراق

الخلاصة

النوع (.Desf.) النوع (.Glossostemon bruguieri المعروف محلياً بعرب قوزي يستخدم بصورة تقليدية لعلاج العديد من الامراض مع قلة المصادر البحثية ،هذه الدراسة سجلت لأول مرة معلومات تشريحية .حددت المحتوى الكيمياوي للمستخلص الميثانولي لاجزاء مختلفة من النبات *G. bruguieri باستخدام كروماتو غر*افيا الحالة الغازية ومطياف الكتلة المستخلص الميثانولي لاجزاء مختلفة من النبات *G. bruguieri باستخدام كروماتو غر*افيا الحالة الغازية ومطياف الكتلة المساسة (.GC-MS) . بأستخدام كروماتو غرافيا الحالة الغازية ومطياف الكتلة الحساسة (.GC-MS) . الدراسة التشريحية اظهرت وجود قنوات افرازية في جميع الاجزاء المدروسة وظهور قطرات زيتية في خلايا الجذر مع وجود خلايا ذات تراكيب خاصة قرب الحزمة الوعائية للورقة واعنقها ووجود شعيرات نجمية وشجرية و غدية متعددة الخلايا في بشرة الاجزاء الهوائية. التحليل الكيمياوي باستخدام (.GC-MS) للمستخلص الميثانولي وشجرية و غدية متعددة الخلايا في بشرة الاجزاء الهوائية. التحليل الكيمياوي باستخدام (.GC-MS) للمستخلص الميثانولي وشجرية و غدية متعددة الخلايا في بشرة الاجزاء الهوائية. التحليل الكيمياوي باستخدام (.GC-MS) لمعنوبي الميثانولي وشجرية و اعنقها ووجود شعيرات نجمية وشجرية و غدية متعددة الخلايا في بشرة الاجزاء الهوائية. التحليل الكيمياوي باستخدام (.GC-MS) للمستخلص الميثانولي كشفت عن وجود مركبات عديدة في الازهار والاوراق والنورات الزهرية والساق للنوع G.bruguieri الميثانولي كشفت عان وجود مركبات عديدة في الازهار والاوراق والنورات الزهرية والساق للنوع G.bruguieri . كلفت التشريحية التي اظهرت اهمية الساق بالاضافة الى الاستخدامات التقليدية للجذر.

Introduction

Despite that Sterculiaceae have no long reputation as medicinal plant family also no high variety of taxa, some species such as moghat (ARAB Q $\overline{O}ZI$ was the common name) *Glossostemon bruguieri* which is the only native genus and species of this family in Iraq (Townsend and Evan , 1980) have a history in ethnobotany . *G. bruguieri* is native to Iraq and Iran, and was cultivated in Egypt for its edible roots a long time ago (Meselhy, 2003), distributed in Upper Jazira ,Central Alluvial Plain , Nineveh, Kirkuk and Persian foothills districts of Iraq (Townsend and Evan, 1959). (Al-Rawi and Chakravarty, 1964) refers to root of *G. bruguieri* as medicinal plant with aphrodisiac uses and tonic against cough. (Ibrahim

Vol: 13 No:1, January 2017

etal., 1997) Evaluate the content and composition of proteins and mucilage of the roots and seeds of Moghat, while (El-Sayed et al, 2004) study the Phytochemical content which show characters of new flavonoids and the effect of aerial parts of G. bruguieri on urine volume. (El-Kiey and Hashem, 1957) study Pharmacognostical importance of Moghat in Egypt this refer to its importance as food and medicinal additives. The structures and the Occurrence of some compound such as 4-methoxyisoscutellargin, sesamin, chrysophanol, emodin and methoxyemodin (physician) and the new compound (3"'-hydroxycupressuflavone) in Moghat reported for the first time by (Meselhy, 2003). Mucilage from G. bruguieri roots exerted a pronounced hypoglycemic action bringing the glucose level down to half (Eddouks and Zeggwagh, 2014). The root extract of G. bruguieri showed no activity at all for all tested bacteria used in study of antibacterial potentiality of some edible plant by (El-Sayed etal., 2014) whereas variety of antibacterial and antifungal activities of G. bruguieri reported by (Zain etal., 2014), Also mentioned by (Sher and Alyemeni, 2011) as medicinal plants used in Ethnoveterinary practices in Saudi Arabia. With these uses and interesting of this species there is no anatomical and phytochemical study of other parts of plant in compare with the limited research on root and seeds, also no data about species status, for that we investigate about structure and chemical constituents in different plant parts which make this plant to be deliberated also check about species status.

Material and Methods

Plant collection

Survey and checking about the species in remained studies to collection and evaluation of species status, some data obtained by traveling in the field and because of low safety in some area others data collected by contacting herbalist and botanist in referred physiographic districts in Iraq (plate 1 B), Whole parts of *Glossostemon bruguieri* were collected beside road between Kirkuk and Kalar in Kurdistan region during Jun 2015. The plant material was identified and classified by National Herbarium-Baghdad/Iraq. The collected samples were separated and packed directly in polyethylene bugs. The flower, leaf, stem and inflorescence

plant parts were cut and washed with tab water in order to remove dust. The samples were dried under shade at room temperature until they reached a constant weight, and then powdered finely by using grinder machine (IKA-WERKE-M20-Germany) for 30 second. Consequently the dry plant samples were pulverized into powdered form, and stored in dark condition. Other parts preserved in F.A.A solution (Formalin, Acetic acid and Alcoholic ethanol) for anatomical study.

Anatomical Investigation:

The different parts of the present species was collected and preserved in F.A.A solution, cross sections prepared directly by Razor blade as hand free section or by Freezing microtome (SLEE Model *mtc*-Germany), to show different types of cells and tissue systems, samples stained with Safranin O and sometimes by logul''s solution to check about the starchy and special cells (Chemicals provided by Sharlu of Spain). Prepared sections examined by light microscope (Meiji 4300L, Japan)and some time by stereo microscope (Meiji RZ model, Japan), prepared slides documented by Canon Camera Kiss model, the specialized cells and tissues as ducts investigated in different parts of the plants.

Preparation of methanolic extracts

10 gm of aerial parts of plants (leaf, stem, flower and inflorescence) was extracted with methanol solvent (100 mL) by maceration extraction for 6 hours under mechanical stirring at room temperature. The procedure was repeated three times. After extraction, it was filtered and the methanol solvent was evaporated by using rotary evaporation (Laborota 4000, Heidolph Instruments, Schwabach, Germany, temperature 40-45°C). The obtained extracts were stored at room temperature for further studies.

GC/MS Analysis

The protocols were experimentally tested and designed ,the methanolic extraction of aerial parts of plants was analyzing by using GC-MS. Shimadzu Model QP-2010 Mass spectrometer under the following conditions: HP-5 MS (5% phenylmethylsiloxane) capillary column (30 m \times 0.25 mm i.d., film thickness 0.25 µm). Inert gas of helium was used as a carrier gas at constant flow rate of 1.61ml/minute. Injection port temperature and interface

temperature were set at 230 and 245°C respectively. Ion Source Temperature was 250° C. Initial column temperature was 60° C, held for 2 minute and increased at 70° C /min to 305° C and held for 5 min. An electron ionization system with ionization energy 70 eV was used for the detection of compounds. 75mg of Methanol leaf extraction was taken and made up to 15 ml with methanol, from which 1µl of sample was automatically injected (split mode) in the column and mass spectral scan range was set at 45-500 amu. The split ratio was of 1:15. The mass spectrum of the unknown component was compared with the spectrum of the known components stored in the Wiley library. The name, molecular weight, and structure of the components of the test material were finally ascertained.

Results and Discussion

Species status and anatomical study:

Despite that project of flora of Iraq was neglected in the last years but it has been that some plants as studied species lost it is density this may be because of over harvesting by herbalist or Egyptian people in seventeen's and eighteens of last century or because of global warming which causing elevation in atmospheric temperature as our observations since 2011 (plate 1, A) also some area as Jabal Singar undergo flooding in different years which noticed by collagenous researchers among different sites we recorded the best one of them between kifri and Kalar city (Garmin GPS72: N 34° 43.391' E045°07.020' Elevation: 338.5). For that we suggest that the conservation status of this species at least not evaluated (NE) or me be near threatened (NT) (IUCN, 2012).

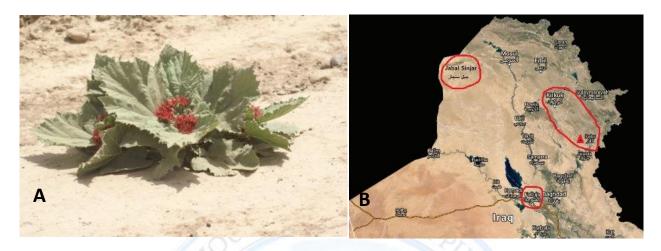
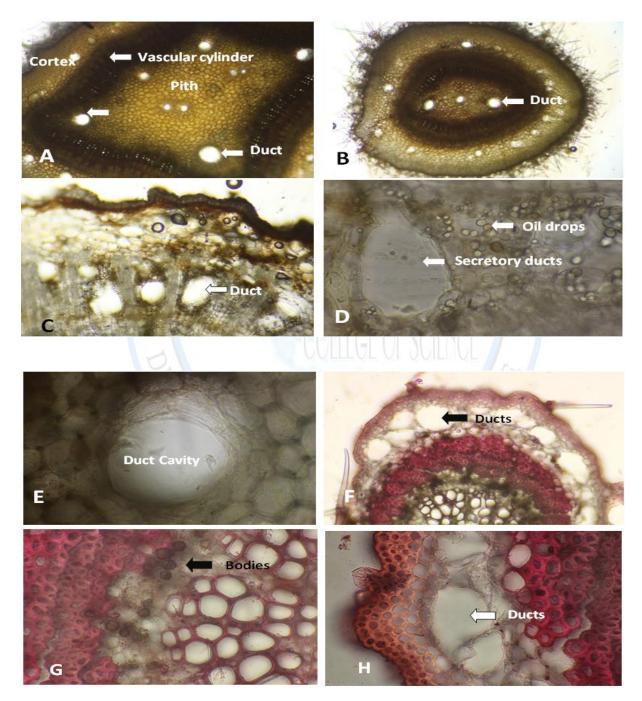



Plate 1: Species status of *Glossostemon bruguier*: A: *G. bruguier* in field, B: Geographic distribution of *G. bruguier* as last references, ∆ site of collection.

The anatomical characters of the different parts of Glossostemon bruguieri have no references, our investigation showed that (root, stem, inflorescences and leaf petiole) rich with Schizogenous secretory ducts of mucilaginous materials with differentiation in density and activity of the ducts which showed high ratio in stem (Plate 2, A) in both pith and cortex, also the cross section of stem showing irregular angular complete vascular cylinder and scattered secretory internal ducts in cortex (the smallest) and in pith (the largest) (Plate 2, E), and the cross section of inflorescence as extension to stem showed smallest duct cavities (Plate 2,B), while the cross section of root showed a large ducts only in cortex outer the vascular bundles (Plate 2,C) which characterized by surrounding cells with oil droplets(Plate 2,D), the leaf mesophyll is isobilateral and have cells with Crystalline spherical P-protein bodies (Plate 2,L) according to (Beck, 2010) which occur clearly dark spheres outside vascular bundles in both leaf and leaf petiole (Plate 2, G), no ducts in leaf except in the cortex of leaf petiole (Plate 2, F and H), we suggest that ducts and its mucilaginous materials is the main source of phytochemicals in Moghat Glossostemon bruguieri in addition to oil droplets in roots and P-protein bodies of leaf and leaf petiole. The Indumentum study showed that all shoot parts covered by stellate trichome (Plate2, K) but the epidermis of stem and inflorescences contain special dendroid trichome (Plate2,I) consist of multicellular stalk and

tree like branch in the top of stalk. Also the present of specialized glandular trichome (Plate 2, J) with multicellular stalk and multicellular glandular trichome this described by (Evert, 2006) and may be another source of some phytochemicals.

Followed

Plate 2: Anatomical characters of *Glossostemon bruguieri*: A: The cross section of stem, B: The cross section of inflorescence, C: The cross section of root, D: Enlargement part of the cross section of root,
E: Enlargement section showing the duct cavity F: The cross section of leaf petiole, G; Enlargement part of section of leaf petiole showing bodies, H: Enlargement part of section of leaf petiole showing large duct cavity, I: Dendroid trichome, J: Specialized glandular trichome, K: Stellate trichome and L: Stellate trichome with secretory cells and some bodies in the basal cells of trichome.

Phytochemical compounds in G. bruguieri leaf, stem, flower and inflorescence

Methanolic extraction was obtained by maceration extraction from the leaf, flower, stem and inflorescence of *Glossostemon bruguieri* with yields of 7.28%, 3.6%, 8.4% and 4.41% respectively. The results are obtained by Gas Chromatography and Mass Spectroscopy analyses of methanol extraction of the *G. bruguieri* (Table 1 - 4). This table showed that 50

compounds (80.82%) of flower, 43 compounds (71.09%) of inflorescence, 39 compounds (72.14%) of leaf and 55 compounds (84.76%) of stem were identified.

The number of hydrocarbon compounds in inflorescence was higher compared to other three plant parts according for 24.96% of the total amount of volatile compounds, but approximately the similar number of hydrocarbon compounds was presence in flower (10 compounds, 14.73%), leaf (10 compounds, 14.91%) and stem (8 compounds, 7.22%). Stem parts of G. bruguieri showed contain higher number of nitrogen compounds was 7 (2.89 %) and lower number presence in inflorescence was 1 (0.69 %), beside stem and inflorescence the number of nitrogen compounds was 3 and 5 in both leaf and flower but the proportion increased from 1.32% in leaf to 6.21% in flower. On the other hand the number of ester compounds was 3 in inflorescence and leaf but also the yield of volatile compounds deeply similar 5.17% in inflorescence to 5.21% in leaf, while 5 compounds in flower and 2 in stem with percentage ratio 9.19% and 1.98% respectively. The higher number of acid compounds was found in stem (12 compounds with ratio 10.89%) and lower number (7 compounds with ratio 6.46%) in flower while 8 and 9 compounds was presence in both inflorescence and leave with relative contribute (8.77% and 8.96%) respectively. Finally the relative proportion of alcohols compounds in flower 29.49 % and leave 28.04 % increased as compound to those in stem 25.01% and inflorescence 20.28 %, and in contrast apparent in the percentage ratio of aldehydes and ketones compounds which was 12.69% in stem, 3.45% in flower, 3.36% in inflorescence and 2.62% in leaf. The significant differences in the chemical constituents founds in these four parts provide compelling evidence that leaves, stems, flowers and inflorescences must be used in the treatment of various disease. Of the various classes of compound identified, alcohols and hydrocarbons constituted the major part in inflorescence, leaf, flower and stem. Cyclohexanol was the most abundant hydrocarbon compound in all plant parts with relative proportion 16.97% in flower, 15.04% in inflorescence, 16.72% in leaf and 14.87% in stem. Beside this compound, other major volatile compounds found in flower were, gamma.-sitosterol (6.76%), hexatriacontane (4.19%), 1-(+)-Ascorbic acid 2,6dihexadecanoate (2.80%), Tetradecyl trifluoroacetate (2.61%), theobromine (2.48%), 1-

Tetradecene (2.38%), n-Nonadecanol-1 (2.32%), 2,2-Dimethoxybutane (2.31%), N-Methoxy-Nmethylacetamide (2.23%), Sucrose (2.13%) and n-Propyl acetate (2.01%). Also the predominant chemical constituents found in inflorescence are as 2,2-dimethoxybutane (3.70%), Tetradecyl trifluoroacetate (3.53%), hexanal (2.75%), 1,2,4-Benzenetricarboxylic acid, 1,2-dimethyl ester (2.70%), hexatriacontane (2.57%) 1-Tetradecene (2.48%), 1,4-Benzenediol, 2,5-bis(1,1-dimethylethyl)- (2.26%) and 9-Tricosene (Z)- (2.08%). Similary the leading chemical compounds were obtained in leaf are as 2,2-dimethoxybutane (5.35%), campesterol (5.14%), n-tridecyl ester (3.31%), 1-Tetradecene (2.83%), Dodecane (2.45%),Trifluoroacetic acid, 1,3,5-Cycloheptatriene, 6-methyl-1-(-6-methyl-1,3,5-cycloheptatrien-1-yl-)- (2.41%) and Nonadecanol-1 (2.24%).

Finally some high percentage chemical compounds were identified in stem included; Sucrose (16.94%), 3-Deoxy-d-mannoic lactone (4.94%), 3-Deoxy-d-mannoic acid (4.07%), Propanal, 2,3-dihydroxy- (3.78%), Glycerin (3.33%), Stegmasterol (2.78%), 1-Tridecene (2.36%), Cholesterol (2.42%). In the earlier study, it has been reported that the identified compounds exert significant biological activity for example Gamma-Sitosterol has antioxidant, antibacterial and prophylactic activities (Venkata, R, et al., 2012). Eicosane has a good activity against fungal, bacterial, tumor and cytotoxic effects (Hsouna, A.B, et al., 2011). Hexadecanoic acid, methyl ester displaying antifungal, antioxidant, hypocholesterolemic nematicide, pesticide, anti-androgenic flavour, haemolytic, 5-Alpha reductase inhibitor, potent antimicrobial activity (Hema et al., 2011). Dibutyl phthalate is used as antifungal, antimicrobial agent and antimalarial (Elija, et al., 2012). Dodecane enhances antifungal activity (Cheila, et al., 2012). Thymine could be used a target for actions of 5-fluorouracil (5-FU) in cancer treatment (Hofreiter, et al., 2001). Lupeol has a complex pharmacology, displaying antiprotozal, antimicrobial, anti-inflammatory, antitumor and chemoprevention properties (Margareth and Miranda, 2009). Theobromine is used as a vasodilator (a blood vessel widener), a diuretic and heart stimulant (William, 1943).

Table 1: GC-MS identified components of the Glossostemon bruguieri flower extract.

No.	R.Ti	M.	Molecular formula	Flower%	Name and Class of Compound
	me	Wt	formula		
					Hydrocarbon Compounds
1	3.45	106	C8H10	0.73	Benzene, 1,3-dimethyl-
2	4.67	156	C11H24	1.19	Undecane
3	4.99	182	C13H26	1.68	1-Tridecene
4	6.34	210	C16H18	1.10	1,1'-Biphenyl, 2,2',5,5'-tetramethyl-
5	5.56	196	C14H28	2.38	1-Tetradecene
6	7.45	282	C20H42	0.46	Eicosane
7	4.22	170	C12H26	1.39	Octane, 3,4,5,6-tetramethyl-
8	8.38	506	C36H74	4.19	Hexatriacontane
9	8.79	478	C34H70	0.70	Tetratriacontane
10	10.14	410	C30H50	0.91 ALA	2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23- hexamethyl-,
					Nitrogen Copmounds
11	2.58	103	C4H9NO2	2.23	N-Methoxy-N-methylacetamide
12	4.81	102	C4H10N2O	0.39	2-Propanamine, N-methyl-N-nitroso-
13	4.94	115	C5H9NO2	0.46	5-Methoxypyrrolidin-2-one
14	6.75	194	C8H10N4O2	0.65	Caffeine
15	6.79	180	C7H8N4O2	2.48	Theobromine
					Ester Compounds
16	2.80	102	C5H10O2	2.01	n-Propyl acetate
17	2.91	118	C5H10O3	0.54	1,2-Propanediol, 2-acetate
18	6.04	310	C16H29F3O2	2.61	Tetradecyl trifluoroacetate
19	6.87	652	C38H68O8	2.80	l-(+)-Ascorbic acid 2,6-dihexadecanoate
20	6.94	254	C1630O2	1.23	13-Tetradecen-1-ol acetate
					Acid Compounds
21	2.71	128	C6H8O3	1.40	2-Propenoic acid, oxiranylmethyl ester
22	5.52	216	C12H24O3	0.57	Propanoic acid, 2-methyl-, 2,2-dimethyl-1-(2-

Vol: 13 No:1 , January 2017

					hydroxy-1-methylethyl)propyl ester
23	5.95	258	C14H26O4	0.30	Hexanedioic acid, mono(2-ethylhexyl)ester
24	6.09	286	C16H30O4	0.98	Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-
					methyl-1,3-propanediyl ester
25	6.71	278	C16H22O4	0.74	
25	0.71	270	C10H22O4	0.74	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl)
					ester
26	7.22	322	C21H38O2	0.97	10,13-Eicosadienoic acid, methyl ester
27	8.66	278	C16H22O4	1.50	1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl)
			15		ester
			10		Alcohol Compounds
20	2.62	100	C(U120	16.06	
28	3.62	100	C6H12O	16.96	Cyclohexanol
29	4.38	130	C8H18O	0.30	2-Propyl-1-pentanol
30	5.15	134	C5H10O4	0.59	1,2,3-Propanetriol, 1-acetate
31	6.29	238	C9H18O7	1.08 🕒	6-O-Methyl-2,4-methylenebetasedoheptitol
32	6.44	414	C29H50O	6.76	gammaSitosterol
33	6.49	284	C19H40O	2.32	n-Nonadecanol-1
34	7.02	238	C15H26O2	0.31	Cedrane-8,13-diol
35	8.25	426	C30H50O	1.17	Lupeol
			N.Y.		Aldehyde and ketone Compounds
36	4.87	144	C6H8O4	0.59	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-
			-An		methyl-
37	6.62	268	C18H36O	1.47	2-Pentadecanone, 6,10,14-trimethyl-
	7.31	238	C16H30O	2.39	cis-9-Hexadecenal
38	7.51	238	C10H50O	2.39	cis-9-nexadecentai
					Other Compounds
39	2.52	118	C7H15F	1.18	Heptane, 1-fluoro-
40	2.66	118	C6H14O2	2.31	2,2-Dimethoxybutane
41	3.53	136	C9H12O	0.49	Benzene, (2 methoxyethyl)-
42	3.55	166	C10H14O2	0.35	4-(methoxymethyl)- 2,6-dimethyl-phenol
43	4.06	106	C4H10O3	0.67	Tripropylene glycol monomethyl ether
44	4.15	144	C6H8O2	0.31	2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one
45	4.17	102	C4H6O3	0.49	2-Hydroxy-gamma-butyrolactone
46	4.59	126	C7H10O2	0.44	Cyclopentane, 1-acetyl-1,2-epoxy-

Vol: 13 No:1 , January 2017

Anatomical and Phytochemical Study of Glossostemon bruguieri

(Desf.) Sterculiaceae in Kurdistan Region of Iraq

Khalid Faiq Darweesh

Karzan Mahmood Ahmed

47	5.19	210	C7H14O7	0.94	Heptose
48	5.71	342	C12H22O11	2.13	Sucrose
49	7.99	324	C21H40O2	0.55	4,8,12,16-Tetramethylheptadecan-4-olide
50	5.09	120	C8H8O	0.52	Benzofuran, 2,3-dihydro-
Т	Total identified compounds			80.82%	

Table 2: GC-MS identified components of the *Glossostemon bruguieri* inflorescence

extract.

No.	R.Ti me	M. Wt	Molecular formula	Infloresce nce%	Name and Class of Compound
					Hydrocarbon Compounds
1	5.11	168	C12H24	0.52	Cyclopropane, 1-methyl-2-octyl-
2	5.19	156	C11H24	1.83	Undecane
3	6.31	168	C12H24	1.60	Cyclopropane, nonyl-
4	7.89	196	C14H28	2.48	1-Tetradecene
5	4.60	170	C12H26	1.04	Dodecane
6	8.02	252	C18H36	1.96	9-Octadecene, (E)-
7	9.02	154	C11H22	0.37	Cyclodecane, methyl-
8	9.41	246	C18H30	0.52	Benzene, (3,3-dimethyldecyl)-
9	9.59	232	C17H28	0.44	Benzene, (1-ethylnonyl)-
10	9.78	232	C17H28	0.37	Benzene, (1-methyldecyl)-
11	9.87	210	C16H18	0.65	1,1'-Biphenyl, 2,2',5,5'-tetramethyl-
12	9.91	246	C18H30	0.34	Benzene, (2,3-dimethyldecyl)-
13	9.96	238	C17H34	0.53	Cyclopropane, 1-methyl-1-(2-methylpropyl)-2-nonyl-
14	10.05	182	C13H26	0.32	Cyclohexane, 2-butyl-1,1,3-trimethyl-
15	10.15	322	C23H46	2.08	9-Tricosene, (Z)-
16	11.14	410	C30H50	6.97	2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23- hexamethyl-, (all-E)-
17	12.76	478	C34H70	0.37	Tetratriacontane
18	13.23	506	C36H74	2.57	Hexatriacontane
10		200	0001171	2.07	Nitrogen Compounds
19	9.74	281	C17H15NO3	0.69	Acetamide, N-(acetyloxy)-N-9H-fluoren-2-yl-
					Ester Compounds
20	2.66	102	C5H10O2	0.69	n-Propyl acetate
21	9.13	310	C16H29F3O2	3.53	Tetradecyl trifluoroacetate
22	10.96	278	C16H22O4	0.95	Dibutyl phthalate
					Acid Compounds
23	7.98	216	C12H24O3	0.47	Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-
					trimethylpentyl ester
24	9.23	286	C16H30O4	0.59	Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-

36

Anatomical and Phytochemical Study of Glossostemon bruguieri

(Desf.) Sterculiaceae in Kurdistan Region of Iraq

Khalid Faiq Darweesh

					methyl-1,3-propanediyl ester
25	10.55	278	C16H22O4	0.29	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl)
					ester
26	10.75	270	C17H34O2	1.41	Hexadecanoic acid, methyl ester
27	10.89	242	C15H30O2	0.85	Pentadecanoic acid
28	11.50	322	C21H38O2	1.59	cis-11,14-Eicosadienoic acid, methyl ester
29	11.59	298	C19H38O2	0.87	Heptadecanoic acid, 10-methyl-, methyl ester
30	14.50	238	C11H10O6	2.70	1,2,4-Benzenetricarboxylic acid, 1,2-dimethyl ester
					Alcohol Compounds
31	4.12	100	C6H12O	15.04	Cyclohexanol
32	11.05	284	C19H40O	0.76	n-Nonadecanol-1
33	11.44	355	C24H50O	0.29	n-Tetracosanol-1
34	11.65	268	C18H36O	1.28	Oleyl Alcohol
35	14.55	222	C14H22O2	2.26	1,4-Benzenediol, 2,5-bis(1,1-dimethylethyl)-
36	15.04	222	C14H22O2	0.65	4,6-di-tert-Butylresorcinol
			2		Aldehyde and ketone Compounds
37	2.52	100	C6H12O	2.75	Hexanal
38	10.38	226	C15H30O	0.61	Pentadecanal-
			DIY	ALA	Other Compounds
39	2.78	118	C6H12O2	3.70	2,2-Dimethoxybutane
40	3.88	204	C12H25Cl	1.45	Dodecane, 1-chloro-
41	8.22	342	C12H22O11	0.51	Sucrose
42	11.87	914	C54H108Br2	1.93	Tetrapentacontane, 1,54-dibromo-
43	12.65	350	C15H24F6O2	0.27	1,3-Dioxolane, 4-ethyl-5-octyl-2,2-
					bis(trifluoromethyl)-, cis-
To	otal iden	tified	compounds	71.09%	A STATE
			- CV	Page	

Table 3: GC-MS identified components of the Glossostemon bruguieri leaf extract.

No.	R.Ti me	M. Wt	Molecular formula	Leaf %	Name and Class of Compound
					Hydrocarbon Compounds
1	3.46	106	C8H10	1.16	Benzene, 1,3-dimethyl-
2	3.14	140	C10H20	0.46	1-Decene
3	3.23	156	C11H24	0.62	Undecane
4	4.20	170	C12H26	2.45	Dodecane
5	4.76	182	C13H26	1.91	1-Tridecene

Vol: 13 No:1 , January 2017

Vol: 13 No:1 , January 2017

Anatomical and Phytochemical Study of Glossostemon bruguieri

(Desf.) Sterculiaceae in Kurdistan Region of Iraq

Khalid Faiq Darweesh

Karzan Mahmood Ah	med
-------------------	-----

6	5.57	196	C14H28	2.83	1-Tetradecene
7	6.00	182	C13H26	0.50	Cyclohexane, 2-butyl-1,1,3-trimethyl-
8	6.37	210	C16H18	2.41	1,3,5-Cycloheptatriene, 6-methyl-1-(6-methyl-1,3,5-
					cycloheptatrien-1-yl)-
9	6.43	210	C16H18	1.50	1,1'-Biphenyl, 2,2',5,5'-tetramethyl-
10	6.48	252	C18H36	1.07	8-Heptadecene, 8-methyl-, (E)-
					Nitrogen Compounds
11	4.45	254	C16H18N2O	0.20	Pyrido[2,3-g]indole, 5-methoxy-2,3,7,9-tetramethyl-
12	8.38	355	C21H25NO4	0.84	1H-Indole-2-carboxylic acid, 6-(4-ethoxyphenyl)-3-
				TAL	methyl-4-oxo-4,5,6,7-tetrahydro-, isopropyl ester
13	10.3	402	C23H34N2O4	0.28	5,5'-Di(ethoxycarbonyl)-3,3'-dimethyl-4,4'-dipropyl-
	5		10		2,2'-dipyrrylmethane
			No Vo		Ester Compounds
14	6.97	278	C16H22O4	1.74	Dibutyl phthalate
15	6.99	254	C16H30O2	1.72	13-Tetradecen-1-ol acetate
16	7.49	430	C22H39F5O2	1.75	Nonadecyl pentafluoropropionate
			~		Acid Compounds
17	5.46	200	C12H24O2	0.27	Propanoic acid, nonyl ester
18	6.06	296	C15H27F3O2	3.31	Trifluoroacetic acid,n-tridecyl ester
19	6.11	286	C16H30O4	1.52	Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-
					methyl-1,3-propanediyl ester
20	6.75	374	C23H34O4	0.98	Phthalic acid, isobutyl undec-2-en-1-yl ester
21	6.83	270	C17H34O2	1.72	Hexadecanoic acid, methyl ester
22	6.91	404	C21H41BrO2	0.17	6-Bromohexanoic acid, pentadecyl ester
23	6.79	316	C15H16N4O4	0.30	Pentadioic acid, dihydrazide, N2,N2'-bis(2-
			- Ar		furfurylideno)-
24	7.80	296	C19H36O2	0.46	trans-13-Octadecenoic acid, methyl ester
25	8.73	390	C24H38O4	0.23	1,2-Benzenedicarboxylic acid, diisooctyl ester
					Alcohol Compounds
26	3.58	130	C8H18O	0.24	1-Hexanol, 2-ethyl-
27	3.63	100	C6H12O	16.72	Cyclohexanol
28	5.69	151	C4H9NO5	0.42	1,3-Propanediol, 2-(hydroxymethyl)-2-nitro-
29	6.52	284	C19H40O	2.24	n-Nonadecanol-1
30	8.61	386	C27H46O	2.84	Cholesterol
31	9.25	398	C28H46O	0.44	Dihydrotachysterol
32	10.21	400	C28H48O	5.14	Campesterol
					Aldehyde and ketone Compounds
33	4.57	182	C10H11ClO	0.24	gammaChlorobutyrophenone

Vol: 13 No:1 , January 2017

Anatomical and Phytochemical Study of *Glossostemon bruguieri* (Desf.) Sterculiaceae in Kurdistan Region of Iraq

(Desi.) Stercunaceae în Kuruista

Khalid Faiq Darweesh

Karzan Mahmood Ahmed

34	5.73	162	C10H10O2	0.51	Ethanone, 1,1'-(1,3-phenylene)bis-
35	7.26	238	C16H30O	1.87	cis-9-Hexadecenal
					Other Compounds
36	2.52	118	C7H15F	1.95	Heptane, 1-fluoro-
37	2.59	92	C3H8O3	1.75	Glycerin
38	2.66	118	C6H14O2	5.35	2,2-Dimethoxybutane
39	4.32	144	C8H16O2	1.98	Cyclohexane, 1,1-dimethoxy-
To	Total identified compounds			72.14%	

Table 4: GC-MS identified components of the *Glossostemon bruguieri* stem extract.

No.	R. Time	M. Wt	Molecular formula	Stem %	Name and Class of Compound
			R		Hydrocarbon Compounds
1	4.22	156	C11H24	0.64	Octane, 2,3,3-trimethyl-
2	5.00	182	C13H26	2.36	1-Tridecene
3	4.68	156	C11H24	0.83	Undecane
4	5.57	196	C14H28	1.45	1-Tetradecene
5	5.63	144	C11H12	0.18	(1-Methylenebut-2-enyl)benzene
6	6.37	210	C16H18	0.68	1,1'-Biphenyl, 2,2',5,5'-tetramethyl-
7	6.48	252	C18H36	0.81	Cyclopropane, 1-(1,2-dimethylpropyl)-1-methyl-2- nonyl-
8	10.2 1	410	C30H50	0.27	2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23- hexamethyl-, (all-E)-
				2	Nitrogen Compounds
9	2.76	147	C9H9NO	0.65	3-(4-Hydroxyphenyl) propionitrile
10	3.22	116	C5H12N2O	0.28	O-Butylisourea
11	3.45	149	C9H11NO	0.44	Acetamide, N-(phenylmethyl)-
12	4.59	126	C5H6N2O2	0.65	Thymine
13	4.82	102	C4H10N2O	0.12	2-Propanamine, N-methyl-N-nitroso-
14	7.76	387	C24H37NO3	0.65	3.betaAcetoxy-bisnor-5-cholenamide
15	8.05	337	C22H43NO	0.10	13-Docosenamide, (Z)-
					Ester Compounds
16	6.06	310	C16H29F3O2	1.03	Tetradecyl trifluoroacetate
17	6.97	278	C16H22O4	0.91	Dibutyl phthalate
					Acid Compounds
18	2.92	102	C4H6O3	0.59	Propanoic acid, 2-oxo-, methyl ester

Anatomical and Phytochemical Study of Glossostemon bruguieri

(Desf.) Sterculiaceae in Kurdistan Region of Iraq

Khalid Faiq Darweesh

Karzan Mahmood Ahmed

19	5.30	190	C8H14O5	1.56	Propanoic acid, 3-(acetyloxy)-2-(hydroxymethyl)-,
					ethyl ester, (+)-
20	5.46	158	C8H14O3	0.69	Butanoic acid, 3-oxo-, 2-methylpropyl ester
21	5.53	216	C12H24O3	0.41	Propanoic acid, 2-methyl-, 2,2-dimethyl-1-(2-
					hydroxy-1-methylethyl)propyl ester
22	6.02	316	C13H23Cl3O2	0.44	Trichloroacetic acid, undecyl ester
23	6.19	180	C6H12O6	4.07	3-Deoxy-d-mannonic acid
24	6.75	278	C16H22O4	0.92	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl)
					ester
25	6.83	270	C17H34O2	0.46	Hexadecanoic acid, methyl ester
26	6.91	652	C38H68O2	0.93	l-(+)-Ascorbic acid 2,6-dihexadecanoate
27	7.36	280	C18H32O2	0.44	9,12-Octadecadienoic acid (Z,Z)-
28	7.41	312	C20H40O2	0.12	Eicosanoic acid
29	8.73	278	C16H22O4	0.26	1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl)
		0	S		ester
			2		Alcohol Compounds
30	3.41	98	C5H6O2	0.18	2-Furanmethanol
31	3.63	100	C6H12O	14.87	Cyclohexanol
32	6.53	284	C19H40O	1.32	n-Nonadecanol-1
33	8.27	386	C26H46O	2.42	Cholesterol
34	9.81	400	C28H48O	1.31	Ergost-5-en-3-ol, (3.beta.)-
35	10.29	412	C29H48O	2.78	Stigmasterol
36	3.81	202	C11H22O3	0.31	1-Butanol, 3-methyl-, carbonate (2:1)
37	4.39	130	C8H18O	0.12	1-Hexanol, 2-ethyl-
38	5.16	134	C5H10O4	1.17	1,2,3-Propanetriol, 1-acetate
39	5.21	134	C5H10O4	0.53	1,2,3-Propanetriol, monoacetate
			-	ERCIM	Aldehyde and ketone Compounds
40	3.85	98	C5H6O2	0.26	1,2-Cyclopentanedione
41	4.15	144	C6H8O4	0.20	2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one
42	4.18	102	C4H6O3	0.30	2-Hydroxy-gamma-butyrolactone
43	4.88	144	C6H8O4	1.46	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-
					methyl-
44	4.94	90	C3H6O3	3.78	Propanal, 2,3-dihydroxy-
45	5.12	126	C6H6O3	1.75	2-Furancarboxaldehyde, 5-(hydroxymethyl)-
46	6.12	162	C6H10O5	4.94	3-Deoxy-d-mannoic lactone
					Other Compounds
					-
47	3.56	330	C18H18O6	0.84	4,4'-Bis(methoxymethoxy) benzil

Diyala Journal For Pure Sciences

Anatomical and Phytochemical Study of *Glossostemon bruguieri* (Desf.) Sterculiaceae in Kurdistan Region of Iraq

Khalid Faiq Darweesh

Karzan Mahmood Ahmed

49	7.16	354	C24H50O	0.41	Dodecane, 1,1'-oxybis-
50	5.78	342	C12H22O11	16.94	Sucrose
51	6.31	488	C35H52O	1.91	17-(1,5-Dimethylhexyl)-10,13-dimethyl-3-
					styrylhexadecahydrocyclopenta[a]phenanthren-2-one
52	2.52	118	C7H15F	0.87	Heptane, 1-fluoro-
53	2.59	92	C3H8O3	3.33	Glycerin
54	2.66	146	C8H18O2	1.58	Propane, 2,2'-[ethylidenebis(oxy)]bis-
55	2.72	86	C4H6O2	1.16	2,2'-Bioxirane
To	Total identified compounds84.76%				

Conclusion

To the best our information this is the first research of comparative anatomical and phytochemical investigation different parts of *G. bruguieri* plant, the chemical compositions from the investigated Moghat Plant were rich in different class of organic compounds like hydrocarbons, nitrogens, esters, acids, alcohols, aldehydes, ketones and others, supported by the anatomical study of stem ,inflorescence, leaf and leaf petioles which showed present of Schizogenous secretory ducts of mucilaginous materials. However, further studies are needed for the isolation of individual compounds from the plant extracts of *G. bruguieri* while in *vitro* and *vivo* studies are needed in order to use a natural source for handling different kind of disease such as anti-inflammatory, antimicrobial antioxidant as well as antitumor agent and aphrodisiac uses of different parts of the plant in addition to root.

References

- **1.** Al-Rawi and Chakravarty. (1964). Medicinal plants of Iraq. Baghdad: National Herbarium of Iraq.
- **2.** Beck, C. B. (2010). An Introduction to Plant Structure,Plant Anatomy for the Twenty-First Century.Second Edition. The Edinburgh Building, Cambridge CB2 8RU, UK: Cambridge University Press.
- **3.** Cheila, D.O.S., Fabricio, M.C., Fabricio, A.O., Evandro, P., Carmen, B.B.F., Susana, M.W.S., Maria, L.S. (2012). Antimicrobial activity [2methacryloyloxy) ethyl] trimethylammonium chloride against Candida spp,1-4.

- **4.** Elija, K., Vaishali, B., Adsul, M.K., Deshpande, N.R. and Kashalkar, R.V. (2012). Antibacterial activity of Dibutyl Phthalate : A secondary metaboli isolated from Ipomoea carnea stem. Journal of Pharmacy Research, 5, No 1.
- **5.** El-Kiey and Hashem, (1957). A Pharmacognostical study of Egyptian Moghat. *Proc. Pharm.soc egypt*, 39,12.
- **6.** El-Sayed N.H., A. S.awaad and T.J.Marbry (2004). Phytochemical studies and effect on urine volume of Glossostemon bruguieri. *Indian Journal of Experimental Biology*, *42*, pp. 186-1 89.
- El-Sayed M.H., B.M. Refaat and M. H. Sharaf. (2014). Microbiological evaluation of antibacterial potentiality of some edible plant extracts against multidrug resistant (MDR) human pathogens. *International Current Pharmaceutical Journal*, 336-339.
- 8. Evert, R. F. (2006). Esau's plant anatomy. A John Wiley & Sons, Inc., Publication.
- **9.** Sher, H. and M. N. Alyemeni. (2011). Pharmaceutically important plants used in traditional system of Arab medicine for the treatment of livestock ailments in the kingdom of Saudi Arabia. *African Journal of Biotechnology, Vol. 10(45)*, pp. 9153-9159.
- **10.** Hema, R., Kumaravel, S., and Alagusundaram. (2011). GC/MS Determination of Bioactive components of Murraya koenigii. Journal of American Science, 7(1).
- 11. Hofreiter M., Seree D., Poinar H.N., Kuch M., and Pabo S. Nature Reviews Genetics (2001) 2:353.
- 12. Hsouna, A.B., Trigie, M., Mansour, R.B., Jarraya, R.M., Damak, M., and Jaoua, S., (2011). Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia silisqua essential oil with preservative effects against listeria inoculated in minced beef meat. International Journal of Food Microbiology, 148(1), 66-72.
- **13.** Ibrahim N, el-Eraky W, el-Gengaihi S, Shalaby AS. (1997). Chemical and biological evaluation of proteins and mucilages from roots and seeds of Glossostemon bruguieri Desf. (Moghat). *Plant Foods Hum Nutr*, 50(1):55-61.
- **14.** IUCN. (2012). IUCN Red List Categories and Criteria: Version 3.1. Second edition.Gland, Switzerland and Cambridge, UK: IUCN. iv + 32pp.

- **15.** Margareth B. C. Gallo., Miranda J. Sarachine (2009). Biological activates of Lupeol. International journal of biomedical and pharmaceutical sciences 3 (special issue 1): 46-66.
- **16.** Meselhy, Meselhy R. (2003). Constituents from Moghat, the Roots of Glossostemon bruguieri(Desf.). *molecules*, 614-621.
- **17.** Eddouks M and NA. Zeggwagh. (2014). A Short Review of Some Medicinal Plants And Phytocompounds With Hypotensive And Hypoglycemic Activities. *International Journal of Diabetology & Vascular Disease Research*, 63-66.
- **18.** Townsend C.C. and Evan Guest. (1980). *Flora of Iraq*. (Vol. Four part one). Baghdad, Iraq: Ministry of Agriculture .
- **19.** Venkata, R., Samuel, L., Pardha, S.M., Narashimha, R. Naga, V.K.A., Sudhakar, M., and Radhakrishnan, T.M. (2012). Antibacterial, antioxidant activity and GC-MS Analysis of Eupatorium odoratum. Asian J. Pharm. Clin. Res., 5. Suppl 2, 0974-2441.
- **20.** William Marias Malisoff (1943). Dictionary of bio-chemistry and related subjects. Philosophical library. Pp. 311, 350, 573. ASIN B0006AQ0NU.
- **21.** Zain M. E., A. S. Awaad M. R. Al-Othman and S. K. Aldosary (2014). Antibacterial, Antifungal and phytochemical analysis of some deser plant against human pathogenic bacteria and fungi. *Life science journals*, 343-349.