Journal University of Kerbala . Vol. 17 No.2 Scientific . 2019

FREDHOLEM COMPACT OPERATOR ON SEQUENCE
SPACES OF POWER ONE
Al il de gh gal) daglitall cilelad Jo G pall gadall algadi b figa

Jawad Kadhim Khalaf Al-Delfi
Dept. of Mathematics / College of Science / Mustansiriyah
University

Abstract.

Sequence spaces #113 and ¢, 1 p€[1,) were introduced and were proved as Banach
spaces [3] . In this paper, these spaces are studied as Hilbert spaces and quasi- Hilbert spaces.
Not all these spaces are quasi- Hilbert spaces or Hilbert spaces. Bounded linear operators
which were defined on these spaces are used to define others types of operators such as
compact operators and Fredholem operators.
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1. Introduction

A sequence space £, « where 1 < p <o is a Banach spaces , but only £, is Hilbert space
[1,2].In[3],we were introduced a set of all sequence spaces of power one {’11) and a set of all
sequence spaces of power minus one £, 1 and. were proved that these spaces as Banach spaces .

Also, some of types of operators were studied such as bounded operators which are defined on
these spaces.

In this paper , we study these spaces with concepts of Hilbert spaces and quasi- Hilbert spaces
and define others types of operators such as compact operators and Fredholem operators.

This paper contains two sections. section one includes concept of quasi- Hilbert space for
sequence spaces f%, and €, 1 which are Hilbert spaces only when p =2 . Section two presents
compact linear operators and Fredholem operators on these spaces with some results and

examples.
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2. Quasi-Hilbert spaces

We begin with the notions of the quasi-Hilbert space , the Banach space and the Hilbert space

1 -1
for the sequence spaces ¢ and £, .

Definition 2.1. [4 |
Let V' be a vector space over the field R equipped with ||.|| . A Gateaux derivative of | v ||

is a functional § (v,w) at v € V' in the direction w € V' which is defined as:

V
o(v,w)= M (61(v,w) + 6,(v,w) such that: || w]|

61(v,w) = limp_ o 7 ([ v+ Aw|| — [ vI]), and 8;(v,w) =limp,_o A7 ([ v+ Aw || — | V),
where h € R . In similar way, § (w,v). is defined as:

wi _ : _
6 (w.v)=——( limp o A7 ([l whv || = | wD+limp o h7H (| wAv || = [ WD)

A space Vis said to be a quasi-inner product space if the next equality is satisfied:

Ivewl* = lv=wl* = 8 (VP8 o) + [w]* § ww), Vv, we Ve (1)
A Banach space is called a quasi-Hilbert space if it is a quasi-inner product space.

Remark 2.2.
(1) According to || v| =(<v,v>)Y2,V v,we V,it is easy to show, every Hilbert space Vis a
quasi-Hilbert space, but the converse is true only if § (v ,w) is an inner product function.

(2) A Hilbert space is a Banach space V' if and only if. the equation :
[v+w|® + [[v=w|> =2|v|* + 2| w|*,V v,weV......... (2) , is satisfied [1]

Definition 2.3. [3]:
Let {A} cR, is monotonically increasing sequence such that limg_, Ay =+ oo, the spaces
{’%, and £ 1 are sequence spaces, p € (0,0), which are defined as :

gl _ { — . L p
P = v = {v}: Az |vg|P < 400

M 2D

D
Gl= {v={n: Az |[velP < +oo.

Theorem 2.4. [3].
For every p € [1, 0),The sequence spaces 1?%, and ¥, 1 are Banach spaces with the functions :
1/p

1/p
> P > -
v| = Agz|vg|P v = Ay 2 |vg|P ,VveLl or Vve Lyl respectively.
p b
k=1 k=1

=
Il

1
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Lemma 2.5.
For every positive integer p, the functional § (v,w) in a space fll, exists and defines as:

Sw)=[vIIF? D A4 vl (sngv, Jwy, Vvell/ {0} where,
k

1, (4% >0
sng vy Z{O, v, =0 } ................... 3)
-1, U < 0
And,
Swy)=|w|*" Z e w7 (sngwy vy, Vwe£h/ {0} where,
k
1, Wi >0
sSng wyg :{0; Wi = 0 } ................... (4)
—1, Wi <0
Proof:

In definition 2.1, we use properties of limits of functions and applying a norm function
of £}, in theorem 2.4 with help the binomial theorem, we get Eq. (3).

Remark 2.6.

In similar to lemma 2.5, we get the functionals & (v ,w)and & (w,v) in aspace ¥, 1 where
6 (v,w) isdefined as

Sv.w)=[vIIF" D] Ao P (sng vy, Iwy, Vve £yt / {0}, and similarly, 8§ (w,v) is

k
defined.
Remark 2.7.

Only if p=2, spaces {’%, and ¥, 1, where p € [1, ®), are quasi-Hilbert spaces and Hilbert

spaces . Otherwise, there are spaces which are not quasi-Hilbert spaces, it as shown in the
following results:

Theorem 2.8.
The sequence spaces £i and #5! are quasi-Hilbert spaces .

Proof:

According to lemma 2.5¢ we get §(v,w) :Z A |vel(sngv,) wy, and d(w,v) =
k

Z A wg| (sng wy)vy . Tt is clear that the functional &(v,w) is positive and equal 0if v
k

=w=0, §(v,w)=46(w,v), and also, it is linear .Hence, §(v,w) is an inner product function,
Since ¢3is a Banach space thenitis Hilbert space. By remark 2.2, it is a quasi- Hilbert space,
since equation (1) is satisfied, where ||v|>8(v,w)=

2
> Al lvilP(sngvig wi and [ wlP8(w) =D AP |wi|*(sng wi)vy .
k k
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Similarly, #;1is quasi-Hilbert space , where & (v,w) in €31 is definedas § (v ,w)= Z
k

/1k—1|77k| (sng Uk )Wk, and § (w,v) = Z )lk_1|Wk| (sng Wi )Uk-

k

Example 2.9:

Suppose v,w € £i . wherev={v}=1{1,0,0,0,...}, w={w} =1{1,1,0,0, ...} and take {1} =
{k}, k €N. Then, the left hand of Eq. (2) equals 6.472135954999579 , while the right hand
equals 8.472135954999579 , then £ is not Hilbert space, but it is quasi- Hilbert space, where
the left and right hand of Eq. (1) are equal to 16 with &§(v,w) = §(w,v) = 1.

Now, if replace space £1 by #1 ,then we have , the left hand of equation (1) equals 16, while
the right equals 19.9260368210839 , then equation (2) is not satisfied , so this space is not
quasi-inner product space, and also it is not Hilbert space, since equation (2 ) is not satisfied.

3. Some types of operators on sequence spaces

Let {A¢} cR, is monotonically increasing sequence such that limg_, Ax =+ c0, An operator
T:4;,—> €,', 1< p<oo, whichis definedas Tv=2A, v, V v={n} € £} is abijective
continues linear operator where, (kernel of T') ker 7={0} and (image of T) img I'= ¢, 1 and

has continues inverse T~1w =X w,V w= {w} €31 [3]

Definition 3.1. [5]
A bounded operator T : U —> V, where U and V are Banach spaces, is compact if for every bounded
sequence {vy} in U, {Tv} has a convergent subsequence in V.

Lemma 3.2. [2]
(a)-Any subspace of a Banach space is closed if and only if itis a Banach space .

(b)- Any operator from a Banach space into another is bounded if and only if it is continues
Theorem 3.3.

A bounded operator T : €5 — £5*, 1 < p < oo ,such that 7v = A, k €N is a compact
operator.
Proof

Let B be aclosed subset in £}, and {uy} be any bounded sequence in B, then {uy} has {u;} as a
convergent subsequence . Since B is a Banach space by theorem 2.4 and lemma 3.2, then
{uy} converges to an element u* = {w'} in B. Thus, {u,.} converges to u* in B, that is, uys —

*

u .
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Now, since T is continuous, then limy_ o Il Tugs— Tu*ll =

limg0o I AgURs — Axur™ Il =0 as ks — oo, thatis, Tugs = Tuy" .Thus, {Tuy} contains a
subsequence converges to Tuy* . Hence, a linear operator T is compact.
Definition 3.4 [ 6 ]

Let U and 7 be Banach spaces. A bounded linear operator T : U — V, is called Fredholm
operator if dim ker L < 00 and dim coker T < co: where coker T =Y/ img T. That is,
The index of T ( ind T) is finite, where ind T = dim ker - dim coker T .
Remark 3.5:
It is known, bijective property of operator gives finity to dim ker T and dim coker T, but it is not
necessary in order to be a operator as a Fredholm operator . The following example explains this
remark:

Example 3.6

LetT: ¢} —g £ be a operator defined by T(vy, v2, v3,...) =(0, vy, 2va,  3v3...)
,where v={vx}€ £ and {4} ={k}, k €N.

Clearly, T (0,0,0,...)=(0,0,0.0,..), then ker T= {0}, so T is injective and dim ker T = 0.
Also, it is clear that img T is not equal f%, then T is not surjective, hence, T is not bijective.
Also, coker T = span{x}, where v = {1,0,0,0,...} and so dim coker T =1 < oo. Thus, ind T = dim
ker T — dim coker T=0—1=-1. Hence, T is a Fredholm operator.

Theorem 3.7:

A bounded linear operator T: £}, —£;' ,1 <p < cosuchthat Tv = A v,k € N is a Fredholem
operator.

Proof:

Since img of a operator T= #51 where T is serjective, then coker T = #51 /img T = {0},
so dim coker T = 0. Also, T is injective, this implies that ker T={0} and

dimker T= 0. Thus, ind T =0,so T is Fredholem operator.
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