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Abstract.  
 

Sequence spaces     
   and    

    , p        were introduced and were proved as Banach  

spaces [3] .  In this paper,  these spaces are studied as Hilbert spaces and quasi- Hilbert spaces. 

Not all these  spaces  are  quasi- Hilbert  spaces or Hilbert  spaces. Bounded linear operators  

which were defined on  these  spaces are  used  to  define  others   types of operators  such  as 

compact  operators and  Fredholem  operators. 
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 الخلاصة
                 

     َ     
       ,  p              بزٌىث    َالتي رمزت ب  1-َ     1المزفُعة  للاس فضاءات  المتتابعة

اما  في  بحثىا  ٌذا فسُف  ودرسٍا كفضاءات  ٌلبزت  اَ شبً ٌلبزت  َسىجد ان بعض ٌذي  الفضاءات كفضاءات بىاخ .  

ثزت  .على  ٌذي  الفضاءات وعزف  بعض  اوُاع المؤثزات مثل  المؤثزات  المدمجة  َمؤ لايىطبق عليٍا  ٌذيه المفٍُميه

 فزيدٌُلم

. 

 1. Introduction 

 
        A sequence space     , where 1 ≤  p < ∞  is a Banach spaces , but only       is  Hilbert  space 

[1 , 2] . In [3] ,we  were introduced a set of  all sequence  spaces of  power one    
  and a set of  all 

sequence  spaces of  power minus one   
   , and. were proved  that these spaces  as Banach spaces . 

Also, some of  types of  operators were studied such  as  bounded operators  which  are  defined  on  

these  spaces. 

   

  In  this paper , we  study these  spaces with concepts of Hilbert spaces and quasi- Hilbert spaces 

and define others types of operators such as compact  operators and  Fredholem  operators.  

   This paper contains two sections. section  one includes concept  of quasi- Hilbert space for  

sequence  spaces    
   and   

    which are  Hilbert spaces only when p =2 .  Section  two presents  

compact linear operators  and Fredholem  operators on  these spaces with  some  results  and  

examples.  
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2. Quasi-Hilbert spaces  

    We begin with the notions of  the  quasi-Hilbert space , the Banach  space and  the Hilbert space 

for the sequence  spaces     
   and      

    . 

 

Definition 2.1. [4 ] 

       Let  V  be a vector space over the field     equipped  with ||.|| .  A G ̂teaux  derivative of |||| v   

is a functional    (v ,w)  at  v   V   in the direction  w   V  which is defined as:  

 (v ,w) = 
  |||| v

 
 (         +          such that: |||| w  

 

          =             |||| hwv   |||| v  , and           =            |||| hwv   |||| v  , 

where  h ∊     .  In similar way,   (w ,v).  is defined as: 

 

   (w ,v) = 
|||| w

 
               |||| hvw  |||| w  +            |||| hvw  |||| w   ) 

 

     A  space  V is said to be a quasi-inner product space   if  the  next equality is satisfied: 

 

 4|||| wv 4|||| wv  =  8 (
2|||| v   (v ,w)  +

2|||| w     (w,v) ),  v, w ∊ V……   (1) 

  A Banach space is called a quasi-Hilbert space if it is  a quasi-inner product space.  

 

Remark 2.2.  

(1) According to |||| v   =             v, w ∊ V , it  is easy to  show, every Hilbert space V is a 

quasi-Hilbert space, but  the converse  is true only  if   (v ,w) is an  inner  product function. 

(2) A Hilbert space is a Banach space V if and only if. the equation :  

 
2|||| wv  + 

2|||| wv  =
2||||2 v  + 

2||||2 w ,  v, w ∊ V.. . ……(2)  ,  is satisfied [1] 

 

Definition 2.3. [3]: 

Let   {  } ⊂    is monotonically increasing sequence such that            = +  , the spaces                  

  
    and    

    are sequence spaces,  p       ,  which are defined as :  

                 
      =    }      {  }    



1k

  

 

 |  |
           

                  
    =    }      {  }    



1k

  

  

 |  |         

Theorem 2.4.  [3]. 

For every p       ,The sequence spaces   
   and     

   are Banach spaces with the functions :  

|||| v  (


1k

  

 

 |  |
  )

   

 |||| v   (


1k

  

  

 |  |
  )

   

   v ∊   
   or  v ∊   

    respectively. 
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Lemma 2.5. 
For  every  positive  integer p ,  the functional     (v ,w)  in  a space    

     exists  and  defines  as : 

  (v ,w) = 
pv 2|||| 

k

  |  |
                ,   v ∊   

  / {0}  where,  

          = {

                      
                        
                      

}  ……………….         (3)  

And,  

  (w ,v) = 
pw 2|||| 

k

  |  |
                ,  w ∊   

  / {0}  where,  

          = {

                      
                        
                      

}.  ……………….         (4)  

 

Proof: 

 

 In  definition 2.1,  we use properties  of limits  of  functions  and  applying  a norm  function  

of    
    in  theorem 2.4 with  help the binomial theorem,   we  get   Eq. (3). 

 

Remark 2.6.   

In similar to  lemma 2.5,  we get   the functionals    (v ,w) and            in  a space    
     ,  where  

  (v ,w)    is defined  as 

 

  (v ,w) = 
pv 2|||| 

k

  
  |  |

                ,  v ∊   
   / {0},   and similarly,           is 

defined. 

Remark 2.7.   

  Only if   p = 2 , spaces   
   and     

  ,  where p       , are  quasi-Hilbert spaces and  Hilbert 

spaces .  Otherwise, there are spaces  which   are not  quasi-Hilbert spaces,  it  as  shown in  the  

following results:  

 

Theorem 2.8.   

 The  sequence  spaces    
             

    are quasi-Hilbert spaces . 

 

Proof: 

According to lemma 2.5, we get  (v,w) =
k

  |  |          ,    and   (w,v) =                   


k

  |  |            .  It  is  clear that   the functional   (v,w)  is positive  and  equal  0 if  v 

= w = 0 ,  (v,w) =  (w,v),  and also, it is  linear .Hence,  (v,w)  is  an  inner  product function,  

Since     
  is a Banach  space  then it is  Hilbert space.  By remark 2.2,   it is a quasi- Hilbert space,  

since  equation (1) is  satisfied,  where 
2|||| v  (v,w) =  


k

  
 |  |

                 and 
2|||| w  (w,v) =

k

   
 |  |

            . 
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  Similarly,     
   is   quasi-Hilbert space , where     (v ,w)  in    

     is  defined as   (v ,w) = 
k

  
  |  |              , and   (w ,v) = 

k

  
  |  |              .  

 

Example 2.9: 

Suppose  v ,w      
  , where v = {vk} = {1,0, 0, 0, …},  w = {wk} = {1, 1, 0, 0, …} and take  { k} = 

{  },     ℕ. Then, the left hand of   Eq. (2)  equals  6.472135954999579 ,  while  the right hand  

equals 8.472135954999579 ,  then    
   is  not  Hilbert space, but  it  is quasi- Hilbert space,  where 

the left and right hand  of  Eq. (1)   are equal to 16 with   (v,w)  =  (w,v) = 1. 

 

  Now, if  replace space    
   by   

   , then  we have  , the left hand of  equation (1) equals  16 , while 

the  right  equals 19.9260368210839 , then equation (2) is not satisfied , so  this  space  is not   

quasi-inner product  space, and  also it is not Hilbert  space, since  equation (2 ) is  not  satisfied. 

 

 

 3.   Some types of operators on sequence spaces     

 

   Let   {  } ⊂    is monotonically increasing sequence such that            = +  ,    An  operator  

T:   
     

  ,  1 ≤  p < ∞ ,  which is  defined as Tv =           v = {vk}    
  is  a bijective 

continues linear  operator where, (kernel of  )  ker T ={0}  and  (image of  )  img T =    
   ,  and 

has continues inverse      w =   
  

 wk   w =  {wk} ∊   
   [3] 

 

Definition 3.1. [5] 

  A bounded operator  T : U   V, where U and V are Banach spaces, is compact if for every bounded 

sequence {  } in U, {T  } has a convergent subsequence in  V.   

  

 Lemma 3.2. [2] 
   (a)-Any  subspace  of  a Banach space is closed  if  and  only  if  it is  a Banach space . 

  (b)- Any operator from a Banach  space into another is bounded if  and only if it  is continues  

Theorem 3.3. 

  A bounded operator       
       

                   such that Tv =   vk ,     ℕ is a compact 

operator. 

Proof  

   Let  B  be  a closed subset in   
   and {  } be any bounded sequence in B, then {  }  has {   } as a 

convergent  subsequence . Since B is a Banach space by theorem 2.4 and  lemma  3.2 , then 

{  } converges to an element       {  
 }  in B. Thus, {   } converges to    in B, that  is,      

   .  

https://en.wikipedia.org/wiki/Normed_vector_space
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    Now, since   is continuous,  then                         =  

                    
        as        , that is,          

  .Thus, {   } contains a 

subsequence converges to     
  . Hence, a linear  operator   is compact. 

Definition 3.4 [ 6 ] 

      Let U and V be Banach spaces. A  bounded linear operator  T : U   V, is called Fredholm 

operator  if  dim ker L <   and   dim coker T <  : where  coker T = Y/ img T. That is, 

The index of  T (  ind T)  is finite,  where  ind T  = dim ker - dim coker T . 

Remark 3.5: 

 It is known, bijective property of operator  gives finity to           and            ,  but  it is not 

necessary in  order to be  a operator  as a  Fredholm operator . The following example explains this 

remark: 

Example 3.6  

 Let T :   
        

    , be  a operator defined by T(v1, v2, v3, . . .) = (0, v1, 2v2,   ,  3v3, . . )  

,where v = {vK}   
  and  { k} = {  },     ℕ. 

  Clearly, T (0, 0, 0, . . .) = (0, 0, 0, 0, . .),  then ker T = {0},  so T is  injective  and dim ker T = 0. 

Also, it  is clear that img T is not equal    
  then  T is not surjective,  hence,   T is not bijective.  

Also, coker T = span{x}, where v = {1,0,0,0,…}  and so dim coker T = 1 < ∞. Thus, ind T = dim 

ker T − dim coker T = 0 − 1 = −1.  Hence, T is a Fredholm operator.  

Theorem   3.7: 

A bounded  linear  operator T    
       

                                             ℕ    is a Fredholem   

operator. 

 

Proof: 

Since  img of a operator T=   
               is serjective, then coker   =    

    / img T  = { }  

                      Also,   is injective, this  implies  that   ker T = { }   and  

dim ker T=  0 . Thus ,  ind T  = 0 , so T is  Fredholem   operator. 
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