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1. Introduction 

The need for underwater channels of communication has 

experienced significant growth as a result of many activities, 

including pollution monitoring, offshore oil prospecting, and 

military operations involving  submarine  communication  [1]. 

Electromagnetic waves are not dependable for transmitting 

information over long distances because the waves experience 

significant attenuation, which weakens the waves [1]-[3]. 

Therefore, electromagnetic waves are suitable for relatively 

small distances, namely up to 10 meters [4]. Alternatively, 

acoustical waves are commonly used for underwater 

communication since such waves are less likely to be attenuated 

[1], [2]. Acoustic waves are subject to significant issues, one of 

which is underwater acoustic noise (UWAN). This issue mostly 

affects the quality of the signal. Underwater acoustic noise 

(UWAN) can originate from either human activities (such as 

ships, pumps, and power plants) or natural sources (such as 

snapping shrimp, wind, and currents) [5]. The existence of 

UWAN leads to a rise in the bit error rate, resulting in a decrease 

in the overall system performance. Therefore, using a de-

noising approach is crucial to restoring the original signal. 

Since signal de-noising helps restore the original signal, 

especially when distorted by noise, de-noising is a crucial issue 

for many applications. The majority of de-noising techniques 

treat noise as Additive White Gaussian Noise (AWGN), where 

the strength of the noise is evenly distributed across all 

frequency ranges [6]. For this, several methods and algorithms 

are employed, including the Wiener filter [7], median and mean 

filters [8], singular value decomposition [9], and others. 

Although the Wiener filter is employed When the signal-to-

noise ratio (SNR) is reasonably high, the Wiener filter can lead 

to speech distortion during the process of removing  noise [7]. 

Currently, the most often employed and effective method for 

reducing noise in a signal is the use of wavelet transform (WT). 

Many approaches, including wavelet shrinkage [10] and 

wavelet correlation [11], have been suggested based on the WT 

approach, and have demonstrated good performance in de-

noising signals. WT-based de-noising approaches include 
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applying nonlinear operations to signal coefficients obtained 

after the transformation and then reconstructing the signal using 

the modified coefficients. Among these techniques, wavelet 

thresholding is the recommended way for reducing noise 

because the wavelet can effectively enhance the SNR and has a 

comparatively low root mean square error (RMSE) [11], [12]. 

Typically, previous techniques treat the noise as an AWGN [9], 

[10]. However, some studies have defined UWAN as non-

Gaussian and colored noise such as [13]-[15], and [16]. To 

solve this issue, two methods are under consideration: the first 

method includes implementing the pre-whitening stage before 

the wavelet de-noising stage, and then treating the generated 

data as white noise throughout processing [6]. As an alternative 

to the pre-whitening stage, suitable level-dependent 

thresholding is implemented in the second method. 

This work utilizes a de-noising filter, namely the Dual-Tree 

complex Discrete Wavelet Transform (DT-DWT) based on 

Selesnick's work [17], to process acoustic signals in the 

existence of UWAN [18]. DT-DWT is commonly known as the 

complex wavelet transform (CWT), since CWT is derived from 

two trees, one representing the real part and the other 

representing the imaginary part. DT-DWT serves as a 

replacement for wavelet decomposition [11]. DT-DWT has 

demonstrated higher performance compared to regular DWT in 

terms of SNR and RMSE values by utilizing level-dependent 

thresholding. 

The paper is structured in the following manner. Section 2 

presents an analysis of UWAN noise and defines the signals 

employed. Section 3 details the execution of discrete wavelet 

transform (DWT) and the proposed complex wavelet transform 

de-noising techniques. The discussion of the results is included 

in Section 4. Lastly, our conclusions are presented in Section 5. 

2. Acoustic Signal and Noise 

 Noise is a major issue in various communication channels, 

motivating several efforts to limit or wipe out its impact on 

signals, as demonstrated by previous studies [7]-[9], [11]. This 

part will focus on the signal utilized in the simulation and 

analyze UWAN, a colored signal, for de-noising in a presumed 

additive channel. 

2.1. Signal Model 

The signals employed consist of sinusoidal waves, namely 

linear frequency modulation (LFM) to depict a signal that 

changes over time, and a constant-frequency wave to indicate a 

constant frequency. Practically, a sinusoidal signal may be 

mathematically represented as: 

𝑆(𝑛) = {
𝐴 sin(𝜃(𝑛))    0 < 𝑛 ≤ 𝑁 − 1 

0                                otherwise 
                         (1) 

 

The signal's instantaneous phase is denoted by 𝜃(𝑛), and N is 

the number of samples in the signal. It’s possible to express the 

instantaneous phase for a given frequency as: 

𝜃(𝑛) = 2𝜋𝑓𝑚 𝑛 𝑇𝑠                                                                  (2)  

 

Where 𝑇𝑠 is the sampling time and 𝑓𝑚 is the signal frequency. 

The definition of 𝜃(𝑛) for the LFM signal is as follows: 

𝜃(𝑛) = 2𝜋 (𝑓𝑚 +
𝜑

2
𝑛 𝑇𝑠)  𝑛 𝑇𝑠                                    (3) 

Where the signal bandwidth is represented by 𝑓𝐵𝑊, and the 

frequency, represented by 𝜑, is specified by 𝜑 =
𝑓𝐵𝑊

𝑁𝑇𝑠
.  

The definition of the detected signal is as follows: 

𝑥(𝑛) = 𝑠(𝑛) + 𝑣(𝑛)                                                                   (4) 

 

Where 𝑣(𝑛) denotes the UWAN and 𝑠(𝑛) is the intended 

signal. 

2.2. Characteristics of UWAN. 

UWAN has non-Gaussian characteristics, particularly in 

shallow water, due to the presence of impulsive behavior of 

snapping-shrimp noise [14], [16]. The power spectral density 

(PSD) decreases with frequency increase and is defined as 

colored noise. PSD is dependent on the frequency [13]. Hence, 

the Power Spectral Density (PSD) of UWAN may be accurately 

characterized as:  

𝑆𝑥(𝑒𝑖𝜔) =
1

𝑓𝐵              𝑤ℎ𝑒𝑟𝑒 𝐵 > 0                              (5) 

Field tests and useful measurements have been used to examine 

the properties of UWAN [16]. Previous studies, including [13]- 

[19], have discovered that UWAN matches the student's t-

distribution, a statistical distribution with a defined shape factor 

or degree of freedom. UWAN has the noise source's effect on 

its degree of freedom varies between environments, from 

shallow water to deep water [1]. For a student's t-distribution, a 

density of probability (PDF) is given as follows [18]: 

𝜌(𝑦, 𝑣) =  
𝛤(

1+𝑣

2
)

√𝜋𝑥𝛤(
𝑣

2
)

(1 +
𝑦2

𝑣
)

−(1+𝑣)

2
                                     (6) 

The symbol 𝛤(. )  denotes the function of gamma, whereas 𝑣  

indicates a degree or level of freedom. The PDF shown in (6) 

has a mean of zero and a variance equivalent to v/(v-2) for v 

greater than or equal to 2. The Function of PDF of different 

degrees of freedom is shown in Fig. 1, Student's t-distributions 

converge to a normal distribution as v approaches infinity  [13]. 

 

Figure 1. The student t-distribution PDF for different levels of 

freedom v [13]. 
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In Fig. 2, which displays a time model of three depths and an 

autocorrelation function (ACF) generated for each depth, real 

data taken straight from a river is shown. The samples were 

collected by Mahmood in the Tigris River [19]. The noise signal 

is determined using a sampling frequency of 8000 Hz. As seen 

in Fig 2, the autocorrelation function (ACF) does not exhibit a 

delta Dirac function δ(n), indicating that the UWAN seems to 

be colored noise [6]. After evaluating the samples taken from 

the river, v = 2.5 was found to be the degree of freedom [14], 

[19]. The pdf function may be expressed as follows: 

𝜌(𝑦, 2.5) =  0.5721 (
𝑦2

2.5
+ 1)

−1.75

                      (7) 

 

  

(a) 

  

(b) 

  

(c) 

Figure 2. The ACF and signal waveform of UWAN at 3 separate depths: a) 1 m, b) 2 m, and c) 5 m [19].
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3. De-noising Process in UWAN 

3.1.  Model of de-noising system 

UWAN, being classified as a pink or simply colored noise, 

makes typical AWGN noise de-noising methods ineffective [6]. 

In contrast, employing a universal threshold estimation method 

to denoise this specific form of noise could provide greater 

advantages [12]. The signal is transformed into a time-

frequency domain, which enables the application of the 

threshold at each level to remove the colored noise. The last 

stage is to use the new coefficients to rebuild the original signal. 

Fig. 3 illustrates the configuration for the de-noising signal 

system. 

 

Signal 

Transformation

De-noising 

Process

Inverse Signal 

Transformation
~ s(n)

v(n)

s(n)

 

Figure 3. De-noising system.

3.2. Signal transforms 

To do de-noising, the signal must be converted to a domain 

called time-frequency. This enables the application of a level-

dependent threshold estimate for the colored UWAN. This 

work utilizes two techniques: the Discrete Wavelet Transform 

(DWT) and the enhanced Complex Wavelet Transform (CWT). 

3.2.1. Wavelet transform. 

An alternative to the Fourier Transform (FT) is the Wavelet 

Transform (WT), which employs small, localized waves called 

wavelets in place of an infinitely oscillating sinewave [12]. WT 

converts a signal to a representation of time and frequency. WT 

can be described as a continuous time or discrete time 

transform, just as the Fourier Transform. The formula for 

continuous WT (CoWT) is [10]: 

𝑋(𝑎, 𝜏) =
1

√𝑎
 ∫ 𝑥(𝑡) ∗ 𝜓 (

𝑡−𝜏

𝑎
) 𝑑𝑡

∞

− ∞
                              (8) 

The scale factor is a, the shift factor is 𝜏, and 𝜓𝑎,𝑏is the basis 

wavelet function, also called the mother function. Wavelets 

come in many different shapes, such as Biorthogonal, 

Debauchies, Symlet, and Coiflet [20]. The selection of the basis 

function is dependent upon the characteristics of the signal. 

Since the signal is discrete, a more suitable method is the 

Discrete Wavelet Transform (DWT). The DWT can be 

mathematically represented as: 

𝑋(𝜏, 𝑎) =
1

√𝑎
∑ 𝑥(𝑖) 𝜓 (

𝑖−𝜏

𝑎
)𝑁−1

𝑖=0                                         (9) 

The variable τ denotes the temporal shift, whereas the variable 

a reflects the magnitude of the scale. A discrete version of 

wavelet transform (WT) can be applied using a technique 

known as Filter bank design form. A filter bank utilizes low-

pass and high-pass filters. [21]. The details Df and 

approximation Cf are the outputs and are down-sampled by 2 in 

these filters [21]. To achieve the desired degree of 

decomposition, the signal is subjected to L levels of these 

filters. Fig. 4, displays a DWT filter bank with three distinct 

levels. 

 

h0

h1

h0

h1

h0

h1

   

   

   

   

   

   

X(n)
 

Figure 4. DWT filter bank with three levels [20]. 

 

3.2.2. Complex wavelets transform. 

The Complex Wavelets Transform, also known as Dual-Tree 

Discrete Wavelet Transform (DT-DWT), is generated by using 

a set of wavelet trees that create a pair of Hilbert transforms 

[22]. The design features a set of trees, classified as both real 

and imaginary trees, which may be denoted as Tree A and Tree 

B [22]. Equation (10) illustrates the relationship between the 

wavelet functions in the two trees. For each real tree, let 𝜓𝑟𝑒 

represent its wavelet and 𝜓𝑖𝑚 represent its imaginary wavelet 

[20]: 

 

𝜓𝑖𝑚 = H{𝜓𝑟𝑒  } =  {
−𝑗 𝜓𝑟𝑒           ω ≥ 0 
𝑗 𝜓𝑟𝑒              ω < 0

                         (10) 
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Figure 5. The Complex Wavelet Transform Analysis filter [20].

As previously noted, two trees are used to produce DT-DWT. 

The constructed filter, known as an analysis filter, had a low-

pass filter in the real tree that would be delayed by half a sample 

compared to the same filter in the imagined tree [20]. A perfect 

signal reconstruction is achieved by implementing the Hilbert 

transform pair, which requires a specific delay [22]. In Fig. 5, 

the demonstration shows a common DT-DWT filter design with 

the real tree's low-pass and high-pass filters represented by e0 

and e1, and the imaginary tree's equivalent filters by w0 and w1. 

The relationship between the imaginary tree's low-pass filters 

and those in the real tree is shown below [22]: 

𝑤0(𝑛) = 𝑒0 (𝑛 −
1

2
)                                                  (11) 

Equation (11) can be expressed in Fourier transform: 

𝑊0(𝜔) = 𝐸0(𝜔) 𝑒−𝑗𝜃(𝜔)                                      (12) 

Where 𝜃(𝜔) =
𝜔

2
 , |𝜔| < 𝜋 

The process of reconstructing the original signal follows a 

procedure similar to the standard wavelet, but with the 

difference that there will be two signals from the real and 

imaginary components. By computing the mean of signals, it’s 

possible to precisely recover the original signal [17]. A 

synthesis filter refers to a filter bank that performs the reverse 

Complex wavelet transform [17]. Fig. 6, illustrates the synthesis 

filter used in the DT-DWT transform. 

~h0

~h1

~h0

~h1

~h0

~h1

  

  

  

  

   

  

0.5

~g0

~g1

~g0

~g1

~g0

~g1

  

  

  

  

  

  

Imaginary Tree

Real Tree

 

Figure 6. Complex wavelet transforms synthesizer filter [17] 
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3.3 De-noising approach 

This section describes the de-noising techniques using the 

Wavelet transform and Complex Wavelet transform, as shown 

in Fig. 3.  

3.3.1 Wavelet-based approach 

The algorithm for de-noising in DWT, to restore the original 

signal s(n) that has been affected by noise v(n), has three steps: 

• Decomposition: Select a suitable wavelet and specify a 

decomposition level L. Calculate the components of the 

signal that has noise at level L. 

• Threshold: Find the detailed coefficients for each level and 

calculate their threshold values. A technique called 

Universal threshold estimation is used to calculate the 

threshold. 

• Reconstruction: Using the new coefficients, execute an 

inverse wavelet transform to recover the source signal S(n). 

The technique for executing the thresholding at the time-

frequency domain with the Discrete Wavelet Transform (DWT) 

is explained in detail in reference [10]. The threshold for the kth 

level is determined using the modified Universal threshold 

estimate method [21]: 

𝜆𝑘 = 𝑐 𝜎𝑘 ∗ √2 log(𝑁)                                        (13) 

The signal’s length at level k is denoted as N, and the standard 

deviation for the noise at the kth level is denoted as 𝜎𝑘, and the 

modified universal threshold parameter is denoted as 𝑐. The 

parameter has a value of 0 < 𝑐 > 1.  

The expression for the standard deviation of the kth level is, let  

𝑌𝐷 be details coefficients: 

𝜎𝑘 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑌𝐷(𝑛,𝑘)|)

0.6745
                                (14) 

When white noise exists in the channel, the standard deviation 

is calculated using the details coefficients of the first level. The 

reason for this is that the white noise evenly distributes power 

across all frequencies. 

The original signal is obtained after the noise is eliminated 

using the calculated threshold. In [12], the factor 𝑐 is added to 

maximize the de-noising efficiency. A step value of 0.1 is 

gradually applied to find the appropriate value of 𝑐. The 

relevant value of 𝑐 is then determined by monitoring the output 

SNR. 

Next, using a soft threshold approach [10], thresholding is done 

to the detail's coefficients 𝑌𝐷(𝑛, 𝑘) at every level, as illustrated 

in (15): 

𝑌𝐷,𝜆(𝑛, 𝑘) =  {
𝑠𝑔𝑛(𝑌𝐷(𝑛, 𝑘))(|𝑌𝐷(𝑛, 𝑘)| − 𝜆𝑘)𝑖𝑓 |𝑌𝐷(𝑛, 𝑘)| > 𝜆𝑘

0                                                        𝑖𝑓 |𝑌𝐷(𝑛, 𝑘) ≤ 𝜆𝑘

   (15) 

Soft thresholding involves setting any coefficients with 

magnitudes lower than or equal to the threshold value 𝜆𝑘 to zero 

and reducing any coefficients with a magnitude that is larger 

than the threshold by the threshold value. [12]. Another method 

of thresholding, referred to as hard thresholding, involves 

setting any coefficients with a magnitude less than or equal to 

the threshold level 𝜆𝑘 to zero while retaining the rest of the 

coefficients with their original values [12]. 

The reconstruction technique utilizes the new detail coefficients 

𝑌𝐷,λ(𝑛, 𝑘) and the approximation coefficients of level L, 

𝑌𝐴,𝐿(𝑛, 𝑘), to restore the original signal (16). This method 

includes up-sampling by a factor of 2.  

𝑥(𝑛) = 𝑌𝐴,𝐿(𝑛, 𝑘) + ∑ 𝑌𝐷,𝜆,𝑖(𝑛, 𝑘)𝐿
𝑖=1                            (16) 

 

3.3.2 Complex wavelet-based approach 

The two trees in the DT-DWT operate in parallel offering the 

speed of DWT. However, this feature comes at the cost of 

memory requirements [17]. The signal x(n) is decomposed in 

DT-DWT using two filter banks, the output is the information 

from the real tree as well as its Hilbert-transform 

representation in the imaginary tree. Fig. 7, shows the utilized 

algorithm in the de-noising process. At the kth level, detailed 

coefficients could be expressed as: 

𝑌𝐷(𝑛, 𝑘) = 𝑌𝐷,𝑟𝑒(𝑛, 𝑘) + 𝑗𝑌𝐷,𝑖𝑚(𝑛, 𝑘)                                   (17) 

 

Due to the existence of two trees, one real and one imaginary, 

the computation of the threshold value will be carried out 

independently for each tree at every level. The Real and 

Imaginary trees' threshold estimation is provided as: 

𝜆𝑘,𝑟𝑒 =  𝑐 𝜎𝑘,𝑟𝑒 √2 log(𝑁)                                              

𝜆𝑘,𝑖𝑚 = 𝑐 𝜎𝑘,𝑖𝑚 √2 log(𝑁)                                   (18) 

Where the noise deviations for the imaginary and real trees are 

represented by the variables 𝜎𝑘,𝑖𝑚 and 𝜎𝑘, re. The following 

formula is used to get the level k standard deviations:  

𝜎𝑘,𝑟𝑒 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑌𝐷,𝑟𝑒(𝑛,𝑘)|)

0.6745
                                                   

𝜎𝑘,𝑖𝑚 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑌𝐷,𝑖𝑚(𝑛,𝑘)|)

0.6745
                                           (19) 

Once the threshold values have been determined, the next step 

will be to use the soft thresholding method as described below: 

𝑌𝐷,𝑟𝑒,𝜆(𝑛, 𝑘) =

 {
𝑠𝑔𝑛 (𝑌𝐷,𝑟𝑒(𝑛, 𝑘)) (|𝑦𝐷,𝑟𝑒(𝑛, 𝑘)| − 𝜆𝑘,𝑟𝑒) 𝑖𝑓 |𝑌𝐷,𝑟𝑒(𝑛, 𝑘)| > 𝜆𝑘,𝑟𝑒

0                                                                        𝑖𝑓 |𝑌𝐷,𝑟𝑒(𝑛, 𝑘) ≤ 𝜆𝑘,𝑟𝑒

                   

𝑌𝐷,𝑖𝑚,𝜆(𝑛, 𝑘) =

 {
𝑠𝑔𝑛 (𝑌𝐷,𝑖𝑚(𝑛, 𝑘)) (|𝑌𝐷,𝑖𝑚(𝑛, 𝑘)| − 𝜆𝑘,𝑖𝑚) 𝑖𝑓 |𝑌𝐷,𝑖𝑚(𝑛, 𝑘)| > 𝜆𝑘,𝑖𝑚

0                                                                      𝑖𝑓 |𝑌𝐷,𝑖𝑚(𝑛, 𝑘) ≤ 𝜆𝑘,𝑖𝑚

     (20) 

The soft threshold approach is utilized to eliminate noise from 

the detail’s coefficient of both the real and imaginary trees, 

therefore restoring the original signal. While hard thresholding 

is an alternative approach, soft thresholding demonstrates 

superior performance compared to hard thresholding by 

decreasing the sudden changes in the thresholded signal. 

The reconstruction procedure is the final stage, in which the 

original is restored by utilizing the newly obtained detail 

coefficients. The synthesis or backward filter, as seen in Fig. 6, 

utilizes the time-reversed coefficients of the analysis filter [20], 
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used in the first stage. These coefficients correspond to the 

lowpass and high-pass filters. In a manner identical to the 

Discrete Wavelet Transform (DWT), the reconstruction process 

restores the signal. However, in this case, there will be two 

copies of the signal derived from both trees the real one and the 

imagined one. A reconstruction equation provided in (16) is 

going to be utilized to restore the signal from both trees. By 

calculating the mean of the two signals, the de-noised signal is 

achieved, as demonstrated:  

𝑥𝑟𝑒(𝑛) = 𝑌𝐴,𝑟𝑒,𝐿(𝑛, 𝑘) + ∑ 𝑌𝐷,𝑟𝑒,𝜆,𝑖(𝑛, 𝑘)𝐿
𝑖=1                 (21) 

𝑥𝑖𝑚(𝑛) = 𝑌𝐴,𝑖𝑚,𝐿(𝑛, 𝑘) + ∑ 𝑌𝐷,𝑖𝑚,𝜆,𝑖(𝑛, 𝑘)𝐿
𝑖=1                (22) 

𝑥(𝑛) =
𝑥𝑟𝑒(𝑛)+𝑥𝑖𝑚(𝑛)

2
                                                   (23) 

Noisy signal X(n) = S(n) + V(n)

Decompose the signal using 

Complex wavelet tree

Applying inverse transform to 

reconstruct the signal using the 

new coefficients

Applying inverse transform to 

reconstruct the signal using the 

new coefficients

 

Apply soft thresholding

 

Apply soft thresolding

 

Imaginary Real

 

Estimate the threshold

 

 

Figure 7. The complete DT-DWT proposed algorithm.

3.4 Performance measures 

The performance of the various de-noising methods and the 

quality of the output signal are primarily assessed using two 

parameters: signal-to-noise ratio (SNR) as well as root mean 

squared error (RMSE) [16]. One definition of the SNR is: 

𝑆𝑁𝑅 = 10 log [
∑ 𝑠(𝑛)2𝑁

𝑛=1

∑ [𝑠 ̃(𝑛)−𝑠(𝑛)]2𝑁
𝑛=1

]                                 (24) 

where N is the signal's length, 𝑠(𝑛) is the originally sent signal, 

and 𝑠 ̃(𝑛) is the signal following de-noising. If the output 

signal-to-noise ratio (SNR) exceeds the input SNR, the de-

noising process is deemed effective. 

One definition of the RMSE is: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ [𝑠 ̃(𝑛) − 𝑠(𝑛)]2𝑁

𝑛=1                              (25) 

The root-mean-squared error (RMSE) evaluates how closely 

the de-noised signal matches the original signal. Using these 

criteria, the suggested approach is evaluated and compared to 

DWT. The results of the optimal de-noising method show 

minimized RMSE and maximized SNR. 
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4. Results and Discussion. 

The utilized techniques for signal de-noising are evaluated and 

simulated using a UWAN. The used UWAN is Tigers River real 

data [19]. The signals utilized in this evaluation are defined by 

(1 - 4). Here are the signals: 

• A 100k-sample fixed-frequency signal with a 200 Hz. 

• A 100k sample long LFM signal with a starting frequency 

of 10 Hz and a 500 Hz peak frequency. 

8000 Hz is the sampling frequency used for the signals. With 

the noise power remaining constant, the simulation is run at 

SNR values between -2 and 6 dB by varying the signal 

amplitude. Measurements were collected at depths of 1m, 3m, 

and 5m and later utilized in simulation [19]. The decomposition 

level for both DWT and DT-DWT was set to 4. The 

DWT utilizes the Daubechies wavelet and soft thresholding 

technique [23]. The coefficients of DT-DWT are selected from 

[22] and the results are achieved by using soft thresholding. 

 

 

a) Fixed frequency signal with 200 Hz frequency 

 
b) LFM signal 

Figure 8. Four waves presented for 3 m depth: a) signal of interest, b) signal with noise, c) DT-DWT de-noised signal, and d) 

DWT de-noised signal [Input SNR -1.2]. 

 

Fig. 8, illustrates the time-domain representation of the signal 

of interest, signal with noise, and de-noised signals using 

various approaches. There is a noticeable difference in 

performance between the Discrete Wavelet Transform (DWT) 

and the Dual-Tree Complex Wavelet Transform (DT-DWT). 

Because UWAN’s PSD depends on frequency, the power is 

concentrated in the low frequency, as seen in Fig. 8(b). Fig. 9, 

presents a comparison of the signal-to-noise ratio (SNR) 

outputs of several de-noising techniques at depths of 1 meter, 3 

meters, and 5 meters. If the signal at the output has a signal-to-

noise ratio (SNR) that is higher than the signal at the input, then 

the de-noising process is considered to have been successful.
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(a) (b) 

i) 1m depth for a) 200 Hz fixed frequency and b) LFM signal. 

  

(a) (b) 

ii)  3m depth for a) 200 Hz fixed frequency and b) LFM signal. 

  

(a) (b) 

iii)  5m depth for a) 200 Hz fixed frequency and b) LFM signal. 

Figure 9. DWT and DT-DWT achieved SNR at 1m, 3m, and 5m depth. 

 

As demonstrated before, the DT-DWT consistently 

outperforms the DWT in all scenarios. An SNR difference of 

around 3 dB was seen between the DT-DWT and DWT 

approaches at a depth of 1m, with an input SNR of 5.5 dB. This 

difference was recorded for a constant frequency. In the case of 

an LFM signal, the observed difference was 2 dB. 
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(a) (b) 

i) 1m depth for a) 200 Hz fixed frequency and b) LFM signal. 

  

(a) (b) 

ii) 1m depth for a) 200 Hz fixed frequency and b) LFM signal. 

  

(a) (b) 

iii) 5m depth for a) 200 Hz fixed frequency and b) LFM signal. 

Figure 10. The obtained RMSE values at 1 m, 3 m, and 5 m using DWT and DT-DWT. 

Fig. 10, displays the comparison of RMSE values at different 

depths when the input SNR varied from -2 dB to 6 dB. In all 

circumstances, the DT-DWT de-noising approach consistently 

exhibits reduced error compared to the DWT de-noising 

approach. When comparing the two techniques of reducing 

noise at a depth of 3 meters, there was an observed difference 

of approximately 2 dB for the fixed frequency approach and 

roughly 3 dB for the LFM signal method, with an input signal-

to-noise ratio of 5.5 dB. 

Table 1 shows the SNR and RMSE values for the two de-

noising techniques. The results obtained are founded on a fixed 

input SNR of 5.9 dB and a 3-meter-deep input RMSE of -13.2 

dB. 

Table 1. Various de-noising algorithms output RMSE and 

SNR for 5.9 dB input SNR and -13.2 dB input RMSE at 3m 

depth. 

Measures DWT DT-DWT 

Fixed frequency at 200 Hz 

Output SNR (dB) 6.5 10.9 

1/RMSE (dB) 13.5 15.7 

LFM signal 

Output SNR (dB) 7.6 9.7 

1/RMSE (dB) 14.05 15.09 
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5. Conclusion 

this paper investigates the performance of the time-frequency 

techniques for de-noising an acoustic signal in actual UWAN 

data that was recorded and is known to contain colored noise. 

To do this, the DT-DWT method was utilized to create a 

representation of the signal in the time-frequency domain. After 

that, a de-noising technique using a threshold that varies 

depending on the decomposition level of the signal was applied. 

Modified universal threshold estimate is the method used to 

figure out the threshold at each level. The performance of DT-

DWT was compared with the commonly used DWT. For testing 

and simulating the de-noising algorithms, real-world noise data 

was added to two types of signals: LFM and fixed-frequency 

signals. The two signals are utilized in the simulation. The 

results indicated that DT-DWT has a better performance 

compared to DWT, demonstrating its higher efficiency. The 

result of the fixed frequency signal and LFM signal, 

respectively, there was a 2dB and a 3dB difference in SNR 

between the two denoising techniques. 
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