Iraq Natural History Research Center & Museum, University of Baghdad <u>https://jnhm.uobaghdad.edu.iq/index.php/BINHM/Home</u> Copyright © Bulletin of the Iraq Natural History Museum Online ISSN: 2311-9799-Print ISSN: 1017-8678

Bull. Iraq nat. Hist. Mus. (2023) 17(4): 655-668.

 (\mathbf{i})

https://doi.org/10.26842/binhm.7.2023.17.4.0655

ORIGINAL ARTICLE

NEW RECORDS OF TWO MACROFUNGI SPECIES BASED ON MORPHOLOGICAL AND MOLECULAR IDENTIFICATION IN IRAQ

Biology Department, College of Science, Tikrit University, Tikrit, Iraq. *Corresponding author E-mail: <u>saraqahtan@tu.edu.iq</u>

Recived Date: 15 May 2023, Accepted Date 03 August 2023, Published Date: 20 June 2023

This work is licensed under a Creative Commons Attribution 4.0 International License

ABSTRACT

This study was done in Al-Alam City, Salah Al-Din Province, to determine the diversity of the macrofungi in it. The results of the field study showed two species were recorded in Iraq for the first time, *Inocutis tamaricis* (Pat) Fiasson & Niemelä, 1984 (Basidiomycota, Hymenochaetales) and *Melanoleuca castaneofusca* Contu, 1998 (Basidiomycota, Agaricales). These species were diagnosed based on macroscopic and microscopic, DNA sequence analyses and environmental charactes. The study included the adoption of the *ITS* gene for molecular diagnosis, the results of which were confirmed for morphological and environmental diagnosis, and the specimens were registered in the NCBI Global GenBank under the international accession numbers OP153814.1 and MZ334407.1 for the species *I. tamaricis* and *M. castaneofusca*, respectively.

Keywords: Basidiomycota, Inocutis tamaricis, Iraq, Macrofungi, Melanoleuca castaneofusca.

INTRODUCTION

There has been great interest in mapping the macrofungi of the main geographical regions to obtain their distribution records similar to those of flowering plants (Meuller *et al.*, 2007). However, unlike plants, measuring macrofungal diversity depends on the collection of fruiting bodies, which in turn depends to a large extent on the availability of moisture, that is, on seasonal rains, so it abounds in the spring and autumn due to the high humidity and abundance of plants (flora) at these times (Sibounnavong *et al.*, 2008).

Iraq occupies a total area of 437,072 km2 (Al-Ansari, 2021) and is characterized by its different ecosystems and plant diversity. However, Iraqi macrofungi are overlooked and unexplored in many regions, despite their environmental and applied importance. There are very few and scattered studies in this regard, including the study of Aziz and Toma (2012), Toma *et al.* (2013), Al- Qaissi (2013), Al Anbagi (2014), Suliaman *et al.* (2017), Owaid *et al.* (2018), Al- Khesraji *et al.* (2019, 2020, 2022), Al Anbagi *et al.* (2021), Al- Khesraji *et al.* (2021), and Al Anbagi and Al- Khesraji (2022) reflecting an increase in the macrofungal species recorded with most of the documented species belonging to the phylum

Basidiomycota and the remaining species belonging to the phylum Ascomycota. That indicates the rich diversity of macrofungi in Iraq.

During the field trips to the Al-Alam area, the two species were collected and identified. Therefore, the present study is a new addition to the macrofungal record in Iraq.

MATERIAL AND METHODS

Collecting, identification and preserving macrofungi specimens: Macrofungi were collected from the orchards of Al-Alam City (34°38'41"N43°42'0" /elevation 96 m), Salah Al-Din Province, in December-January 2022. Information about the habitat, habit, substrate, the host, and the nature of growth was recorded if it was solitary, overlapped, or clustered. Other information related to the date and place of collection, the color of the fruiting bodies with macrofungi in different parts, and the names of the plants prevalent in the area have also been documented.

The specimens were placed in plastic storage containers and transferred to the laboratory for macroscopic and microscopic examinations. Later, species were identified according to Ghobad-Nejhad and Kotiranta (2008), Sharma *et al.* (2013), Chinan *et al.* (2015), Kibby (2016), Sicoli and Mannarino (2017), and Antonín *et al.* (2021). Classification, synonyms, and basionyms were provided according to the GBIF Secretariat (2022). Some of the specimens were preserved in a preservation solution, ethanol alcohol 70%, with adhesive paper placed on the box. Information of the fungus, date and place of collection was written down, while the rest of the fruiting bodies were cut to small parts and dried on sterile paper by exposing them to indirect sunlight. The fruiting bodies were grinded by electric mill. The powder of the specimens was kept in a plastic storage container with a tight lid until use for genetic analysis. The identified fungi were deposited in the Department of Biology, College of Science, Tikrit University, Iraq.

Molecular studies: The DNA extraction was conducted using the MG Tissue Genomic DNA Extraction SV kit (Doctor protein INC, South Korea, Cat. no. MD014). The DNA amplification was completed using Dr. MAX DNA Polymerase (Doctor protein, cat. no.: DR00302). The primers for the amplification of the internal transcribed spacer region (ITS) were ITS1 (5²-TCCGTAGGTGAACCTGCGG-3³) and ITS4 (5²-TCCTCCGCTTATTGATATGC-3³) (White *et al.*, 1990).

The PCR conditions were a denaturation at 95° C for 5 min, followed by 35 cycles for a secondary denaturation at 95° C for 30 sec; annealing at 55° C for 30 sec; and an elongation at 72° C for 1 min with a final extension step of 72° C for 10 min. The PCR products were stored at 4° C. Later, the PCR products were purified using Multiscreen filter plate, merck millipore. The amplified DNA was sequenced by Applied Biosystems ABI 3730XL DNA Analyzer using the BigDye Terminator v3.1 Cycle Sequencing Kit, merck millipore Macrogen / Korea. The sequences were aligned using NCBI's Basic Local Alignment Search Tool (BLAST). The phylogenetic tree analysis was performed using the Molecular Evolutionary Genetics Analysis (MEGA) software version 7 (Tamura *et al.*, 2013).

Suliaman, S. Q.

RESULT AND DISCUSSION

Morphological identification

In this study, two species belonging to the class Agaricomycetes were reported as new records for Iraq. Macroscopic and Microscopic descriptions and photographs were provided. The classification of them is as follow:

Kingdom: Fungi Phylum: Basidiomycota

Class: Agaricomycetes

(1) Order: Hymenochaetales Family: Hymenochaetaceae Genus: *Inocutis* Fiasson & Niemelä, 1984 Speceis: *I. tamaricis* (Pat.) Fiasson & Niemelä (1984)
(2) Order: Agaricales

Family: Pluteaceae Genus: *Melanoleuca* Patouillard, 1897

Species: M. castaneofusca Contu, 1998

Inocutis tamaricis (Pat.) Fiasson & Niemelä, 1984 (Pl. 1)

Basionym: Xanthochrous tamaricis Pat., 1984

Synonyms: Inonotus tamaricis (Pat.) Bondarzew & Singer

Inonotus tamaricis (Pat.) Maire Inonotus tamaricis f. corneus Bondartseva Polyporus tamaricis (Pat.) Sacc. & D.Sacc.

Xanthochrous rheades subsp. tamaricis (Pat.) Bourdot & Galzin

Basidiocarp: Sessile, hemispherical, rough texture (woody), 5.5-7.0 cm wide, 3-4 cm thick, creamy to rusty-brown with a lighter at the margin. Flesh: woody texture, dark brown at the center, mixed with pale yellowish and white mycelium. Hymenial layer: tubular, creamy to pale brown become dark brown at the edges ends with irregular pores. Basidia: 4-spored, hyaline in H₂O. Basidiospores: $5.5-7.5x5.0-6.0\mu$, oval to elliptical, yellowish to pale brown, thick-walled, smooth. Habit and habitat: solitary; fruiting on live and dead trees of *Tamarix* spp. Edibility: locally and globally unknown.

Distribution: Greece (Piatek, 2001), Southern Europe, Northern Africa, Southern Asia, China (Ryvarden, 2005), Iran (Ghobad-Nejhad and Kotiranta, 2008), India (Sharma *et al.*, 2013), Romania (Chinan *et al.*, 2015), Italy (Sicoli and Mannarino, 2017; Girometta *et al.*, 2020).

Note: The current results were consistent with the aforementioned sources, which also confirmed that the presence of *I. tamaricis* on *Tamarix* trees is a distinctive feature in determining its identity.

Melanoleuca castaneofusca Contu, 1998 (Pl. 2)

Basidiocarp: Cap: 4.8-10.0 cm broad, smooth, depressed, slightly reflexed towards margin, laccate, dark gray to brown with a silver appearance, and darker spots around the cap margin, and entire cap margin. Flesh: white, fragile, the smell is similar to that of mushroom. Gills: white, subdeccurent, crowded, smooth. Stipe: 3.0-7.0x3.5-4.0 cm, white changed to brown

New records of two macrofungi

after harvest, central, equal, solid, fibrillose, longitudinally striate. Volva and ring and absent. Basidia: 4-spored, hyaline in H₂O, 12.5-15.0 x75.0 μ . Basidiospore: 6.25-7.5 x 5.0-7.5 μ , elliptical with central oil droplets and an ornamented wall. Spore print: is white to light yellow. Cheilocystidia: 35.0x7.5-10.0 μ , lageniform with crystals at the apex. Pleurocystidia present and have a similar shape to cheilocystidia. Habit and habitat: solitary, collecting from the soil of barley fields. Edibility: locally unknown, globally edible (Singer, 1986).

Distribution: It has been collected from several countries such as Italy, Czech Republic, Slovakia, France, Britain, and Sweden (Kibby, 2016; Antonín *et al.*, 2021).

Molecular identification and phylogenetic analysis

The analyzed portions of ITS rRNA sequencing for both presented species were between 660 and 689 base pairs. The blast search of the sequence similarities was identified the first and second species sequences as *M. castaneofusca* and *I. tamaricis*, respectively. The two identified sequences were submitted to the NCBI GenBank under the accession numbers OP153814.1 and MZ334407.1 for species, *I.tamaricis* and *M. castaneofusca*, respectively.

The pairwise sequence alignment of *I. tamaricis* appeared transversion and transition in the 152-158 and 282 nucleotide positions, respectively, when being compared with the refrance isolate with accession number GQ253453.1 form the Mediterranean Sea (Diag.1). On the other hand, the sequence alignments of *M. castaneofusca* exhibited transition at the 312 alignment position once the Iraqi isolates paired with Italyi isolates with the accession number MW491323.1(Diag.2) (Chinan *et al.*, 2015; Zhuo *et al.*, 2016; Wu *et al.*, 2019).

Suliaman, S. Q.

Plate (1): *I. tamaricis*; (A, B, C, D) Fruiting bodies on *Tamarix* tree, (E) Basidium and basidiospores, (F) Basidiospores. (40x).

Plate (2): M. castaneofusca; (A) Fruiting body in lab, (B) Gills, (C) Long section of fruiting body, (D) Basidia and basidiospores, (E) Basidiospores, (F) cystidia. (40x).

New records of two macrofungi

Score			Expect	Identities	Gaps	Strand
1234 bits	(1368)		0.0	687/689(99%)	0/689(0%)	Plus/Plus
Query	1	AACGGTCT	GCAGCTGGTGCO	GGAACGCGCATGTGCTC	GCCTTTCGTGTTCAAA	TCCACT 60
Sbjet	57	AACGGTCT	GCAGCTEGTEC	PGGAACGCGCATGTGCTC	GCCTTTCGTGTTCAAA	ATCCACT 116
Query	61	CAACCCCT	GIGUACUITIGO	GAAGCAAACAGTAGTAG	rearcaterititettit	CITICI 120
Shict	117	CRACCCCT	CTCCACCTTTC	CARCEARACACTACTCC	LILIIIIIIIIIIIIIIIIII FOGTOGTOTTTTTTTTT	111111 CTTTTCT 176
Opera	121	CETCETET	CTTTTC& ACCCC	CCTCRARACTCRAR		CARTCA 190
Agera	101				3333797979999999999999	HIIII
Shict	177	GETCETET	GTTTTGAACCGO	GGTCAAAAGTGAAAGGG	SECONDRAGECECCECT	GAATGA 236
Ouerv	181	ATGCTTCG	AGTTTTTCATT	CAAACTACTTGTATGTC	CTGTGGAACGTAATATG	CTCCCT 240
-]		11111111	111111111111			
Sbjct	237	ATGCTTCG	AGTTTTTCATT?	CAAACTACTTGTATGTC	CTGTGGAATGTAATATG	CTCCCT 296
Query	241	CGTGGGCA	AAATTGTAATAO	AACTTTCAACAACGGAT	CTCTTGGCTCTCGCATO	GATGAA 300
			1111111111111			111111
Sbjct	297	CGTGGGCA	AAATTGTAATAO	CAACTITCAACAACGGAT(CTCTTGGCTCTCGCATO	GATGAA 356
Query	301	GAACGCAG	CGAAATGCGATA	AGTAATGTGAATTGCAG	AATTCAGTGAATCATCG	AATCTT 360
		1111111	1111111111111			111111
Sbjct	357	GAACGCAG	CGAAATGCGATA	AGTAATGTGAATTGCAG	AATTCAGTGAATCATCG	AATCTT 416
Query	361	TGAACGCA	CCTIGCGCCCCI	TGGTATTCCGAGGGGGCA	IGCCIGTTIGAGIGICA	TGTTAA 420
		11111111				
Sbjct	417	TGAACGCA	CCTIGCGCCCCI	TGGTATICCGAGGGGCA	FGCCTGTTTGAGTGTCA	ATGTTAA 476
Query	421	TCTCAAAC	CCTCAGTCTTT	GTTGACTCGAAGGACTG	GGTCGGTTTGGACTTGG	AGGTTT 480
		1111111				
Sbjet	477	TUTCAAAC	COTCAGTOTITI	IGTIGACICGAAGGACIG	SGTCGGTTTGGACTTGG	AGGIIT 536
Query	481	AACIGUIG	GCIIIAGCARII	AGAGICGGCICCICIA	RAIICAIIAGCIGGACI	.116611 540
Chiat	607	ADCTCCTC				TTCCTT FOC
Opera	537	CCCATTIC	CCCTCTANTACI	AGAGICGGCICCICIA NAACCAACTTCTTCCCCC	CCTCCTTCCCTAA2C3	CTCTCC 600
Agerly	041	ULUUU	IIIIIIIIIIIIII			
Shict	597	CGCATTIG	CEGTETAATAGI	AACCAACTTGTTCGCCC	GGTGCTTGCCTAAAGA	GTCTGC 656
Ouerv	601	TTCTAATC	GCCTCCCAGTTO	GGGCAAGTACTATATGA	CCTTTGACCTCAAATO	AGGTAG 660
J		11111111	111111111111			
Sbjct	657	TICTAATC	GCCTCCCAGTTO	GGGCAAGTACTATATGA	CCCTTTGACCTCAAATO	AGGTAG 716
Query	661	GACTACCC	GCTGAACTTAAC	CATATCATA 689		
			1111111111111			
Sbjet	717	GACTACCC	GCTGAACTTAAO	CATATCATA 745		

Diagram (1): The pairwise sequence alignments of ITS region for both isolates *I. tamaricis* from Iraq (the query) and the Mediterranean Sea (the subject) with the accession number GQ253453.1. The alignment starts at the first base in the query sequence and progresses upwards to base 60 in the first alignment line; however, for the subject sequence, the alignment starts at base 57 and progresses downwards to base 745.

660

Suliaman, S. Q.

Score			Expect	Identities	Gaps	Strand	
1187 bits	(1315)		0.0	659/660(99%)	0/660(0%)	Plus/Plus	
Ouerv	1	ACTOGG	TGGGTTGTTG	CTGGCTCCCAGGAG	CATGTGCACACTTG	CCATTGTTTCATTCT	F 60
Shict	1						60
Ouerv	61	TCTCCA	CCTGTGCACC	TTTTGTAGGCTTGG	ATATCTCTCAAAGG	AGATTGTATCATTATC	120
Sbict	61						. 120
Querv	121	ATCTCT	CTTGGACTTA	GGGATTGTTTAGAA	AACTTTCCTTTGCA	TTTCCAGCCTATGTT	180
Sbjct	121						180
Query	181	ATTATA	ACATATATAT	ATACACCCCATTCG	TATGTTTTAGAATG	TTTATATTTGGCCTAI	240
Sbjct	181						240
Query	241	TACAGG	CTTTAAAACT	TATACAACTTTCAA	CAACGGATCTCTTG	GCTCTCGCATCGATGA	A 300
Sbjct	241						300
Query	301	AGAACG	CAGCGGAATG	CGATAAGTAATGTG	AATTGCAGAATTCA	GTGAATCATCGAATCI	360
Sbjct	301		A				360
Query	361	TTGAAC	GCACCTTGCG	CTCCTTGGTATTCC	GAGGAGCATGCCTG	TTTGAGTGTCATTAAA	420
Sbjct	361						420
Query	421	TTCTCA	ATCCTTTCTG	GGCTTATTCTCAGT	TGGGCTTGGATATG	GGGGACTGTTGCTGGG	2 480
Sbjct	421						. 480
Query	481	TTTGCA	AAAAGTCAGC	ТСТССТТААААТТА	TTAGCAGGACATTT	GTTGCAACCTTCTATO	C 540
Sbjct	481						. 540
Query	541	TGGTGT	GATAGTTATC	TACATCATAGATTA	TGTGCAGTTTATTA	TGTCTGGCTTCTAACA	A 600
Sbjct	541						600
Query	601	GTCCAA	TTAACTTGGA	CAACACTCTGATGA	TTTGACCTCAAATC	AGGTAGGACTACCCGO	C 660
Sbjct	601						660
Diagra	am (2	: The	pairwise se	quence alignme	nts of ITS regi	on for both isola	tes M.
		castane	<i>eofusca</i> fro	m Iraq (the qu	ery) and Italy	(the subject) wi	th the
		accessi	on number	GQ253453.1. T	he alignment star	rts at the first base	in the
		query s	sequence ar	nd progresses up	owards to base 6	50 in the first alig	gnment
		line; al	lso, for the	subject sequen	ce, the alignment	nt starts at base 6	50 and
		progres	sses downwa	ards to base 660	•		

The results of the ITS sequence region showed that the percentage similarities of the isolets *I. tamaricis* from Iraq were 99% with the Mediterranean Sea, Romania, and Greece, while they were matched as 98%, 97%, 96%, and 95% with South Korea, France, Italy, and China, respectively as shown in Table (1).

No.	Accession	Country	Source	Similarity (%)
	number			
1	<u>GQ253453.1</u>	The Mediterranean Sea	Inocutis tamaricis	99
2	<u>KJ755854.1</u>	Romania	I. tamaricis	99
3	<u>KX881614.1</u>	Greece	I. tamaricis	99
4	<u>AY558604.1</u>	South Korea	I. tamaricis	98
5	<u>MH855326.1</u>	France	I. tamaricis	97
6	<u>GU111920.1</u>	Italy	I. tamaricis	96
7	<u>HM050416.1</u>	China	I. tamaricis	95
8	JN169789.1	China	I. subdryophila	89
9	<u>KY907684.1</u>	USA: Arizona	I. jamaicensis	83
10	<u>MN498104.1</u>	USA: Arizona	I. dryophila	94
11	<u>MK422156.1</u>	Tunisia	Inonotus levis	79

Table (1): Similarity ITS gene for the Iraqi isolate of *I. tamaricis* with Gene Bank isolates.

Further, the ITS sequencing results for Iraqi isolate of *M. castaneofusca* appeared the Similarity 99% with Italy, Czech Republic, Italy, Slovakia, and France, whereas compatible 98% with United Kingdom as in Table(2).

 Table (2): Similarity ITS gene for the Iraqi isolate of M. castaneofusca with GenBank isolates.

No.	Accession	Country	Source	Similarity (%)
	number			
1	<u>MW491323.1</u>	Italy	Melanoleuca castaneofusca	99
2	<u>MW491321.1</u>	United Kingdom	M. castaneofusca	98
3	<u>MW491320.1</u>		M. castaneofusca	99
4	<u>MW491325.1</u>	Czech Republic	M. castaneofusca	99
5	<u>MW491324.1</u>		M. castaneofusca	99
6	<u>MW491322.1</u>	Italy	M. castaneofusca	99

The results of the phylogenetic tree analysis of *I. tamaricis* showed that the current isolate was close to the Romanian isolate (Diag. 3). The p-distances between the previous species were 0.0013 and between the isolates from Iraq and the Mediterranean Sea were 0.0020. Moreover, variable distances 0.013-7.8 were observed between the Iraqi sequence and other GenBank sequences. The current results were comparable with other reported mean sequence divergences for fungi of 0.004-0.036 (Chinan *et al.*, 2015) and 0.025 (Schoch *et al.*, 2012).

The Iraqi isolate had a high bootstrap value (>79%) compared to other species in the GenBank isolates. Another study by Chinan *et al.* (2015) examined the phylogenetic evolution of *I. tamaricis* from Romania. The phylogenetic bootstrap value of the investigated species was high >65% compared with other sequences in GenBank.

The phylogenetic tree analysis was generated for the Iraqi collected specimen of *M. castaneofusca* (Diag. 4). The sequences of the Iraqi isolate were close to other sequences from Italy, France, and Slovakia. Their p-distances between them were 0.0008. The distances were varied from 0.0008 to 0.0025 between the sequences of the investigated Iraqi species and others in GenBank. The Iraqi isolate had a high bootstrap (>98%) with the isolates in GenBank. However, other studies showed two major clades: subgenera *Melanoleuca* (clade A) and subgenera *Urticocystis* (clade B) when phylogenetic analysis was conducted depending on the ITS region. These clades had high bootstraps of 99 and 98% respectively, (Kalmer *et al.*, 2018). Another study conducted the phylogenetic analysis for other species of

Suliaman, S. Q.

Melanoleuca, including M. angelesiana, M. castaneofusca, M. luteolosperma, M. pseudopaedida, and M. robertiana and the bootstrap results was >75% (Antonín et al., 2021).

Diagram (4): Maximum likelihood tree depended on ITS sequence. Bootstrap values > 98% based on 1000 replications. The sequence of *M.castaneofusca* of Iraq is red triangle.

CONCLUSIONS

The present study reported the first *I. tamaricis* and *M. castaneofusca* collected from *Tamarix* tree soil, respectively. The study also indicates the possibility of the presence of several macrofungi that were not recorded in Iraq. The molecular analysis confirmed the phenotypic analysis. Also, the phylogenetic analysis of the Iraqi isolates for *I. tamaricis* and

M. castaneofusca were appeared close to the isolates in GenBank. This shows the evidence of compatibility between phenotypic analysis and phylogenetic analysis.

CONFLICT OF INTEREST STATEMENT

The authors whose names are listed immediately below certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patentlicensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

LITERATURE CITED

- Al-Anbagi R. A. 2014. Histological study of the discomycetes fungus *Cheilymina theleboloides. Journal of University of Babylon*, 22(2): 769-77. [Click here]
- Al-Anbagi, R. A. and Al-Khesraji, T. O. 2022. Morchella conica pers., 1818 (Peziziales, Morchellaceae): A new record from Iraq. Bulletin of the Iraq Natural History Museum, 17(1):89-101. [CrossRef]
- Al-Ansari, N. 2021. Topography and climate of Iraq. Journal of Earth Sciences and Geotechnical Engineering, 11(2): 1-13. [CrossRef]
- Al Anbagi, R. A., Suliaman, S. Q. and Al-Khesraji, T. O. 2021. Morphological and molecular identification of a new species of *Coprinopsis iraqicus* sp. nov. from Iraq. *Indian Journal of Ecology*, 49(9): 1424-1432. [CrossRef]
- Al- Khesraji, T. O., Mezher, M. A. and Shugran, A. H. M. 2022. First report on the morphological and molecular identification of *Lactocollybia variicystis* from Salahadin Governorate, North Central Iraq. *Ecology, Environment and Conservation*, 28(2): 626-630. [CrossRef]
- Al- Khesraji, T. O., Suliaman, S. Q. and Abdullah, R. I. 2020. First record of *Ganoderma resinaceum* (Ployporales / Basidiomycota) from Iraq. The second international and the fourth scientific conference of collage of sciences. Tikrit University. 24-25. Nov.2020, p .5-9. [Click here
- Al-Khesraji, T. O., Suliaman, S. Q. and Al-Hayawi, A. Y. 2021. Morphological and molecular characterization of *Bjerkandera adusta* (Meruliaceae), a new addition to macromycota of Iraq. *Annals of the Romanian Society for Cell Biology*, 25(4): 11968-11975. [Click here]

Suliaman, S. Q.

- Al-Khesraji, T. O., Suliaman, S. Q., Al Hayawi, A. Y. and Sadiq, S. T. 2019. First report and molecular identification of Iraqi macrofungi. *In*: International Agriculture and Forest Congress, p. 400-410. [<u>ResearchGate</u>]
- Al- Qaissi, A. R. 2013. A study on the activity of some mushrooms in bioremediation of petroleum waste water in refineries company-Baji. Ph. D. thesis, Department of Biology, College of Education for Pure Sciences, University of Tikrit, Iraq, 200 pp.
- Antonín, V., Ševčíková, H., Para, R., Ďuriška, O., Kudláček, T. and Tomšovský, M. 2021.*Melanoleuca galbuserae*, *M. fontenlae* and *M. acystidiata*—three new species in subgenus *Urticocystis* (Pluteaceae, Basidiomycota) with comments on *M. castaneofusca* and related species. *Journal of Fungi*, 7(3): 191. [CrossRef]
- Aziz, F. H. and Toma, F. M. 2012. First Observations on the mushroom in mountain area of Iraqi Kurdistan Region. *Journal of Advanced Laboratory Research in Biology*, 3(4): 302-312. [ResearchGate]
- Chinan, V. C., Fusu, L. and Manzu, C. C. 2015. First record of *Inonotus tamaricis* in Romania with comments on its cultural characteristics. *Acta Botanica Croatica*, 74(1): 187-193. [CrossRef]
- GBIF Secretariat. 2022. GBIF Backbone Taxonomy. Checklist dataset accessed via GBIF.org on 2023-06-15. [CrossRef]
- Ghobad-Nejhad, M. and Kotiranta, H. 2008. The genus *Inonotus sensu lato* in Iran, with keys to *Inocutis* and *Mensularia* worldwide. *Annales Botanici Fennici*, 45(6): 465-476. [CrossRef]
- Girometta, C. E., Bernicchia, A., Baiguera, R. M., Bracco, F., Buratti, S., Cartabia, M. and Savino, E. 2020. An Italian research culture collection of wood decay fungi. *Diversity*, 12(2): 58. [CrossRef]
- Kalmer, A., İsmail, A. C. A. R. and Tekpinar, A. D. 2018. Phylogeny of some Melanoleuca species (Fungi: Basidiomycota) in Turkey and identification of Melanoleuca angelesiana AH Sm. as a first record. Kastamonu University Journal of Forestry Faculty, 18(3): 314-326. [Click here]
- Kibby, G. 2016. *Melanoleuca castaneofusca* new to Britain. *Field Mycology*, 17(3): 95-97. [Click here]
- Mueller, G. M., Schmit, J. P., Leacock, P. R., Buyck, B., Cifuentes, J., Desjardin, D. E., Halling, R. E., Hjortstam, K., Iturriaga, T., Larsson, K. H. and Lodge, D. J. 2007. Global diversity and distribution of macrofungi. *Biodiversity and Conservation*, 16: 37-48. [CrossRef]

- Owaid, M. N., Seephueak, P. and Attallah, R. R. 2018. Recording novel mushrooms in Heet district, Iraq. Songklanakarin Journal of Science and Technology, 40(2): 367-369. [ResearchGate]
- Piątek, M. 2001. Inonotus tamaricis (Fungi, Hymenochaetales) on Melos in Greece. Polish Botanical Journal, 46(2): 275-279. [ResearchGate]
- Ryvarden, L. 2005. The genus *Inonotus*, A synopsis. Synopsis fungorum, Volume 21, Leif Ryvarden, Fungiflora A/S, Norway, 149 pp.
- Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A. and White, M. M. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. *Proceedings of the National Academy of Sciences*, 109(16): 6241-6246. [CrossRef]
- Sharma, J. R., Das, K. and Mishra, D. 2013. The genus *Inonotus* and its related species in India. *Mycosphere*, 4(4): 809-818. [Click here]
- Sibounnavong, P., Cynthia, C. D., Kalaw, S. P., Reyes, R. G. and Soytong, K. 2008. Some species of macrofungi at Puncan, Carranglan, Nueva Ecija in the Philippines. *Journal* of Agricultural Technology, 4(2): 105-115.
- Sicoli, G. and Mannarino, D. 2017. *Inocutis tamaricis*, ospite "balneare" nel comune di Amantea (CS). *Rivista di Micologia*, 60(1): 71-78. [ResaerchGate]
- Singer, R. 1986. The Agaricales in Modern Taxonomy (4th ed.). Koenigstein Königstein in Taunus, Germany: Koeltz Scientific Books, 833 pp.
- Suliaman, S. Q., AL-Khesraji, T. O. and Abdullah, A. H. 2017. New records of basidiomycetous macrofugi from Kurdistan region-Northern Iraq. *African Journal of Plant Science*, 11(6): 209-219. [CrossRef]
- Tamura, K., Stecher, G., Peterson, D., Filipski A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis, version 6.0. *Molecular Biology and Evolution*, 30(12): 2725-2729. [Click here]
- Toma, F. M., Ismael, H.M. and FaqiAbdulla, N. Q. 2013. Survey and Identification of Mushrooms in Erbil Governorate. *Research Journal of Environmental and Earth Sciences* 5(5): 262-266. [ResearchGate]
- White, T. J., Bruns, T., Lee, S. J. W. T. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In*: book: PCR protocols: a guide to methods and applications, 18(1): 315-322.

Suliaman, S. Q.

- Wu, S. H., Chang, C. C., Wei, C. L., Jiang, G. Z. and Cui, B. K. 2019. Sanghuangporus toxicodendri sp. nov. (Hymenochaetales, Basidiomycota) from China. MycoKeys, 57: 101-11. [CrossRef]
- Zhou, L. W., Vlasák, J., Decock, C., Assefa, A., Stenlid, J., Abate, D. and Dai, Y. C. 2016. Global diversity and taxonomy of the *Inonotus linteus* complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., *Tropicoporus excentrodendri* and *T. guanacastensis* gen. et spp. nov., and 17 new combinations. *Fungal Diversity*, 77: 335-347. [Click here]

Bull. Iraq nat. Hist. Mus. (2023) 17(4): 655-668.

استنادا الى Macrofungi تسجيل جديد في العراق لنوعين من الفطريات الكبيرة Macrofungi استنادا الى التشخيص المظهري والجزيئي

سارا قحطان سليمان

قسم علوم الحياة، كلية العلوم، جامعة تكريت، تكريت، العراق

تأريخ الاستلام: 2023/5/15، تأريخ القبول: 2023/8/3، تأريخ النشر: 2023/12/20

الخلاصة

أجريت هذه الدراسة بمدينة العلم / محافظة صلاح الدين لتحديد تنوع الفطريات Inocutis tamaricis فيها. أظهرت نتائج الدراسة الميدانية تسجيل جديد للنوعين Hymenochaetales, Basidiomycota) (Pat) Fiasson & Niemelä, 1984) و (Hymenochaetales, Basidiomycota) (Pat) Fiasson & Niemelä, 1984 فول مرة *Melanoleuca castaneofusca* Contu, 1998 (Basidiomycota, Agaricales) في العراق . اذ تم تشخيصهما استنادا الى الصفات المظهرية والجزيئية والبيئية. هذا وتضمن التشخيص الجزيئي اعتماد الجين ITS والذي جاءت نتائجه مؤكدة لنتائج كل من الفحوصات المظهرية والبيئية، فضلا عن تسجيل العينات في بنك الجينات العالمي NCBI ضمن الرقمين الدولية MZ334407.1 و MZ334407.1 للنوعين MCB314.1 و