

Journal Homepage: https://wjcm.uowasit.edu.iq/index.php/WJCM e-ISSN: 2788-5879 p-ISSN: 2788-5879

Jordan-Lie Inner Ideals of the Orthogonal Simple Lie Algebras

Falah Saad Kareem^{1,*®} and Hasan M. Shlaka¹

¹Computer science and Maths, University of Kufa, Iraq

*Corresponding Author: Falah Saad Kareem

DOI: https://doi.org/10.31185/wjcm.Vol1.Iss2.39 Received: February 2022; Accepted: April 2022; Available online: June 2022

ABSTRACT: Let *A* be an associative algebra over a field *F* of any characteristic with involution * and let $K = skew(A) = \{a \in A | a^* = -a\}$ be its corresponding sub-algebra under the Lie product [a, b] = ab - ba for all $a, b \in A$. If A = EndV for some finite dimensional vector space over *F* and * is an adjoint involution with a symmetric nonalternating bilinear form on *V*, then * is said to be orthogonal. In this paper, Jordan-Lie inner ideals of the orthogonal Lie algebras were defined, considered, studied, and classified. Some examples and results were provided. It is proved that every Jordan-Lie inner ideals of the orthogonal Lie algebras is either $B = eKe^*$ or *B* is a type one point space.

Keywords: paper publishing, journals, styles, howto

1. INTRODUCTION

Let *A* be a finite dimensional associative algebra over a field *F*. Recall that *A* becomes a Lie algebra $A^{(-)}$ under the Lie bracket defined by (x, y] = xy - yx for all $x, y \in A$. Suppose that *A* has an involution *. Recall that an involution is a linear transformation * of an algebra *A* satisfying $(a^*)^* = a$ and $(ab)^* = b^*a^*$ for all $a, b \in A$. We denote by $K = skew(A) = (a^* = -a|a \in A)$ to be the vector space of the skew symmetric elements of *A*. Recall that *K* is a Lie algebra with the Lie bracket defined by (x, y] = xy - yx for all $x, y \in K$. If the characteristic of *F* is non-equal 2, then *K* can be represented in the form:

$$K = skew(A, *) = \{a - a^* | a \in A\}.$$
(1.1)

Benkart was the first to introduce an inner ideal of a Lie algebra. She defined it as a subspace *B* of a Lie *L* such that the space [*B*, [*B*, *L*]] is a subset of *B*[1]. She highlighted the relationship between inner ideals and an *ad*-nilpotent elements [2]. Recall that an adjoint map $ad : L \rightarrow gl(L)$ is a representation from a Lie *L* into its general linear algebra defined by $ad(l) = ad_l$, where $ad_l : L \rightarrow L$ is a linear transformation defined by $ad_l(x) = [l, x]$ for all $x \in L$. By restricting *ad*-nilpotent elements, one can classify non-classical from classical simple Lie algebras over algebraically closed fields of characteristic $\neq 2, 3$. Therefore, inner ideals play a role in classifying these algebras. Commutative inner ideals have proved to be a useful tool for classifying both finite and infinite-dimensional simple Lie algebras. It is proved in [3] that inner ideals play a role similar to one-sided ideal in associative algebras and can be used to construct Artinian structure theory for Lie algebras. Inner ideals is an essential tool in the classification of Lie algebras. (see [4] and [3]). Inner ideals of classical type Lie sub-algebras of associative(simple) rings were studied by Benkart and Fernandez Lopez (see [5]). Baranov and Shlaka [6] in 2019 classified Jordan-Lie inner ideals of the Lie sub-algebras of finite dimensional associative algebras. An inner ideal *B* of $A^{(k)}$ or $K^{(k)}$ is said to be Jordan-Lie if $B^2 = 0$. In recent paper, Shlaka and Mousa [7], studied Jordan-Lie inner ideals of the Lie algebras of positive characteristic. Jordan-Lie inner ideals of the Case when *A* is simple with the symplectic involution over an algebraically closed fields of positive characteristic were also been studied by Kareem and Shlaka in [8].

In this paper, we study inner ideals of the orthogonal Lie algebras. We start with some preliminaries in section 2. Section 3 is devoted to proof some results about Jordan-Lie inner ideals of the orthogonal Lie algebras and point space.

2. PRELIMINARIES

Throughout this paper, *F* is a field (algebraically closed), $p \ge 0$ is the characteristic of *F*, *V* is a vector space (finite dimensional over *F*), End(V) is the endomorphism algebra, so(V) is the orthogonal Lie algebra, *A* is an associative algebra (finite dimensional over *F*) with an involution *, K = skew(A, *) is the Lie subalgebra of *A* defined as (1.1), *L* is a Lie algebra (finite dimensional over *F*), $M_n(F)$ is the matrix algebra consisting of all $n \times n$ -matrices and $so_n(F)$ is the orthogonal Lie algebra of matrix.

Recall that an involution * of A is a linear transformation of A such that $(a^*)^* = a$ and $(ab)^* = b^*a^*$ for any $a, b \in A$ [9]. Note that * does not required to be F-linear. On the other hand, it is obvious that * maps the center Z into it self. Since the restriction of * over F is an automorphism of order less than or equal to 2, it maps every sub-field of Z into itself. Therefore $F^* = F$. Here we have two possibilities which are either * is F-linear or not. Thus, we have the following definition.

Definition 2.1 [13, 7.2] An involution is said to be of the first kind in case that * is *F*-linear, that is the restriction of * relative to *F* is the identity. Otherwise, it is called of the second kind.

Remark 2.2 In this paper, we consider involution of the first kind only.

Definition 2.3 Let *B* be a subspace of *L*. Then *B* is said to be

- 1. [1] An inner ideal if $(B, (B, L]] \subseteq B$.
- 2. [1] A commutative inner ideal if *B* is an inner ideal such that [B, B] = 0.

3. [6] A Jordan-Lie inner ideal (or simply, *J*-Lie) if L = skew(A) and *B* is an inner ideal such that $B^2 = 0$.

Example 2.4 Consider the associative algebra $A = M_n(F)$. Then $\{e_{ij} | 1 \le i, j \le n\}$ form a basis of A consisting of matrix units, where e_{ij} is the $n \times n$ -matrix with the entry 1 in the *ij*th position and zero elsewhere. Thus, the Lie algebra

 $K = skew(A) = so_{2n}(F)$ has the following basis $\{a_{ij}, b_{ij}, c_{ij} | 1 \le i, j \le n\}$, where

$$a_{ij} = (e_{ij} - e_{n+j,n+i}),$$
 $b_{ij} = (e_{i,n+j} - e_{j,n+i})$ and $c_{ij} = (e_{n+i,j} - e_{n+j,i})$

Then $B = Fa_{12}$ is *J*-Lie of *skew*(*A*,*). Indeed, for any $x, y \in B$, we have $x = \alpha a_{12} = \alpha (e_{12} - e_{n+2,n+1}), y = \beta a_{12} = \beta (e_{12} - e_{n+2,n+1})$. Since

$$x.y = \alpha(e_{12} - e_{n+2,n+1}\beta(e_{12} - e_{n+2,n+1} = 0,$$

 $B^2 = 0$. It remain to show that $[x, [y, l]] \in B$ for each $l \in K$. Let $l = \sum_{i,j=1}^{n} \zeta_{ij} a_{ij} + \sum_{i,j=1}^{n} \eta_{ij} b_{i,n+j} + \sum_{i,j=1}^{n} \gamma_{ij} c_{ij} \in K$. Then

$$xly = \alpha(e_{12} - e_{n+2,n+1})(\sum_{i,j=1}^{n} \zeta_{ij}a_{ij} + \sum_{i,j=1}^{n} \eta_{ij}b_{ij} + \sum_{i,j=1}^{n} \gamma_{ij}c_{ij})y$$

$$= \alpha \sum_{j=1}^{n} (\zeta_{2j} e_{1j} + \eta_{2j} e_{1,n+j} - \eta_{j2} e_{1,n+j} + \zeta_{j1} e_{n+2,n+j} - \gamma_{1j} e_{n+2,j} + \gamma_{j1} e_{n+2,j})$$

$$=\alpha\beta(\zeta_{21}e_{12}-\eta_{22}e_{1,n+1}-\eta_{22}e_{1,n+1}-\zeta_{21}e_{n+2,n+1}-\gamma_{11}e_{n+2,2}+\gamma_{11}e_{n+2,2})$$

 $= \alpha \beta \zeta_{21}(e_{12} - e_{n+2,n+1}) = \alpha \beta \zeta_{21} a_{12} \in Fa_{12} = B.$ and

$$ylx = \beta(e_{12} - e_{n+2,n+1})(\sum_{i,j=1}^{n} \zeta_{ij}a_{ij} + \sum_{i,j=1}^{n} \eta_{ij}b_{ij} + \sum_{i,j=1}^{n} \gamma_{ij}c_{ij})x$$

$$=\beta \sum_{j=1}^{n} (\zeta_{2j}e_{1j} + \eta_{2j}e_{1,n+j} - \eta_{j2}e_{1,n+j} + \zeta_{j1}e_{n+2,n+j} - \gamma_{1j}e_{n+2,j} + \gamma_{j1}e_{n+2,j})x$$

 $= \alpha \beta (\zeta_{21} e_{12} - \eta_{22} e_{1,n+1} - \eta_{22} e_{1,n+1} - \zeta_{21} e_{n+2,n+1} - \gamma_{11} e_{n+2,2} + \gamma_{11} e_{n+2,2})$

 $= \alpha \beta \zeta_{21}(e_{12} - e_{n+2,n+1}) = \alpha \beta \zeta_{21} a_{12} \in Fa_{12} = B.$

Therefore, $[x, [y, l]] = xyl - xly - ylx + lyx = -xly - ylx \in B$, as required.

Definition 2.5 [10] A subspace *P* of *L* is said to be point space if (P, P] = 0 and $ad_x^2(L) = Fx$ for every non zero element $x \in P$.

Example 2.6 Let $K = so_{2n+1}(F)$, If n = 1, then $K = so_{3}(F) = span\{ \begin{pmatrix} 0 & \alpha_{1} & \alpha_{2} \\ -\alpha_{2} & \alpha_{3} & 0 \\ -\alpha_{1} & 0 & -\alpha_{3} \end{pmatrix} | \alpha_{1}, \alpha_{2}, \alpha_{3} \in F \}$ has a basis are $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}, b_2 = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix}, b_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix}$ 0 1 0 ${b_1 =$ l0 0 −1 ĺ -1 0 0 0 0 0 Then , we need to show that b_1 , is a point space. For $x \in Fb_1$ we have Then, we need to show that v_1 , is a point space I is $x_1 = \begin{pmatrix} 0 & \alpha_1 & \alpha_2 \\ 0 & 0 & 0 \\ \gamma & 0 & 0 \end{pmatrix}$ for some $\zeta \in F$. Let $l = \begin{pmatrix} 0 & \alpha_1 & \alpha_2 \\ -\alpha_2 & \alpha_3 & 0 \\ -\alpha_1 & 0 & -\alpha_3 \end{pmatrix}$ $\in so_3(F).$ Then, $ad_x^2(L) = (x, (x, l)]$ $-\zeta \alpha_2 \quad \zeta \alpha_3$ 0 $-\zeta \alpha_2$ $-\zeta \alpha_2 \quad 0 \quad]$ 0 0 = [x,0 0 $-\zeta \alpha_1 - \zeta \alpha_2$ $\zeta \alpha_3$ ζ 0) (0 $\zeta \alpha_3 = 0$ $\begin{bmatrix} 0 & 0 & 0 \\ -\zeta & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \zeta \alpha_2 & 0 \\ -\zeta \alpha_3 & 0 & -\zeta \alpha_2 \end{bmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} =$ (0 $\zeta^2 \alpha_2 = 0$ 0 0 0 0 0 0 0 $\begin{pmatrix} 0 & -\zeta^2 \alpha_3 & 0 \end{pmatrix}$ $\left(\zeta^2 \alpha_2 - \zeta^2 \alpha_3 \right) \left(-\zeta^2 \alpha_2 \right)$ Therefore, Fb_1 and also Fb_2 is a point space. while Fb_2 is not point space. We will need the following lemma. For the proof see [11].

Lemma 2.7 [11] Let *B* be an *I*-ideal of *L*. If $B^2 = 0$, then

(1) $b_1lb_2 + b_2lb_1 \in B$ for all $b_1, b_2 \in B$ and $l \in L$.

(2) $blb \in B$ for all $b \in B$ and $l \in L$.

Definition 2.8 [9] Let ψ : $V \times V \to F$ be a nondegenerate symmetric bilinear form. For each $x \in EndV$ define x^* by the following property $\psi(x^*(v), w) = \psi(v, x(w))$ for all $v, w \in V$. Then the map $* : EndV \to EndV$ is an involution of the algebra EndV, called the adjoint involution with respect to ψ .

Theorem 2.9 [10, Ch.1, introduction] The map $\psi \mapsto *$ induced one to one correspondence between equivalence classes of nondegenerate bilinear forms on *V* modulo multiplication by a factor in F^{\times} and involution (of first kind) on *EndV*.

Definition 2.10 [9] Let * be an involution of *EndV*. We say that * is orthogonal if it is adjoint to a symmetric nonalternating bilinear form on *V*.

Definition 2.11 [2] Let *A* be an associative algebra with involution * over a field *F* and let $a \in A$. Then we define the trace of *a* by $\tau(a) = a - a^*$.

3. JORDAN LIE INNER IDEAL OF THE ORTHOGONAL LIE ALGEBRAS

Theorem 3.1 Suppose that A is simple with involution and $p \neq 2$. Let $x \in skew(A, *)$. Then x = xyx for some $y \in skew(A, *)$.

Proof. We have $x^* = -x$. Since *A* is V-Neumann algebra, x = xax for some $a \in A$. Put $y = \frac{1}{2}(a - a^*) \in skew(A, *)$. Then $xyx = \frac{1}{2}x(a - a^*)x = \frac{1}{2}(xax - xa^*x) = \frac{1}{2}(x - (xax)^*) = \frac{1}{2}(x - x^*) = \frac{1}{2}(2x) = x$

Lemma 3.2 Let $eKe^* \subseteq B$ be a subspace of K = skew(A, *) such that $e \in BK$ and $e^* \in KB$. If e' be an idempotent in A such that ee' = e'e = 0, then $e'Be'^* \subseteq B$.

Proof. If $e'Be'^* = 0$. Then $e'Be'^* \subseteq B$. Suppose now that $e'Be'^* \neq 0$. Then $\exists a \in B$ such that $e'ae'^* \neq 0$.

 $e'ae'^* = (1 - e)a(1 - e^*) = a - (ea + ae^*) + eae^*$

As $e \in BK$, $\exists b_1 \in B$ and $k_1 \in K$ such that $e = b_1k_1$. This implies that

 $e^* = (b_1k_1)^* = k_1^*b^* = k_1b_1$

We have $a \in B$ and $eae^* \in eKe^* \subseteq B$. By Lemma 2.7, $ea + ae^* = b_1k_1a + ak_1b_1 \in B$ Therefore, $e'ae'^* \in B$, as required. Recall that A is simple, so A can be identified with End(V) for some vector space V. We have the following proposition. **Proposition 3.3** Let $\psi: V \times V \to F$ be a non-singular form and let * be an adjoint involution of A = End(V). Let e, e' be idempotent in A such that ee' = e'e = 0. Suppose that $eKe^* \neq 0$. Then the following hold For each $k \in K$ such that $eke^* \neq 0$, we have (1) $c = k + e' k e'^* \neq 0.$ (2) $e'Ke^* = 0.$ (3) $eKe^{'*} = 0.$ **Proof.** (1) Let $v \in V$ such that $\psi(v, eke^*(v)) \neq 0$. Such v exists because ψ is non-singular. We need to show that $\psi(e^{*}(v), ce^{*}(v) \neq 0$. Since ee' = 0, $\psi(e^*(v), ce^*(v)) = \psi(v, ece^*(v))$ $=\psi(v, e(k + e'ke'^{*})e^{*}(v))$ $=\psi(v, eke^{*}(v)) + \psi(v, ee^{'}ke^{'*}e^{*}(v))$ $=\psi(v, eke^*(v))\neq 0.$ (2) Let $w \in e'Ke^*$. Then there is $k \in K$ such that $w = e'ke^*$. For each $v \in V$ we have $\psi(e^{*}(v), we^{*}(v)) = \psi(v, ewe^{*}(v)) = \psi(v, ee^{'}ke^{*}e^{*}(v)) = \psi(v, 0) = 0,$ so $w = e' K e^* = 0$. (3) Let $h \in eKe^{\prime *}$. Then there is $k \in K$ such that $h = eke^{\prime *}$. For each $v \in V$ we have $\psi(e^*(v), he^*(v)) = \psi(v, ehe^*(v)) = \psi(v, e(eke^{\prime *})e^*(v)) = \psi(v, 0) = 0.$ Therefore, $h = eke^{\prime *} = 0$. The idea of the following lemma comes from McCrimmon's paper [2]. **Lemma 3.4** Let A be an associative algebra with involution * over a field F. Suppose that L = skew(A, *). Then the trace τ that defined above by $\tau(a) = a - a^*$ has the following properties: (1) τ is linear. (2) $\tau(x) \in L$ for any $x \in L$. (3) $x\tau(a) x = \tau(xax)$ For any $a \in A$ and $x \in L$. (4) $a\tau(b) + \tau(b) a^* = \tau(ab) + \tau(ba^*)$ For any $a, b \in A$. (5) $\tau(a) x \tau(a) = \tau(axa) - axa^* - a^*xa$ For any $a \in A$ and $x \in L$. **Proof.** (1) Suppose that $a, b \in A$ and $\alpha \in F$. Then $\tau(\alpha a) = \alpha a - (\alpha a)^* = \alpha (a - a^*) = \alpha \tau(a);$ $\tau(a+b) = (a+b) - (a+b)^* = (a-a^*) + (b-b^*) = \tau(a) + \tau(b).$ Thus, τ is linear.

(2) Let $a \in A$ Then $(\tau(a))^* = (a - a^*)^* = a^* - a = -(a - a^*) = -\tau(a).$ Therefore, $\tau(a) \in L$. (3) Let $a \in A$ and $x \in L$ Then we have $x\tau(a) x = x(a - a^*) x = xax - xa^*x = xax - (x^*ax^*)^* = \tau(xax).$ (4) Let $a, b \in A$ Then

$$a\tau(b) + \tau(b)a^* = a(b - b^*) + (b - b^*)a^* = ab - ab^* + ba^* - b^*a^*$$

 $= (ab - b^*a^*) + (ba^* - ab^*)$ = $(ab - (ab)^*) + (ba^* - (ba^*)^*) = \tau (ab) + \tau (ba^*)$ (5) For any $a \in A$ and $x \in L$ we have $\tau (a) x\tau (a) = (a - a^*) x (a - a^*) = axa + a^*xa^* - axa^* - a^*xa$ = $(axa - (axa)^*) - axa^* - a^*xa = \tau (axa) - axa^* - a^*xa$.

Lemma 3.5 Suppose that $p \neq 2, 3$ and K = skew(EndV, *). Then the following hold:

(1) If $\psi(Kv, w) = 0$ for some nonzero vectors $v, w \in V$, then $w \in Fv$. Consequently $Kv = v^{\perp}$ for any nonzero vector $v \in V$.

(2) If U is a subspace such that dimU > 1, then KU = V.

(3) A transformation $x \in K$ satisfies $xKx^* = 0$ if and only if $rank(x) \le 1$.

Proof. (1) Suppose that $v, w \in V$ be nonzero vectors such that $\psi(Kv, w) = 0$. For the contrary we assume that $w \notin Kv$. Then we could find a linear transformation $a \in A$ such that a(w) = 0 and $\psi(a(v), w) \neq 0$. Note that $a - a^* \in K$. Thus,

 $0 \neq \psi(a(v), w) = \psi(a(v), w) - 0 = \psi(a(v), w) - \psi(v, a(w))$ = $\psi(a(v), w) - \psi(a^*(v), w) = \psi((a - a^*)(v), w) = 0,$

a contradiction Therefore $w \in Kv$ Consequently, for any nonzero vector v we have $v^{\perp} = Kv$

(2) Suppose that U be a subspace of V such that dimU > 1 Then

 $KU = \sum_{w \in U} Kw = \sum_{w \in U} w^{\perp} = V$

That is, any w^{\perp} has co-dimensional 1. Thus, if $w_1^{\perp} = w_2^{\perp}$. Then $w_1 \in Kw_2$. Hence any two independent vectors w_i^{\perp} will span all V.

(3) If $x^*Kx = 0$ Then

 $0 = \psi(x^*Kx(v), v) = \psi(Kx(v), x(v)) \quad for \ all \ v \in V.$

This implies $K(x(V)) \neq V$, so by (2), we get that $dim(x(V)) \leq 1$.

Theorem 3.6 Let e, e', f be an idempotent in A = EndV such that ee' = e'e = 0 and $e^*e = 0$. Let $e^*f = fe^* = 0$ and $e^{*'}f = fe^{*'} = f$. If $B = eKe'^*$ then B is a J-Lie.

Proof. Let $w = eke^{i*} \neq 0$, by Theorem 3.1, w = wz'w for some $z' \in K$. put $z = e^{i*}z'e$. Then $wzw = w(e^{'*}z^{'}e)w = eke^{'*}e^{'*}z^{'}eeke^{'*} = eke^{'*}z^{'}eke^{'*} = wz^{'}w$ Let $f = zw = (e^{i*}z^{i}e)(eke^{i*}) = e^{i*}z^{i}eke^{i*}$. Then $e^{*}f = e^{*}e^{'*}z^{'}eke^{'*} = 0$ and $fe^* = e^{i^*z'}eke^{i^*}e^* = (1 - e^*)z'ek(1 - e^*)e^* = 0$ $e^{i*}f = e^{i*}e^{i*}z'eke^{i*} = e^{i*}z'eke^{i*} = f$ Also $fe^{'*} = e^{'*}z^{'}eke^{'*}e^{'*} = f$ By Lemma 3.5 (3), since rank(f) = 1, so $rank(f^*) = 1$. Therefore, $f^*Kf = (e^{i*}z^{i}eke^{i*})^*K(e^{i*}z^{i}eke^{i*}) = e^{i}k^*e^*z^{i*}e^{i}Ke^{i*}z^{i}eke^{i*} = 0$ and $fKf^* = e^{i*z'}eke^{i*}Ke^{i}k^*e^*z^{i*}e^{i} = 0$ Moreover, for any $u \in Ker(w)$, f(u) = zw(u) = 0Therefore, $Ker(w) \subseteq Ker(f)$, both have co-dimension. Then

$$Ker(w) = Ker(f) = Ker(w')$$

Recall f = zw is idempotent of rank 1. Let $c \in Im(w')$ such that $c \notin Ker(w')$. Then $w'f(c) \neq 0$ (if w'f(c) = 0, then either $c \in Ker(f)$ or $c \in Ker(w')$ this is a contradiction) If $w'f(c) \neq 0$, then $c \in Im(w'f)$. Since $c \in Im(w')$, so $c \in Im(w'f)$ Therefore, $Im(w') \subseteq Im(w'f)$. both have co-dimension, so Im(w') = Im(w'f)Since Ker(f) = Ker(w'), so Ker(w'f) = Ker(w')Therefore, w'f = w' for any $w' \in eBe'^*$. Next, we claim that $B \subseteq B' = eKe^* + \tau(ekf)$, for any $d \in B$ we have $d = ede^* + ede'^* + e'de^* + e'de'^*$

 $= ede^* + ede^{'*} - (ede^{'*})^*$

$$= ede^* + \tau(ede^{\prime *})$$

$$= ede^* + \tau(w')$$

Since $w'(f) = w' \in eBe'^*$, we have that

 $K = eke^* + \tau(w'f) = ede^* + \tau(ede'^*f)$

As $e^{\prime *}f = f$, so $K = eke^* + \tau(edf) \in eKe^* + \tau(eKf)$

put
$$B' = eKe^* + \tau(eKf)$$
. Then
 $(e+f^*)K(e+f^*)^* = (e+f^*)K(e^* + f)$
 $= eKe^* + eKf + f^*Ke^* + f^*Kf$
 $= eKe^* + eKf - (eKf)^*$
 $= eKe^* + \tau(eKf)$
Let $g = e + f^*$, then
 $g^2 = (e+e^*z'eke^*)(e+e'ez'eke^*)$
 $= e+e^*z'eke^* = g$
and $g^*g = (e^* + f)(e+f^*)$
 $= (e^* + e^*z'eke^*)(e+e'ke^*z'e') = 0$
Now, let $g_{k_{1}}^{*}g_{k_{2}}^{*}g_{k_{2}}^{*}g_{k_{1}}^{*}g_{k_{2}}^{*}g_{k_{1}}^{*}g_{k_{2}}^{*}g_{k_{1}}g^*$
 $= ek_{k_{1}}^{*}g_{k_{2}}^{*}g_{k_{2}}g_{k_{1}}^{*}g_{k_{2}}^{*}g_{k_{2}}g_{k_{1}}g^*$
 $= ek_{k_{1}}^{*}g_{k_{2}}g_{k_{2}}g_{k_{1}}^{*}g_{k_{2}}g_{k_{2}}g_{k_{1}}g^*$
 $= ek_{k_{1}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}^{*}g_{k_{2}}g_{k_{2}}g_{k_{1}}g^*$
 $= -2g_{k_{1}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{2}}g_{k_{1}}g^*$
 $= -2g_{k_{1}}g_{k_{2}}g_$

Then

 $eKe^{*}(v_{0}^{\perp}) = eK(u_{0}) = e(u_{0}^{\perp})$ for all $u \in u_{0}^{\perp}$, we have $e(u) \in (v_{0}^{\perp})^{\perp} = Fv_{0}$, because $e(u) \in e(u_{0}^{\perp}) = eKe^{*}(v_{0}^{\perp}) \subseteq B(v_{0}^{\perp}) \subseteq K(v_{0}^{\perp}) = (v_{0}^{\perp})^{\perp} = Fv_{0}$, so $u_{0}^{\perp} = e^{'}(V) + Fv_{0}$ Thus,

$$eKe^*(u_0) = e(u_0^{\perp}) = e(e'(V) + Fv_0) = Fv_0.$$
(3.3)

But for any non-zero $r \in u_0^{\perp}$ and $\alpha \in F$, we have $e^*(r) = \alpha u_0$

$$\alpha e^*(u_0) = e^*(\alpha u_0) = e^*(e^*(r)) = e^*(r) = \alpha u_0.$$

so $e^*(u_0) = u_0$. Thus, for any $y = ey'e^* \in eKe^*$, we can assume that $y(u_0) = 0$ Let $y(V) \subseteq u_0^{\perp}$, by equation (3.3),

$$y(V) = ey'e^*(V) = e(ey'e^*(V)) = e(y(V)) \subseteq e(u_0^{\perp}) = Fv_0$$

By Lemma 3.5 (3), if *y* has rank 1, then $y^*Ky = yKy = 0$. By Theorem 3.1, $\exists 0 \neq l \in K$ such that $y = yly \in yKy = 0$. Then, $y \in eKe^* \subseteq B$. Therefore $y \in Fb$, but $eKe^* = bKb$ so $y \in bKb$. Thus, if $bKb \neq Fb$, then $eKe^*K(v_0) = e(V)$, as required. (2) for any $l,l^{\prime} \in K$, we have ele^\ast\in eKe^\ast\subseteq B Let $b'' = -[ele^*, [b', l']] \in [B, [B, K]] \subseteq B$ $b' \in B$ is the same b' that satisfies $w = eb'e^{*'} \neq 0$. Since $b'' = -[ele^*, [b', l']] = -[ele^*, b'l' - l'b']$ $= -(ele^*b'l' - b'l'ele^* - ele^*l'b' + l'b'ele^*)$ $eb''e'^* = -e(ele^*b'l' - b'l'ele^* - ele^*l'b' + l'b'ele^*)e'^*$ $= -eele^{*}b'l'e'^{*} + eb'l'ele^{*}e'^{*} + eele^{*}l'b'e'^{*} - el'b'ele^{*}e'^{*}$ $= -ele^*b'l'e'^* + ele^*l'b'e'^*$ and $ele^*b'le'^* = bxlxbb'le'^* = 0$. As (bb' = 0) $eb''e'^* = ele^*l'b'e'^* = ele^*l'(e + e')b'e'^*$ $= ele^{*}l'eb'e'^{*} + ele^{*}l'(e'b'e'^{*})$ By using equation , $(e'b'e'^* = 0)$, we have $eb''e'^* = ele^*l'(eb'e'^*)$. Since $w = eb'e'^*$, so $eb''e'^* = ele^*l'w$ for any $l, l' \in K$. Let $v \in V$. Then $eb''e^{i*}(v) = ele^{i*}l'w(v) = ele^{i*}l'(v_0)$ Since $bKb \neq Fb$, so we must have $eBe^{'*}(V) = eKe^{*}K(v_{0})$ Since $eKe^*K(v_0) = e(V)$, we get that $eBe^{'*}(V) = e(V)$ as required.

Theorem 3.8 Let e, f be an idempotent in A = EndV and let B be a J-Lie of K = skew(A, *). Suppose that bKb = Fb for all $b \in B$. Then B is a type one point space.

Proof. Suppose that bKb = Fb. we are going to prove that *B* is a type one point space Recall that $B \subseteq B' = eKe^* + \tau(eKf)$, so

$$B' = eKe^* + \tau(eKf) = bxKxb + \tau(eKf)$$

$$= bKb + \tau(eKf) \tag{3.4}$$

Since bKb = Fb, so $B' = Fb + \tau(eKf)$ for any $c \in B'$, there exist $\lambda \in F$ and $l \in K$ such that $c = \lambda b + \tau(elf)$ Then $\forall y \in K$, we have $cyc = (\lambda b + \tau(elf))y(\lambda b + \tau(elf))$ $= \lambda^2 byb + \lambda by\tau(elf) + \lambda \tau(elf)yb + \tau(elf)y\tau(elf)$ $= \lambda^2 byb + \lambda(by)\tau(elf) + \lambda \tau(elf)(by)^* + \tau(elf)y\tau(elf)$ By Lemma 3.4 (3), $cyc = \lambda^2 byb + \lambda \tau(byelf) + \lambda \tau(elf(by)^*)$ $+ \tau(elfyelf) - elfy(elf)^* - (elf)^*yelf$ $\lambda^2 byb + \lambda \tau(byelf) + \lambda \tau(elfyb) + \tau(elfyelf) - elfyf^*l^*e^* - f^*l^*e^*yelf$ Since $fKf^* = f^*Kf = 0$.

$$cyc = \lambda^2 byb + \lambda \tau (byelf) + \lambda \tau (elfyb) + \tau (elfyelf)$$
(3.5)

we need to calculate each term. Since bKb = Fb, so

$$byb = \alpha b \tag{3.6}$$

$$\tau(byelf) = \tau(bybxlf) = \tau(\alpha bxlf) = \tau(\alpha(elf))$$

$$= \alpha \tau(elf) \tag{3.7}$$

for the third one we have

 $elfyb = bxlfyb \in bAb$ Since $\tau(a) \in L$ for any $a \in A, \tau(elfyb) \in K$, then $b\tau(xlfy)b \in bKb \subseteq B$. By Lemma 3.5 (3),

$$\tau(elfyb) = \tau(bxlfyb) = b\tau(xlfy)b = \beta b$$
(3.8)

29

for some $\beta \in F$ for the four one we have elfyelf = elfybxlf = (elf)yb(xlf) = 0Since $f^*Lf = 0$, so $byf^*le^*xlf = 0$. Then

 $(elf)y(elf) = elfybxlf - byf^*le^*xlf$

 $= (elfyb - (elfyb)^*)xlf$

$$= \tau(elfyb)xlf$$

 $\beta b(xlf) = \beta elf$

$$\tau(elfyelf) = \beta\tau(elf)$$

(3.9)

Substituting equation 3.6, 3.7, 3.8 and 3.9 in 3.5, we get that

 $cyc = (\lambda^2 \alpha)b + (\lambda \alpha)\tau(elf) + (\lambda\beta)b + \beta\tau(elf)$

$$= (\lambda^2 \alpha + \lambda \beta)b + (\lambda \alpha + \beta)\tau(elf)$$

$$= (\lambda \alpha + \beta)c$$

Therefore, cKc = Fc, B' is a point space

since *B* is a maximal point space, so B = B'

Therefore, *B* is a type one point space.

Theorem 3.9 Suppose that *A* is simple with the orthogonal involution * defined on it. If $p \neq 2, 3$ and *A* is of dimensional greater than 16, Then every *J*-Lie *B* of (*K*, *K*] is of the form *eKe*^{*} or *B* is a type one point space. where *e* is an idempotent in *A* such that $e^*e = 0$.

Proof. Let $b \in B$, Then by Theorem 3.1, $\exists x \in K$ such that b = bxb. Let e = bx. Then $e^* = (bx)^* = x^*b^* = xb$, since *B* is *J*-Lie, $b^2 = 0$, so $e^*e = xbbx = 0$. By Lemma 3.2, $bKb \subseteq B$ Suppose that $bKb \subseteq B$ is maximal with the property. Since $bKb = bxbKbxb \subseteq bxKxb = eKe^*$; $eKe^* = bxKxb \subseteq bKb$, We have

 $eKe^* = bKb \subseteq B \tag{3.10}$

Next, we need to show that $B \subseteq eKe^*$

Let e' = 1 - e and $e'^* = (1 - e)^* = 1 - e^*$, we have

$$b = 1b1 = (e + e')b(e^* + e'^*) = ebe^* + ebe'^* + e'be^* + e'be'^*$$
(3.11)

First, we need to show that $e'Ke'^* = 0$

It remains to show that $e'Ke'^* = 0$. Assume to the contrary that $e'Ke'^* \neq 0$. Then $\exists c' \in K$ such that $z = e'c'e'^* \neq 0$. By Lemma 3.2, $e'Ke'^* \subseteq B$, so $z \in B$. Let $c = b + z \in B$. In the view of Lemma 3.3(1), we have $c \neq 0$

First, we claim that $bKb \subseteq cKc$. Since $c \in B$, by Lemma 2.7, $cKc \subseteq B$. Take any $y \in K$. Then $ce^*yec = (b + z)e^*ye(b + z)$

 $= be^*yeb + be^*yez + ze^*yeb + ze^*yez$ Since $ez = e(e^{'}c^{'}e^{'*}) = 0$ and $ze^* = (e^{'}c^{'}e^{'*})e^* = 0$, $ce^*yec = be^*yeb = bxbybxb = byb$ so $ce^*Kec = bKb$. As $ce^*Kec \subseteq cKc$, we get that

$$bKb = ce^* Kec \subseteq cKc \tag{3.12}$$

Next, we need to show that $zKz \subseteq cKc$. Take any $l \in K$, we have $ce^{i^*}le^i c = (b+z)e^{i^*}le^i (b+z)$

$$= be'^{*}le'b + be'^{*}le'z + ze'^{*}le'b + ze'^{*}le'z$$
(3.13)

By computing mutually each term, we get that

 $be^{'*}le^{'}b = b(1-e^{*})l(1-e)b = blb - bleb - be^{*}lb + be^{*}leb.$

$$= blb - blbxb - bxblb + bxblbxb = blb - blb - blb + blb = 0$$
(3.14)

$$be^{'*}le'z = b(1-e^*)l(1-e)z = blz - blez - be^*lz + be^*lez$$

$$= blz - bxblz = blz - blz = 0 \tag{3.15}$$

$$ze^{'*}le^{'}b = z(1-e^{*})l(1-e)b = zlb - zleb - ze^{*}lb + ze^{*}leb = zlb - zlb = 0$$
(3.16)

$$ze^{\prime *}le^{\prime} z = z(1-e^{*})l(1-e)z = zlz - zlez - ze^{*}lz + ze^{*}lez = zlz$$
(3.17)

By substituting equation 3.14, 3.15, 3.16 and 3.17 in 3.13, we get that $ce^{i^*}le^i c = zlz$. Since $l \in K$, by Lemma 3.2, $e^{i^*}le \in K$, so

$$zKz = ce^{'*}Ke^{'}c \subseteq cKc \tag{3.18}$$

Recall that $z = e'c'e'^* \in K$. By Theorem 3.1, $\exists k \in K$ such that $z = zkz \in zKz$. By equation 3.18, we get that $z \in zKz \subseteq cKc$. But $z \notin bKb \subseteq cKc$, a contradiction. Therefore,

$$e'Ke'^* = 0 (3.19)$$

Therefore, $e'be'^* = 0$. Now we have to consider to two cases depending on eKe'^* whether it is zero or not If $eKe'^* = 0$, then $(e'be^*)^* = eb^*e'^* = -ebe'^* \in eKe'^*$ substituting in equation (3.11), we get that $b = ebe^* + ebe'^* - ebe'^* + e'be'^*$ $= ebe^* \in eKe^*$ Therefore, $B = eKe^*$. Suppose now that $eKe'^* \neq 0$. Then $\exists k \in K$ such that $w = eke'^* \neq 0$. Since $w^*Kw = (eke'^*)^*K(eke'^*)$ $= e'k^*e^*Keke'^* \subseteq e'Ke'^* = 0$, By Lemma 3.5 (3), rank $w \leq 1$, so rank(w) = 0 or rank(w) = 1. Thus, rank(w) = 1 (because $w \neq 0$). Hence, dimw(V) must be one, fix any $v_0 \in V$ such that $w(V) = Fv_0$. Let $v \in V$ such that

$$w(v) = v_0.$$
 (3.20)

V = Im(w) + Ker(w)= Fv + Ker(w) Let w' = ele'* \epsilon eBe'* be a non-zero transformation. Then $0 = e'(l(e^*Ke)k + k(e^*Ke)l)e'^*$ = e' l(e^*Ke)ke'' + e' k(e^*Ke)le'*

 $= (e'le^*)K(eke'^*) + (e'ke^*)K(ele'^*)$ $= w'^{*}Kw + w^{*}Kw'$ If $u \in Ker(w)$, then $0 = \psi(0(v), u) = \psi((w'^*Kw + w^*Kw')(v), u)$ $=\psi(w^{'*}Kw(v), u) + \psi(w^{*}Kw^{'}(v), u)$ $=\psi(Kw(v), w'(u)) + \psi(Kw'(v), w(u))$ Since $u \in Ker(w)$, so w(u) = 0. $=\psi(Kw(v),w'(u))$ By Lemma 3.5 (1), $w'(u) \in Fv_0$. Now either w'(u) = 0 or $w'(u) \neq 0$ for all $u \in Ker(w)$ If w'(u) = 0 for all $u \in Ker(w)$, then $Ker(w) \subseteq Ker(w')$ But dim(w(v)) = dim(w'(v)) = 1, so Ker(w) = Ker(w')Suppose now that $w'(u) \neq 0$ for some $u \in Ker(w)$, then $Im(w') = Fv_0 \subseteq Im(w)$. Since both have dimension 1, so $Im(w') = Im(w) = Fv_0$. Then by Theorem 3.6, B' is a *J*-Lie. Now, we need to show that B = B', by Theorem 3.7, $e(V) = eKe^*K(v_0^{\perp})$ and

$$eBe'^{*}(V) = e(V)$$
 (3.21)

we claim that $eB'e'^{*}(V) \subseteq eBe'^{*}$ we have $B' = eKe^* + \tau(eKf)$ $eB'e^{'*} = e(eKe^* + \tau(eKf))e^{'*}$ $= eKe^{*}e^{'*} + eKfe^{'*} - (eKf)^{*}e^{'*}$ = $eKfe^{'*} - f^{*}Ke^{*}e^{'*} = eKfe^{'*}$ Since $e^*e^{\prime *} = 0$. Recall that $fe^{\prime *} = f$, $eB'e^* = eBf$ Let $elf \in eKf$ $elf(v) = elzw(v) = elz(v_0) \in eKK(v_0) = eK(v_0^{\perp}) = e(v_0) \in e(V)$ because $(w(v) = v_0)$. By equation (3.21), $e(V) = eBe'^*$ $elf(v) \in eBe^{'*}(V)$. Therefore $\exists w' \in eBe^{'*}$ such that elf(v) = w'(v). Since $V = Fv_0 + Ker(w)$ and Ker(f) = Ker(w) = Ker(w') for equation (3.1), and $w' \in eBe'^*$, for any $elf \in eKf = eB'e'^*$, there exist $w' \in eBe'^*$ such that $elf = w' \in eBe'^*$ Then $eB'e'^* \subseteq eBe'^*$ and $B' \subseteq B$. Therefore B' = B. There exist idempotent $(e + f^*)$ such that $B = (e + f^*)K(e + f^*)^*$. Now, when bKb = Fb, by Theorem 3.8, B' = B is a type one point space. Suppose that $Im(w') = Im(w) = Fv_0$ for any $w' \in eBe'^*$, we need to show that B is a type one point space Recall that $wzw = w.z = e^{i*}z'e$ Let $f = wz = eb'e'^*z'e$ Then $fe' = eb'e'^*z'e(1-e) = 0$ and $e'f = (1-e)eb'e'^*z'e = 0$ $f^{2} = (eb'e'^{*}z'e)(eb'e'^{*}z'e) = eb'e'^{*}z'e = f$ $ef = eeb'e'^*z'e = eb'e'^*z'e = f$ and $fe = eb'e'^*z'ee = f$ Since rank(f) = 1, so $rank(f^*) = 1$ Recall that $f^*Kf = fKf^* = 0$. we have Im(w) = Im(f)for any $w' \in eBe'^*$, we have Im(w) = Im(f) = Im(w')we have going to prove that there exist point space $B' = eKe^* + \tau(fKe^{\prime *})$ such that B = B'First, we claim that fw' = w' for any $w' \in eBe'^*$ Let $u \in Ker(w')$, then fw'(u) = 0so $Ker(w') \subseteq Ker(f(w'))$, therefore Ker(w') = Ker(f(w')) (co-dimension 1) Since Im(w') = Im(fw'), so fw' = w' for any $w' \in eBe'^*$. Second, we claim that $B \subseteq B' = eKe^* + \tau(fKe'^*)$

take $K \in B$, then $K = eKe^* + eKe^{'*} + e^{'}Ke^* + e^{'}Ke^{'*}$ $K = eKe^* + \tau(eKe^{\prime *})$ $K = eKe^* + \tau(w')$ Since fw' = w', so $K = eKe^* + \tau(feKe^{\prime *})$ because fe = f. For all $K \in B$, we have $K = eKe^* + \tau(fKe^{\prime *})$ $B \subseteq B' = eKe^* + \tau(fKe^{\prime *})$ Now, we claim that *B* is a point space, that is $bKb \neq Fb$. Then $eKe^*K(v_0) \subseteq eKe^{'*}(v_0) \subseteq fKe^{'*}(v) = Fv_0$ but $eKe^{'*}K(v_0) = e(V) \neq Fv_0$ because ranke(V) > 1. Finally, we claim that $B' = eKe^* + \tau(fKe^{\prime*})$ is point space By using equation (3.4), and our assume that bKb = Fb, we have $B' = eKe^* + \tau(fKe^{\prime *})$ $= bxKxb + \tau(fKe^{\prime *})$ $= bKb + \tau(fKe^{'*}) = Fb + \tau(fKe^{'*})$ for any $c' \in B'$, $\exists l \in K, \lambda \in F$ such that $c' = \lambda b + \tau (fle'^*)$ for all $y \in K$, we have $c'yc' = (\lambda b + \tau(fle'^*))y(\lambda b + \tau(fle'^*))$ $= \lambda^2 byb + \lambda by\tau(fle'^*) + \lambda\tau(fle'^*)yb + \tau(fle'^*)y(fle'^*)$ $= \lambda^2 byb + \lambda(by)\tau(fle^{\prime *}) + \lambda\tau(fle^{\prime *})(by)^* + \tau(fle^{\prime *})y\tau(fle^{\prime *})$ By Lemma 3.4 (3), $= \lambda^2 byb + \lambda \tau (byfle'^*) + \lambda \tau (fle'^*(by)^*) + \tau (fle'^*yfle'^*)$ $-fle'^{*}y(fle'^{*})^{*} - (fle'^{*})^{*}yfle'^{*}$ $= \lambda^2 byb + \lambda \tau(byfle'^*) + \lambda \tau(fle'^*yb) + \tau(fle'^*yfle'^*)$ $-fle'^{*}ye'l^{*}f^{*} - e'l^{*}f^{*}yfle'^{*}$ Since $fKf^* = f^*Kf = 0$ $(')^{2} = (1 - 1)^{-1}$ 01/10

$$c'yc' = \lambda^2 byb + \lambda\tau(byfle'^*) + \lambda\tau(fle'^*yb) + \tau(fle'^*yfle'^*)$$
(3.22)

we need to calculate each term Since bKb = Fb, so

$$byb = \alpha b \tag{3.23}$$

$$\tau(byfle^{'*}) = \tau(byefle^{'*}) = \tau(bybxfle^{'*}) = \tau(\alpha bxfle^{'*})$$

$$= \tau(\alpha(efle^{'*}) = \alpha\tau(efle^{'*})$$
(3.24)

For the third one we have

 $fle^{'*}yb = efle^{'*}yb = bxfle^{'*}yb \in bAb$ Since $\tau(a) \in L$ for any $a \in A$, so $\tau(xfle^{'*}y) \in K$, then $b\tau(xfle^{'*}y)b \in bKb \subseteq B$ By Lemma 3.5 (3),

$$\tau(fle'^*yb) = \tau(bxfle'^*yb) = b\tau(xfle'^*y)b = \beta b$$
(3.25)

Lastly, we have

fle'*yfle'* = fle'*yefle'* = fle'*ybxfle'*= (fle'*)yb(xfle'*) Since f*Lf = 0, so bye'lf*xfle'* = 0. Then (fle'*)y(efle'*) = fle'*ybxfle'* - bye'lf*xfle'* = (fle'*yb - (fle'*yb)*)xfle'* $= \tau(fle^{'*}yb)xfle^{'*} = \beta b(xfle^{'*})$

$$\implies \tau(fle^{'*}yfle^{'*}) = \beta\tau(fle^{'*})$$

Substituting equation 3.23, 3.24, 3.25 and 3.26 in equation 3.22. We get that $c'yc' = (\lambda^2 \alpha)b + (\alpha\lambda)\tau(efle'^*) + (\lambda\beta)b + \beta\tau(fle'^*)$

 $\begin{aligned} &= (\lambda^2 \alpha + \lambda \beta)b + (\alpha \lambda + \beta)\tau(fle') + (\lambda \beta)b + \beta t(fle') \\ &= (\lambda^2 \alpha + \lambda \beta)b + (\alpha \lambda + \beta)\tau(fle'*) \\ &= (\lambda \alpha + \beta)(\lambda b + \tau(fle'*)) \\ c'yc' &= (\lambda \alpha + \beta)c' \\ \end{aligned}$ Therefore, c'Kc' = Fc'B' is point space and $B \subseteq B'$ but B is maximal. Therefore B = B'B is a type one point space

4. CONCLUSION

Every Jordan-Lie inner ideals of the orthogonal Lie algebras is either $B = eKe^*$ or B is a type one point space. one can find an idempotent $e \in A$ such that this inner ideal can be written in the form eKe^* . We study the relationship between these algebras and their corresponding Lie ones. Also study Jordan-Lie inner ideals of these Lie algebras. proved that every Jordan-Lie inner ideal of the orthogonal Lie algebra of an associative algebra (finite dimensional) is generated by an idempotent $e \in A$ with the property $e^*e = 0$.

FUNDING

None

ACKNOWLEDGEMENT

None

CONFLICTS OF INTEREST

The author declares no conflict of interest.

REFERENCES

- [1] G. Benkart, "The Lie inner ideal structure of associative rings," Journal of Algebra, vol. 43, pp. 561–584, 1976.
- [2] G. Benkart, "On inner ideals and ad-nilpotent elements of Lie algebras," Trans. Amer. Math. Society, vol. 232, pp. 61–81, 1977.
- [3] A. Lopez, E. Garcea, and M. G. Lozano, "An Artinian theory for Lie algebras," Journal of Algebra, vol. 319, no. 3, pp. 938–951, 2008.
- [4] A. Lopez, E. Garcea, and M. G. Lozano, "The Jordan algebras of a Lie algebra," Journal of Algebra, vol. 308, no. 1, pp. 164–177, 2007.
- [5] G. Benkart and A. Lopez, "The Lie inner ideal structure of associative rings revisited," *Communications in Algebra*, vol. 37, no. 11, pp. 3833–3850, 2009.
- [6] A. A. Baranov and H. Shlaka, "Jordan-Lie inner ideals of Finite dimensional associative algebras," Journal of Pure and Applied Algebra, 2019.
- [7] M. Hasan, D. A. Shlaka, and Mousa, "Inner ideals of the Special Linear Lie algebras of Associative simple Finite Dimensional Algebras," *AIP Conference Proceedings*.
- [8] S. Falah, Kareem, M. Hasan, and Shlaka, "Inner Ideals of the symplectic simple Lie algebra," Journal of Physics: Conference Series.
- [9] M. Knus, The book of involutions. Providence, R.I: American Mathematical Society, 1998.
- [10] G. Benkart and A. F. Lopez, "The Lie inner ideal structure of associative rings revisited," Communications in Algebra, vol. 37, no. 11, pp. 3833– 3850, 2009.
- [11] M. Hasan, D. A. Shlaka, and Mousa, "Inner ideals of the Special Linear Lie algebras of Associative simple Finite Dimensional Algebras," *AIP Conference Proceedings*.
- [12] A. A. Baranov, "Classication of the direct limits of involution simple associative algebras and the corresponding dimension groups," *Journal of Algebra*, vol. 381, pp. 7395–7395, 2013.
- [13] W. Scharlau, "Quadratic and hermitian forms," vol. 270, Springer-Verlag, 1985.