

Journal Homepage: https://[wjcm.uowasit.edu.iq](https://wjcm.uowasit.edu.iq/index.php/WJCM)/index.php/WJCM e-ISSN: 2788-5879 p-ISSN: 2788-5879

Jordan-Lie Inner Ideals of the Orthogonal Simple Lie Algebras

Falah Saad Kareem^{1,[∗](email:falahsaad92@gmail.com)©} and Hasan M. Shlaka¹

¹Computer science and Maths, University of Kufa, Iraq

*Corresponding Author: Falah Saad Kareem

DOI: https://doi.org/10.31185/wjcm.Vol1.Iss2.39 Received: February 2022; Accepted: April 2022; Available online: June 2022

ABSTRACT: Let *A* be an associative algebra over a field *F* of any characteristic with involution ∗ and let *K* = $skew(A) = {a \in A | a^* = -a}$ be its corresponding sub-algebra under the Lie product $[a, b] = ab - ba$ for all $a, b \in A$.
If $A - EndV$ for some finite dimensional vector space over F and $*$ is an adjoint involution with a symmetric non-If *A* = *EndV* for some finite dimensional vector space over *F* and ∗ is an adjoint involution with a symmetric nonalternating bilinear form on *V*, then ∗ is said to be orthogonal. In this paper, Jordan-Lie inner ideals of the orthogonal Lie algebras were defined, considered, studied, and classified. Some examples and results were provided. It is proved that every Jordan-Lie inner ideals of the orthogonal Lie algebras is either $B = eKe^*$ or *B* is a type one point space.

Keywords: paper publishing, journals, styles, howto

1. INTRODUCTION

Let *A* be a finite dimensional associative algebra over a field *F*. Recall that *A* becomes a Lie algebra *A* (−) under the Lie bracket defined by $(x, y) = xy - yx$ for all $x, y \in A$. Suppose that *A* has an involution $*$. Recall that an involution is a linear transformation $*$ of an algebra *A* satisfying $(a^*)^* = a$ and $(ab)^* = b^*a^*$ for all $a, b \in$ is a linear transformation $*$ of an algebra *A* satisfying $(a^*)^* = a$ and $(ab)^* = b^*a^*$ for all $a, b \in A$. We denote by $K = skaw(4) - (a^* = -ala \in A)$ to be the vector space of the skew symmetric elements of 4. Recall that *K* is a $K = \text{skew}(A) = (a^* = -a|a \in A)$ to be the vector space of the skew symmetric elements of *A*. Recall that *K* is a Lie algebra with the Lie bracket defined by $(x, y] = xy - yx$ for all $x, y \in K$. If the characteristic of *F* is non-equal 2, then *K* can be represented in the form: represented in the form:

$$
K = skew(A, *) = \{a - a^* | a \in A\}.
$$
\n(1.1)

Benkart was the first to introduce an inner ideal of a Lie algebra. She defined it as a subspace *B* of a Lie *L* such that the space $[B, [B, L]]$ is a subset of $B[1]$ $B[1]$. She highlighted the relationship between inner ideals and an *ad*-nilpotent elements [\[2\]](#page-11-1). Recall that an adjoint map $ad: L \rightarrow gl(L)$ is a representation from a Lie L into its general linear algebra defined by $ad(l) = ad_l$, where $ad_l : L \to L$ is a linear transformation defined by $ad_l(x) = [l, x]$ for all $x \in L$. By restricting ad-
nilpotent elements, one can classify non-classical from classical simple Lie algebras over algebraically clos nilpotent elements, one can classify non-classical from classical simple Lie algebras over algebraically closed fields of characteristic $\neq 2,3$. Therefore, inner ideals play a role in classifying these algebras. Commutative inner ideals have proved to be a useful tool for classifying both finite and infinite-dimensional simple Lie algebras. It is proved in [\[3\]](#page-11-2) that inner ideals play a role similar to one-sided ideal in associative algebras and can be used to construct Artinian structure theory for Lie algebras. Inner ideals is an essential tool in the classification of Lie algebras. (see [\[4\]](#page-11-3) and [\[3\]](#page-11-2)). Inner ideals of classical type Lie sub-algebras of associative(simple) rings were studied by Benkart and Fernandez Lopez (see [\[5\]](#page-11-4)) . Baranov and Shlaka [\[6\]](#page-11-5) in 2019 classified Jordan-Lie inner ideals of the Lie sub-algebras of finite dimensional associative algebras. An inner ideal *B* of $A^{(k)}$ or $K^{(k)}$ is said to be Jordan-Lie if $B^2 = 0$. In recent paper, Shlaka and Mousa [\[7\]](#page-11-6), studied Jordan-Lie inner ideals *A* (*k*) in the case when *A* is simple over an algebraically closed fields of positive characteristic. Jordan-Lie inner ideals of the Lie algebras $K^{(k)}$ in the case when *A* is simple with the symplectic involution over an algebraically closed fields of positive characteristic were also been studied by Kareem and Shlaka in [\[8\]](#page-11-7).

In this paper, we study inner ideals of the orthogonal Lie algebras. We start with some preliminaries in section 2. Section 3 is devoted to proof some results about Jordan-Lie inner ideals of the orthogonal Lie algebras and point space.

2. PRELIMINARIES

Throughout this paper, *F* is a field (algebraically closed), $p \ge 0$ is the characteristic of *F*, *V* is a vector space (finite dimensional over *F*), *End*(*V*) is the endomorphism algebra, $so(V)$ is the orthogonal Lie algebra, *A* is an associative algebra (finite dimensional over *F*) with an involution *, $K = skew(A, *)$ is the Lie subalgebra of *A* defined as (1.1), *L* is a Lie algebra (finite dimensional over *F*), $M_n(F)$ is the matrix algebra consisting of all $n \times n$ -matrices and $so_n(F)$ is the orthogonal Lie algebra of matrix .

Recall that an involution $*$ of *A* is a linear transformation of *A* such that $(a^*)^* = a$ and $(ab)^* = b^*a^*$ for any $a, b \in A$ [\[9\]](#page-11-8).
 \downarrow that $*$ does not required to be *F*-linear. On the other hand, it is obvious that Note that ∗ does not required to be *F*-linear. On the other hand, it is obvious that ∗ maps the center *Z* into it self. Since the restriction of ∗ over *F* is an automorphism of order less than or equal to 2, it maps every sub-field of *Z* into itself. Therefore $F^* = F$. Here we have two possibilities which are either $*$ is F -linear or not. Thus, we have the following definition.

Definition 2.1 [13, 7.2] An involution is said to be of the first kind in case that ∗ is *F*-linear, that is the restriction of ∗ relative to *F* is the identity. Otherwise, it is called of the second kind.

Remark 2.2 In this paper, we consider involution of the first kind only.

Definition 2.3 Let *B* be a subspace of *L*. Then *B* is said to be

- 1. [\[1\]](#page-11-0) An inner ideal if $(B, (B, L)] \subseteq B$.
- 2. [\[1\]](#page-11-0) A commutative inner ideal if *B* is an inner ideal such that $[B, B] = 0$.

3. [\[6\]](#page-11-5) A Jordan-Lie inner ideal (or simply, *J*-Lie) if $L = \text{skew}(A)$ and *B* is an inner ideal such that $B^2 = 0$.

Example 2.4 Consider the associative algebra $A = M_n(F)$. Then $\{e_i | 1 \le i, j \le n\}$ form a basis of *A* consisting of matrix units, where e_{ij} is the $n \times n$ -matrix with the entry 1 in the *i* jth position and zero elsewhere. Thus, the Lie algebra

 $K = \text{skew}(A) = \text{so}_{2n}(F)$ has the following basis $\{a_{ij}, b_{ij}, c_{ij} | 1 \le i, j \le n\}$, where

$$
a_{ij} = (e_{ij} - e_{n+j, n+i}),
$$
 $b_{ij} = (e_{i,n+j} - e_{j,n+i})$ and $c_{ij} = (e_{n+i,j} - e_{n+j,i}).$

Then $B = Fa_{12}$ is *J*-Lie of *skew*(A , *). Indeed, for any $x, y \in B$, we have $x = \alpha a_{12} = \alpha (e_{12} - e_{n+2,n+1}), y = \beta a_{12} = \alpha a_{12}$ $\beta(e_{12} - e_{n+2,n+1})$. Since

$$
x.y = \alpha(e_{12} - e_{n+2,n+1}\beta(e_{12} - e_{n+2,n+1} = 0,
$$

 $B^2 = 0$. It remain to show that $[x, [y, l]] \in B$ for each $l \in K$.
 $I = \sum_{i=1}^{n} f_{i}: a_{i+1} \sum_{i=1}^{n} a_{i+1} b_{i+1} + \sum_{i=1}^{n} f_{i}: a_{i+1} \in K$. Let $l = \sum_{i,j=1}^{n} \zeta_{ij} a_{ij} + \sum_{i,j=1}^{n} \eta_{ij} b_{i,n+j} + \sum_{i,j=1}^{n} \gamma_{ij} c_{ij} \in K$. Then

$$
xly = \alpha(e_{12} - e_{n+2,n+1})(\sum_{i,j=1}^{n} \zeta_{ij} a_{ij} + \sum_{i,j=1}^{n} \eta_{ij} b_{ij} + \sum_{i,j=1}^{n} \gamma_{ij} c_{ij})y
$$

$$
= \alpha \sum_{j=1}^{n} (\zeta_{2j}e_{1j} + \eta_{2j}e_{1,n+j} - \eta_{j2}e_{1,n+j} + \zeta_{j1}e_{n+2,n+j} - \gamma_{1j}e_{n+2,j} + \gamma_{j1}e_{n+2,j})y
$$

$$
= \alpha \beta (\zeta_{21}e_{12} - \eta_{22}e_{1,n+1} - \eta_{22}e_{1,n+1} - \zeta_{21}e_{n+2,n+1} - \gamma_{11}e_{n+2,2} + \gamma_{11}e_{n+2,2})
$$

 $= \alpha \beta \zeta_{21}(e_{12} - e_{n+2,n+1}) = \alpha \beta \zeta_{21} a_{12} \in Fa_{12} = B.$ and

$$
ylx = \beta(e_{12} - e_{n+2,n+1}) (\sum_{i,j=1}^n \zeta_{ij} a_{ij} + \sum_{i,j=1}^n \eta_{ij} b_{ij} + \sum_{i,j=1}^n \gamma_{ij} c_{ij}) x
$$

$$
= \beta \sum_{j=1}^{n} (\zeta_{2j}e_{1j} + \eta_{2j}e_{1,n+j} - \eta_{j2}e_{1,n+j} + \zeta_{j1}e_{n+2,n+j} - \gamma_{1j}e_{n+2,j} + \gamma_{j1}e_{n+2,j})x
$$

 $= \alpha \beta (\zeta_{21}e_{12} - \eta_{22}e_{1,n+1} - \eta_{22}e_{1,n+1} - \zeta_{21}e_{n+2,n+1} - \gamma_{11}e_{n+2,2} + \gamma_{11}e_{n+2,2})$

 $= \alpha \beta \zeta_{21}(e_{12} - e_{n+2n+1}) = \alpha \beta \zeta_{21} a_{12} \in Fa_{12} = B.$

Therefore, $[x, [y, l]] = xyl - xlv - vlx + lvx = -xlv - vlx \in B$, as required.

Definition 2.5 [\[10\]](#page-11-9) A subspace *P* of *L* is said to be point space if $(P, P] = 0$ and $ad_x^2(L) = Fx$ for every non zero element *x* ∈ *P*.

Example 2.6 Let $K = so_{2n+1}(F)$, If $n = 1$, then $K = so₃(F) = span\{$ $\begin{pmatrix} 0 & \alpha_1 & \alpha_2 \\ -\alpha_2 & \alpha_2 & 0 \end{pmatrix}$ $\overline{}$ $-\alpha_2 \quad \alpha_3 \quad 0$
 $-\alpha_1 \quad 0 \quad -\alpha_2$ $-\alpha_1$ 0 $-\alpha_3$ λ $\begin{array}{c} \hline \end{array}$ $|\alpha_1, \alpha_2, \alpha_3 \in F\}$ has a basis are ${b_1} =$ 0 1 0 $\overline{}$ 0 0 0 −1 0 0 λ $\begin{array}{c} \hline \end{array}$ $, b_2 =$ 0 0 1 $\overline{}$ −1 0 0 0 0 0 λ $\begin{array}{c} \hline \end{array}$ $, b_3 =$ 0 0 0 0 1 0 $0 \t 0 \t -1$ λ $\begin{array}{c} \end{array}$ } Then , we need to show that *b*₁, is a point space. For $x \in Fb_1$ we have $x =$ $\left(\begin{array}{ccc} 0 & \zeta & 0 \ 0 & 0 & 0 \end{array}\right)$ $-\zeta = 0$
ad²(I) = 0 Í $\begin{array}{c} \hline \end{array}$ for some $\zeta \in F$. Let $l =$ $\begin{pmatrix} 0 & \alpha_1 & \alpha_2 \\ -\alpha_2 & \alpha_2 & 0 \end{pmatrix}$ $\overline{}$ $-\alpha_2 \quad \alpha_3 \quad 0$
 $-\alpha_1 \quad 0 \quad -\alpha_2$ $-\alpha_1$ 0 $-\alpha_3$ λ $\begin{array}{c} \hline \end{array}$ $\in so_3(F)$. Then, $ad_x^2(L) = (x, (x, l))$ ⁼ [*x*, ĺ $\overline{}$ $-\zeta \alpha_2 \quad \zeta \alpha_3 \quad 0 \quad 0$ 0 0 0 0 $-\zeta \alpha_1$ $-\zeta \alpha_2$
 ζ 0 ζ 0 0 $\begin{array}{c} \hline \end{array}$ − $\begin{pmatrix} -\zeta \alpha_2 & 0 & 0 \\ 0 & -\zeta \alpha_2 & 0 \end{pmatrix}$ $\overline{\mathcal{C}}$ 0 $-\zeta \alpha_2$ 0
 α_3 $-\zeta \alpha_1$ 0 $\zeta \alpha_3 \quad -\zeta \alpha_1 \quad 0$ Í $\begin{array}{c} \hline \end{array}$] = [$\left(\begin{array}{ccc} 0 & \zeta & 0 \ 0 & 0 & 0 \end{array}\right)$ $\overline{}$ $-\zeta \quad 0 \quad 0$ Í $\begin{array}{c} \hline \end{array}$, $\begin{pmatrix} 0 & \zeta \alpha_3 & 0 \\ 0 & \zeta \alpha_2 & 0 \end{pmatrix}$ $\overline{}$ $\zeta \alpha_2 = 0$
 $\zeta \alpha_2 = 0$ $-\zeta \alpha_3$ 0 $-\zeta \alpha_2$
(0 0 λ $\begin{array}{c} \hline \end{array}$] = $\left(\begin{array}{ccc} 0 & \zeta^2\alpha_2 & 0 \ 0 & 0 & 0 \end{array}\right)$ $\overline{}$ $0 - \zeta^2 \alpha_3 = 0$
fore Fb_1 and Í $\begin{array}{c} \hline \end{array}$ − $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ $\overline{}$ 0 0 0 ጋ
እ α_2 – $\zeta^2 \alpha_3$ 0
is a point space λ $\begin{array}{c} \hline \end{array}$ = $\left(\begin{array}{ccc} 0 & \zeta^2\alpha_2 & 0 \ 0 & 0 & 0 \end{array}\right)$ \cdot ² **0** $-\zeta^2$
Fb₂ $(0 - \zeta^2 \alpha_3 \quad 0)$ $(\zeta^2 \alpha_2 - \zeta^2 \alpha_3 \quad 0)$ $(-\zeta^2 \alpha_2 \quad 0 \quad 0)$
Therefore, Fb_1 and also Fb_2 is a point space. while Fb_2 is not point space. λ $\begin{array}{c} \end{array}$ $0 \in Fb_1$ We will need the following lemma. For the proof see [\[11\]](#page-11-10).

Lemma2.7 [\[11\]](#page-11-10) Let *B* be an *I*-ideal of *L*. If $B^2 = 0$, then

(1) $b_1lb_2 + b_2lb_1$ ∈ *B* for all b_1, b_2 ∈ *B* and l ∈ *L*.

(2) *blb* ∈ *B* for all *b* ∈ *B* and *l* ∈ *L*.

Definition 2.8 [\[9\]](#page-11-8) Let $\psi : V \times V \to F$ be a nondegenerate symmetric bilinear form. For each $x \in EndV$ define x^* by the following property $\psi(x^*(y), \psi) = \psi(y, x(\psi))$ for all $y, \psi \in V$. Then the man $\psi : EndV \to EndV$ is an involution the following property $\psi(x^*(v), w) = \psi(v, x(w))$ for all $v, w \in V$. Then the map $* : EndV \to EndV$ is an involution of the algebra *EndV* called the adjoint involution with respect to ψ . algebra $EndV$, called the adjoint involution with respect to ψ .

Theorem 2.9 [10, Ch.1, introduction] The map $\psi \mapsto *$ induced one to one correspondence between equivalence classes of nondegenerate bilinear forms on *V* modulo multiplication by a factor in *F* × and involution (of first kind) on *EndV*. **Definition 2.10** [\[9\]](#page-11-8) Let ∗ be an involution of *EndV*. We say that ∗ is orthogonal if it is adjoint to a symmetric non-

alternating bilinear form on *V*.

Definition 2.11 [\[2\]](#page-11-1) Let *A* be an associative algebra with involution $*$ over a field *F* and let $a \in A$. Then we define the trace of *a* by $\tau(a) = a - a^*$.

3. JORDAN LIE INNER IDEAL OF THE ORTHOGONAL LIE ALGEBRAS

Theorem 3.1 Suppose that *A* is simple with involution and $p \neq 2$. Let $x \in \text{skew}(A, *)$. Then $x = xyx$ for some $y \in A$ *skew*(*A*, [∗]).

Proof. We have $x^* = -x$. Since *A* is V-Neumann algebra, $x = xax$ for some $a \in A$. Put $y = \frac{1}{2}(a - a^*) \in skew(A, *)$. Then
 $x^2 - \frac{1}{2}(ax - a^*)x = \frac{1}{2}(ax - bx)^2 - \frac{1}{2}(ax - bx)^2 = \frac{1}{2}(ax - bx)^2 - \frac{1}{2}(ax - bx)^2 = x$ $xyx = \frac{1}{2}x(a - a^*)x = \frac{1}{2}(xax - xa^*x) = \frac{1}{2}(x - (xax)^*) = \frac{1}{2}(x - x^*) = \frac{1}{2}(2x) = x$

Lemma 3.2 Let *eKe*[∗] ⊆ *B* be a subspace of *K* = *skew*(*A*, *) such that $e \in BK$ and $e^* \in KB$. If e' be an idempotent in *A* such that $ee' = ee = 0$, then $e'Be'^* \subseteq B$ such that $ee' = e'e = 0$, then $e'Be' \subseteq B$.

Proof. If *e' Be'*^{*} = 0. Then *e' Be'*^{*} ⊆ *B*. Suppose now that *e' Be'*^{*} ≠ 0. Then ∃*a* ∈ *B* such that *e' ae'*^{*} ≠ 0.

 $e^{\prime}ae^{\prime*} = (1 - e)a(1 - e^*) = a - (ea + ae^*) + eae^*$

As *e* ∈ *BK*, $\exists b_1 \in B$ and $k_1 \in K$ such that $e = b_1 k_1$. This implies that

 $e^* = (b_1 k_1)^* = k_1^* b^* = k_1 b_1$

We have $a \in B$ and $eae^* \in eKe^* \subseteq B$. By Lemma 2.7, $ea + ae^* = b_1k_1a + ak_1b_1 \in B$ Therefore, $e'ae'^* \in B$, as required.
Recall that A is simple, so A can be Recall that *A* is simple, so *A* can be identified with *End*(*V*) for some vector space *V*. We have the following proposition.

Proposition 3.3 Let $\psi : V \times V \to F$ be a non-singular form and let $*$ be an adjoint involution of $A = End(V)$. Let e, e' be idempotent in A such that $ee' = ee = 0$. Suppose that $eKe^* \neq 0$. Then the following hold idempotent in *A* such that $ee' = e'e = 0$. Suppose that $eKe^* \neq 0$. Then the following hold

For each $k \in K$ such that $eke^* \neq 0$, we have

(1) $c = k + e^k k e^{k} \neq 0$.

(2) $e'Ke^* = 0.$

(3) $eKe^* = 0$

 (3) *eKe*^{'*} = 0.

Proof. (1) Let $v \in V$ such that $\psi(v, eke^*(v)) \neq 0$. Such *v* exists because ψ is non-singular. We need to show that $\psi(e^*(v), e^*(v)) \neq 0$. Since $ee' = 0$ $\psi(e^*(v), ce^*(v) \neq 0$. Since $ee' = 0$,
 $\psi(e^*(v), ce^*(v)) = \psi(v, ece^*(v))$

 $\psi(e^*(v), ce^*(v)) = \psi(v, ecc^*(v))$
 $= \psi(v, e(k + e'ke'^*e^*)e^*(v))$

 $= \psi(v, e(k + e'ke'^{*})e^{*}(v))$
 $= \psi(v, eke^{*}(v)) + \psi(v, ee')$

 $= \psi(v, eke^*(v)) + \psi(v, ee^{\prime}ke^*e^*(v))$
 $= \psi(v, eke^*(v)) + 0$

 $=\psi(v, eke^*(v)) \neq 0.$
 \exists et $w \in e'Ke^*$ Th

(2) Let *w* ∈ *e*[']*Ke*[∗]. Then there is *k* ∈ *K* such that *w* = *e*[']*ke*[∗]. For each *v* ∈ *V* we have $\psi(e^{*}(y)) = \psi(y, \cos^{*}(y)) = \psi(y, \cos^{*}(y)) = \psi(y, 0) = 0$

 $\psi(e^*(v), we^*(v)) = \psi(v,ewe^*(v)) = \psi(v, ee^*ke^*e^*(v)) = \psi(v, 0) = 0,$
 $\psi(v) = e^*Ke^* = 0$

so $w = e^{t}Ke^* = 0$.
(3) I et $h \in eKe^{i*}$

(3) Let *h* ∈ eKe' ^{*}. Then there is *k* ∈ *K* such that *h* = eke' ^{*}. For each *v* ∈ *V* we have

 $\psi(e^*(v), he^*(v)) = \psi(v, ehe^*(v)) = \psi(v, e(eke^{i*})e^*(v)) = \psi(v, 0) = 0.$
herefore $h = eke^{i*} = 0$

Therefore, $h = eke^{i*} = 0$.

The idea of the following lemma comes from McCrimmon's paper [\[2\]](#page-11-1).

Lemma 3.4 Let *A* be an associative algebra with involution $*$ over a field *F*. Suppose that $L = \text{skew}(A, *)$. Then the trace *τ* that defined above by *τ* (*a*) = *a* − *a*[∗] has the following properties:
(1) *τ* is linear

(1) τ is linear.

(2) $\tau(x) \in L$ for any $x \in L$.

(3) $x\tau(a) = \tau(xax)$ For any $a \in A$ and $x \in L$.

(4) $a\tau$ (*b*) + τ (*b*) $a^* = \tau$ (*ab*) + τ (*ba*^{*}) For any *a*, *b* ∈ *A*.
(5) τ (*a*) $\tau \tau$ (*axa*) – $a\tau a^* = a^*$ *xa* For any *a* ∈ *A*.

(5) τ (*a*) $x\tau$ (*a*) = τ (*axa*) − *axa*^{*} − *a*^{*} *xa* For any *a* ∈ *A* and *x* ∈ *L*.
oof (1) Suppose that *a b* ∈ *A* and α ∈ *F*. Then

Proof. (1) Suppose that $a, b \in A$ and $\alpha \in F$. Then

 $\tau(\alpha a) = \alpha a - (\alpha a)^* = \alpha (a - a^*) = \alpha \tau(a)$;

$$
\tau(a+b) = (a+b) - (a+b)^* = (a-a^*) + (b-b^*) = \tau(a) + \tau(b).
$$

Thus, τ is linear. (2) Let $a \in A$ Then $(\tau(a))^* = (a - a^*)^* = a^* - a = -(a - a^*) = -\tau(a).$
Therefore $\tau(a) \in I$ Therefore, $\tau(a) \in L$. (3) Let $a \in A$ and $x \in L$ Then we have *x*τ (*a*) $x = x(a - a^*)$ $x = xax - xa^*$ $x = xax - (x^*ax^*)^* = \tau (xax)$. (4) Let $a, b \in A$ Then

$$
a\tau(b) + \tau(b)a^* = a(b - b^*) + (b - b^*)a^* = ab - ab^* + ba^* - b^*a^*
$$

 $=(ab-b^*a^*)+(ba^*-ab^*)$ = $(ab - (ab)^*) + (ba^* - (ba^*)^*) = \tau(ab) + \tau(ba^*)$

• For any $a \in A$ and $x \in I$ we have (5) For any $a \in A$ and $x \in L$ we have $\tau(a)$ $\bar{x}\tau(a) = (a - a^*) x (a - a^*) = axa + a^* x a^* - axa^* - a^* x a$
 $\tau(a \bar{x}a) = (axa)^* - axa^* - a^* x a - \tau(axa) - axa^* - a^* x a$ $=(axa - (axa)^*) - axa^* - a^*xa = \tau (axa) - axa^* - a^*xa.$
 ma 3.5 Suppose that $n \neq 2$, 3 and $K - skew(FndV*)$. Then

Lemma 3.5 Suppose that $p \neq 2, 3$ and $K = \text{skew}(EndV, *)$. Then the following hold:

(1) If ψ (*Kv*, *w*) = 0 for some nonzero vectors *v*, *w* ∈ *V*, then *w* ∈ *Fv*. Consequently *Kv* = *v*[⊥] for any nonzero vector $v \in V$.

(2) If *U* is a subspace such that $dim U > 1$, then $KU = V$.

(3) A transformation $x \in K$ satisfies $xKx^* = 0$ if and only if $rank(x) \le 1$.

Proof. (1) Suppose that $v, w \in V$ be nonzero vectors such that $\psi(Kv, w) = 0$. For the contrary we assume that $w \notin Kv$. Then we could find a linear transformation *a* ∈ *A* such that *a* (*w*) = 0 and ψ (*a* (*v*), *w*) ≠ 0. Note that *a* − *a*^{*} ∈ *K*. Thus,

 $0 \neq \psi$ $(a(v), w) = \psi$ $(a(v), w) - 0 = \psi$ $(a(v), w) - \psi$ $(v, a(w))$ $= \psi (a(v), w) - \psi (a^*(v), w) = \psi ((a - a^*)(v), w) = 0,$
contradiction Therefore $w \in Kv$ Consequently for any

a contradiction Therefore $w \in Kv$ Consequently, for any nonzero vector v we have $v^{\perp} = Kv$

(2) Suppose that U be a subspace of V such that $dim U > 1$ Then

 $KU = \sum_{w \in U} Kw = \sum_{w \in U} w^{\perp} = V$

That is, any w^{\perp} has co-dimensional 1. Thus, if $w_1^{\perp} = w_2^{\perp}$. Then $w_1 \in Kw_2$. Hence any two independent vectors w_i^{\perp} will span all *V*.

(3) If $x^*Kx = 0$ Then

 $0 = \psi(x^*Kx(v), v) = \psi(Kx(v), x(v))$ *for all v* $\in V$.
his implies $K(x(V)) \neq V$ so by (2) we get that $dim(V)$

This implies $K(x(V)) \neq V$, so by (2), we get that $dim(x(V)) \leq 1$.

Theorem 3.6 Let *e*, *e'*, *f* be an idempotent in *A* = *EndV* such that $ee' = e'e = 0$ and $e^*e = 0$. Let $e^*f = fe^* = 0$ and $e^*f = fe^* = 0$ and $e^*f = fe^* = 0$ and $e^{*'} f = f e^{*'} = f$, If *B* = eKe^{*} then *B* is a *J*−Lie.

Proof. Let $w = eke^x \neq 0$, by Theorem 3.1, $w = wz^x w$ for some $z^x \in K$. put $z = e^{i\phi} z^i e$. Then $wzw = w(e^{i}*z^{'}e)w = eke^{i}*e^{i}*z^{'}eeke^{i*} = eke^{i}*z^{'}eke^{i*} = wz^{'}w$ Let $f = zw = (e^{i*}z'e)(eke^{i*}) = e^{i*}z'eke^{i*}$. Then
 $e^{*}f = e^{*}e^{i*}z'eke^{i*} = 0$ $e^* f = e^* e^{'*} z^{'} e k e^{'*} = 0$ and $fe^* = e^{'*}z^{'}eke^*e^* = (1 - e^*)z^{'}ek(1 - e^*)e^* = 0$ $e^{i*} f = e^{i*} e^{i*} z^{\prime} e k e^{i*} = e^{i*} z^{\prime} e k e^{i*} = f$ Also fe' ^{*} = e' ^{*}z['] eke^{'*}e^{'*} = f By Lemma 3.5 (3), since $rank(f) = 1$, so $rank(f^*) = 1$. Therefore,
 $f^* K f - (e^{i\pi}/e^{i\pi})^* K(e^{i\pi}/e^{i\pi}) - e^{i\pi}/e^{i\pi}/e^{i\pi}/e^{i\pi}/e^{i\pi} - 0$ $f^*Kf = (e^{i*}z^{'}eke^{i*})^*K(e^{i*}z^{'}eke^{i*}) = e^{'}k^*e^{i}z^{'}e^{'}Ke^{i*}z^{'}eke^{i*} = 0$ and $f K f^* = e^{'*} z^{'} e k e^{'*} K e^{'} k^* e^* z^{'*} e^{'} = 0$ Moreover, for any $u \in Ker(w)$, $f(u) = zw(u) = 0$ Therefore, $Ker(w) \subseteq Ker(f)$, both have co-dimension. Then

$$
Ker(w) = Ker(f) = Ker(w^{'})
$$

Recall $f = zw$ is idempotent of rank 1. Let $c \in Im(w')$ such that $c \notin Ker(w')$. Then $w' f(c) \neq 0$
(if $w' f(c) = 0$ then either $c \in Ker(f)$ or $c \in Ker(w')$ this is a contradiction) (if $w' f(c) = 0$, then either $c \in Ker(f)$ or $c \in Ker(w')$ this is a contradiction) If $w' f(c) \neq 0$, then $c \in Im(w'f)$. Since $c \in Im(w'$, so $c \in Im(w'f)$
Therefore $Im(w') \subset Im(w'f)$ hoth have co-dimension so Therefore, $Im(w') \subseteq Im(w'f)$. both have co-dimension, so $Im(w') = Im(w'f)$ Since $Ker(f) = Ker(w')$, so $Ker(w'f) = Ker(w')$ Therefore, $w' f = w'$ for any $w' \in eBe'^*$ Next, we claim that $B \subseteq B' = eKe^* + \tau(ekf),$
 $x \text{ any } d \in R$ we have for any $d \in B$ we have $d = ede^* + ede^{i*} + e'de^* + e'de^{i*}$ $= ede^* + ede^{'*} - (ede^{'*})^*$

$$
f_{\rm{max}}(x)=\frac{1}{2}x
$$

$$
= ede^* + \tau (ede^{'*})
$$

$$
= ede^* + \tau(w^{'})
$$

Since $w'(f) = w' \in eBe'^*$, we have that $K = eke^* + \tau(w'f) = ede^* + \tau(ede^*f)$
 $s e^{i*}f - f$ so As $e^{\prime *} f = f$, so

K = $eke^* + τ(edf) ∈ eKe^* + τ(eKf)$

put
$$
B' = eKe^* + \tau(eKf)
$$
. Then
\n
$$
(e + f^*)K(e + f^*)^* = (e + f^*)K(e^* + f)
$$
\n
$$
= eKe^* + eKf + f^*Ke^* + f^*Kf
$$
\n
$$
= eKe^* + eKf - (eKf)^*
$$
\n
$$
= eKe^* + eKf - (eKf)^*
$$
\nLet $g = e + f^*$, then
\n $g^2 = (e + e^*z' eke^*)(e + e^*z' eke^*)$
\n $= e + e^*t e^*e^*e^*$
\nand $e^*g = (e^* + f)(e + f^*)$
\n $= (e^* + e^*z' eke^*) (e + e^*ke^*z^*e') = 0$
\nNow, let $gk_1g^*, gk_2g^* = gKg$ and $l \in K$. Then
\n $[gk_1g^*, gk_2g^* -1] = [gk_1g^*, gk_2g^*] - gk_2g^*g^*l_2[gk_2g^* + gk_2g^*g^*]$
\n $= gk_1g^*gk_2g^* - g(-2k_1g^*lgk_2g^* - gk_1g^*lgk_2g^* + gk_2g^*g^*k_3g^*$
\n $= -2gh_1g^*lgk_2g^* = g(-2k_1g^*lgk_2g^* - gk_3g^*l_2g^*k_2g^* + gk_2g^*g^*k_3g^*$
\nTherefore, $B = gKg^*$ is an *I*-ideal of *K* and *B* is *J*-Lie of *K*. as required.
\nTherefore, $B = fKg^* = gKg^*$ is an *I*-ideal of *K* and *B* is *J*-Lie of *K*. as required.
\nTherefore, $B = fKg^*K$ (where $U_0^*)$ is 1.
\n**Therefore, $B = fKg^*$ (for all $b \in B$. Then the following hold
\n $L.EV = eKe^*K(v_0^+ for all v_0 \in V)$**

Then

 $eKe^*(v_0^{\perp}) = eK(u_0) = e(u_0^{\perp})$ for all $u \in u_0^{\perp}$, we have $e(u) \in (v_0^{\perp})^{\perp} = Fv_0$, because
 $e(u) \in e(u^{\perp}) - eKe^*(v^{\perp}) \subset R(v^{\perp}) \subset K(v^{\perp}) - (v^{\perp})$ $e(u) \in e(u_0^{\perp}) = eKe^*(v_0^{\perp}) \subseteq B(v_0^{\perp}) \subseteq K(v_0^{\perp}) = (v_0^{\perp})^{\perp} = Fv_0,$ so $u_0^{\perp} = e'(V) + Fv_0$ Thus, $\overline{}$

$$
eKe^*(u_0) = e(u_0^{\perp}) = e(e^{'}(V) + Fv_0) = Fv_0.
$$
\n(3.3)

But for any non-zero $r \in u_0^{\perp}$ and $\alpha \in F$, we have $e^*(r) = \alpha u_0$

$$
\alpha e^*(u_0) = e^*(\alpha u_0) = e^*(e^*(r)) = e^*(r) = \alpha u_0.
$$

so $e^*(u_0) = u_0$. Thus, for any $y = ey'e^* \in eKe^*$, we can assume that $y(u_0) = 0$
Let $y(V) \subseteq u^{\perp}$ by equation (3.3) Let $y(V) \subseteq u_0^{\perp}$, by equation (3.3),

$$
y(V) = ey'e^*(V) = e(ey'e^*(V)) = e(y(V)) \subseteq e(u_0^{\perp}) = Fv_0
$$

By Lemma 3.5 (3), if *y* has rank 1, then $y^*Ky = yKy = 0$.
By Theorem 3.1, $\exists 0 \neq l \in K$ such that $y = ylw \in vKy =$ By Theorem 3.1, $\exists 0 \neq l \in K$ such that $y = yly \in yKy = 0$. Then, *y* ∈ $eKe^* ⊆ B$. Therefore *y* ∈ *Fb*, but $eKe^* = bKb$

so $y \in bKb$. Thus, if $bKb \neq Fb$, then $eKe^*K(v_0) = e(V)$, as required. (2) for any $1, l^{\prime}$ in K, we have ele αk^{\ast} ast $\subset B$ Let $b'' = -[ele^*, [b', l']] \in [B, [B, K]] \subseteq B$
 $b' \in B$ is the same b' that satisfies $w = eb$ *b*^{\leq} *e B* is the same *b*^{\leq} that satisfies *w* = *eb*^{\leq *e*^{*} ≠ 0. Since *b*^{\leq} − \leq *b*^{\leq} \leq *b*^{\leq}} $b'' = -[ele^*, [b', l']] = -[ele^*, b'l' - l'b']$
 $= -(ele^*b'l' - b'l'ele^* - ele^*l'b' + l'b'ele$ $= -(ele^*b^t - b^t e^t - ele^* t^t b^t + b^t e^t)$ $eb''e'$ ^{*} = $-e(ele^*b'l' - b'l'ele^* - ele^*l'b' + l'b'ele^*)e'$ ^{*} *e*-*eele*b'l'e'** + *eb'l'ele*e'** + *eele*l'b'e'** - *el'b'ele*e'** $= -ele^*b' l' e'^* + ele^*l' b' e'^*$ and $ele^*b'l'e'^* = bxlxbb'l'e'^* = 0$. As $(bb' = 0)$
 $eb'e'^* = ele^*l'b'e'^* = ele^*l(e + e')b'e'^*$ $eb''e'$ ^{*} = $ele*l'b'e'$ ^{*} = $ele*l'(e+e')b'e'$ ^{*} $= ele^{*}l'e^{*}e^{*} + ele^{*}l'e^{*}e^{*}$ By using equation , $(e'b'e'^* = 0)$, we have $eb''e'^* = ele^*l(eb'e'^*)$.
Since $w - eb'e'^*$ so $eb''e'^* = ele^*l'w$ for any $l' \in K$ Since $w = eb'e'^*$, so $eb''e'^* = ele^*l'w$ for any *l*, $l' \in K$.

Let $v \in V$ Then $eb''e'^*(v) = ele'^*l'w(v) = ele'^*l'(v_0)$. Let $v \in V$. Then $eb''e'^*(v) = ele' * l'w(v) = ele' * l'(v_0)$
Since $bKh \neq Eh$ so we must have Since $bKb \neq Fb$, so we must have $eBe^{i*}(V) = eKe^{*}K(v_0)$ Since $eKe^*K(v_0) = e(V)$, we get that $eBe^{i*}(V) = e(V)$ as required.

Theorem 3.8 Let *e*, *f* be an idempotent in $A = EndV$ and let *B* be a *J*−Lie of $K = skew(A, *)$. Suppose that $bKb = Fb$ for all $b \in B$. Then *B* is a type one point space.

Proof. Suppose that $bKb = Fb$, we are going to prove that *B* is a type one point space

Recall that
$$
B \subseteq B' = eKe^* + \tau(eKf)
$$
, so
\n $B' = eKe^* + \tau(eKf) = bxKxb + \tau(eKf)$

$$
= bKb + \tau(eKf) \tag{3.4}
$$

Since $bKb = Fb$, so $B' = Fb + \tau(eKf)$
 r any $c \in B'$ there for any $c \in B'$, there exist $\lambda \in F$ and $l \in K$ such that $c = \lambda b + \tau(\epsilon) f$. $c = \lambda b + \tau (elf)$ Then $\forall y \in K$, we have $cyc = (\lambda b + \tau (el f))y(\lambda b + \tau (el f))$ = $\lambda^2 b y b + \lambda b y \tau (elf) + \lambda \tau (elf) y b + \tau (elf) y \tau (elf)$
- $\lambda^2 b y b + \lambda (b y) \tau (elf) + \lambda \tau (elf)(b y)^* + \tau (elf) y \tau (elf)$ = $\lambda^2 b y b + \lambda (b y) τ (el f) + \lambda τ (el f) (b y) * + τ (el f) y τ (el f)$
v I emma 3 4 (3) By Lemma 3.4 (3), $cyc = \lambda^2 byb + \lambda \tau (byelf) + \lambda \tau (elf(by)^*)$
 $+ \tau (elfyelf) - elfy(elf)^* - (elf)^*yelf)$ $+\tau(elfyelf) - elfy(elf)^* - (elf)^*yelf$

²_{*kvb*} + *λ* $\tau(byelf) + \lambda \tau(elfyb) + \tau(elfb))$ Since $fKf^* = f^*Kf = 0$. $^{2}byb + \lambda \tau (byelf) + \lambda \tau (elfyb) + \tau (elfyelf) - elfyf^{*}l^{*}e^{*} - f^{*}l^{*}e^{*}yelf$
 $ce fKf^{*} - f^{*}Kf = 0$

$$
cyc = \lambda^2 byb + \lambda \tau(byelf) + \lambda \tau(elfyb) + \tau(elfyelf)
$$
\n(3.5)

we need to calculate each term. Since $bKb = Fb$, so

$$
byb = \alpha b \tag{3.6}
$$

$$
\tau(byelf) = \tau(bybxlf) = \tau(\alpha bxlf) = \tau(\alpha(elf))
$$

$$
= \alpha \tau (elf) \tag{3.7}
$$

for the third one we have

 $el f y b = b x l f y b \in b A b$ Since $\tau(a) \in L$ for any $a \in A$, $\tau(elfyb) \in K$, then $b\tau(xlfy)b \in bKb \subseteq B$. By Lemma 3.5 (3),

$$
\tau(elfyb) = \tau(bxlfyb) = b\tau(xlfyb) = \beta b \tag{3.8}
$$

29

for some $\beta \in F$ for the four one we have $el f y el f = el f y b x l f = (el f) y b (x l f) = 0$ Since $f^*Lf = 0$, so $by f^*le^* x l f = 0$. Then

 $(elf)y(elf) = elfybxlf - byf[*]le[*]xlf$

= (*el f yb* − (*el f yb*) ∗)*xl f*

$$
= \tau (el f y b) x l f
$$

 $βb(xl f) = βel f$

$$
\tau(elfyelf) = \beta \tau(elf) \tag{3.9}
$$

Substituting equation 3.6 , 3.7, 3.8 and 3.9 in 3.5, we get that

$$
cyc = (\lambda^2 \alpha)b + (\lambda \alpha)\tau(elf) + (\lambda \beta)b + \beta \tau(elf)
$$

$$
= (\lambda^2 \alpha + \lambda \beta)b + (\lambda \alpha + \beta)\tau(elf)
$$

$$
= (\lambda \alpha + \beta)c
$$

Therefore, $cKc = Fc$, *B*^{\prime} is a point space

since *B* is a maximal point space, so $B = B'$

Therefore, *B* is a type one point space.

Theorem 3.9 Suppose that *A* is simple with the orthogonal involution $*$ defined on it. If $p \neq 2, 3$ and *A* is of dimensional greater than 16, Then every *^J*−Lie *^B* of (*K*, *^K*] is of the form *eKe*[∗] or *^B* is a type one point space. where *^e* is an idempotent in *A* such that $e^*e = 0$.

Proof. Let $b \in B$, Then by Theorem 3.1, $\exists x \in K$ such that $b = bxb$. Let $e = bx$. Then $e^* = (bx)^* = x^*b^* = xb$, since *B* is *J*−Lie, $b^2 = 0$, so $e^*e = xbbx = 0$. By Lemma 3.2, $bKb \subseteq B$
Suppose that $bKb \subseteq B$ is maximal with the property. Since Suppose that $bKb \subseteq B$ is maximal with the property. Since $bKb = bxbKbxb \subseteq bxKxb = eKe^*$ $eKe^* = bxKxb \subseteq bKb$, We have

$$
eKe^* = bKb \subseteq B \tag{3.10}
$$

Next, we need to show that $B \subseteq eKe^*$

Let $e' = 1 - e$ and $e'{}^* = (1 - e)^* = 1 - e^*$, we have

$$
b = 1b1 = (e + e^{'})b(e^* + e^{'}*) = ebe^* + ebe^* + e^{'}be^* + e^{'}be^{'}*
$$
\n(3.11)

First, we need to show that $e^{'}Ke^{'}{}^* = 0$

It remains to show that $e'Ke' = 0$. Assume to the contrary that $e'Ke' * \neq 0$. Then $\exists c' \in K$ such that $z = e'c'e' * \neq 0$. By Lemma 3.2, $e'Ke^{i*} \subseteq B$, so $z \in B$. Let $c = b + z \in B$. In the view of Lemma 3.3(1), we have $c \neq 0$

First, we claim that $bKb \subseteq cKc$. Since $c \in B$, by Lemma 2.7, $cKc \subseteq B$. Take any $y \in K$. Then $ce^* \, y \, e \, c = (b + z) \, e^* \, y \, e \, (b + z)$

= *be*[∗] *yeb* + *be*[∗] *yez* + *ze*[∗] *yeb* + *ze*[∗] *yez* Since $ez = e(e'c'e'^*) = 0$ and $ze^* = (e'c'e'^*)e^* = 0$, $ce^* \text{y}ec = be^* \text{y}eb = b \text{x}b \text{y}b \text{x}b = b \text{y}b$ so $ce^*Kec = bKb$. As $ce^*Kec \subseteq cKc$, we get that

$$
bKb = ce^*Kec \subseteq cKc \tag{3.12}
$$

Next, we need to show that $zKz \subseteq cKc$. Take any $l \in K$, we have ce' ^{*}**le**'c = (*b* + *z*)*e*^{'*}**le**'(*b* + *z*)

$$
= be'^{*}le'b + be'^{*}le'z + ze'^{*}le'b + ze'^{*}le'z
$$
\n(3.13)

By computing mutually each term, we get that

$$
be^{'*}le'b = b(1 - e^*)l(1 - e)b = blb - bleb - be^*lb + be^*leb.
$$

$$
= blb - blbxb - bxblb + bxblbxb = blb - blb - blb + blb = 0
$$
\n(3.14)

$$
be^{i*}le'z = b(1 - e^{*})l(1 - e)z = blz - blez - be^{*}lz + be^{*}lez
$$

$$
= blz - bxblz = blz - blz = 0 \tag{3.15}
$$

$$
ze'*le'b = z(1 - e*)l(1 - e)b = zlb - zleb - ze*lb + ze*leb = zlb - zlb = 0
$$
 (3.16)

$$
ze^{'*}le'z = z(1 - e^*)l(1 - e)z = zlz - zlez - ze^*lz + ze^*lez = zlz
$$
\n(3.17)

By substituting equation 3.14, 3.15, 3.16 and 3.17 in 3.13, we get that $ce^{i*}le'c = zlz$. Since $l \in K$, by Lemma 3.2, $e^{i*}le \in K$, so

$$
zKz = ce^{'*}Ke^{'}c \subseteq cKc \tag{3.18}
$$

Recall that *z* = *e'* c'^{*e'*} ≠ *E K*. By Theorem 3.1, ∃*k* ∈ *K* such that *z* = *zkz* ∈ *zKz*. By equation 3.18, we get that *z* ∈ *zKz* ⊆ *cKc*. But *z* ∉ *bKb* ⊆ *cKc*. a contradiction. Therefore But $z \notin bKb \subseteq cKc$, a contradiction. Therefore,

$$
e^{'}Ke^{'}{}^{*}=0\tag{3.19}
$$

Therefore, $e'be'^* = 0$. Now we have to consider to two cases depending on eKe'^* whether it is zero or not If $eKe'^{*} = 0$, then $(e'be^{*})^{*} = eb^{*}e^{*} = -ebe^{*} \in eKe'^{*}$ substituting in equation (3.11), we get that $b = ebe^* + ebe^{'*} - ebe^{'*} + e^{'}be^{'*}$ = *ebe*[∗] ∈ *eKe*[∗] Therefore, $B = eKe^*$. Suppose now that $eKe^{'*} \neq 0$. Then $\exists k \in K$ such that $w = eke^{'*} \neq 0$. Since $w^*Kw = (eke^{'*})^*K(eke^{'*})$ $w^*Kw = (eke^{\'*})^*K(eke^{\'*})$ $e^{\prime}k^*e^*Keke^{\prime*} \subseteq e^{\prime}Ke^{\prime*} = 0,$
v Lemma 3.5 (3), rank *w* < 1 By Lemma 3.5 (3), rank $w \le 1$, so *rank*(*w*) = 0 or *rank*(*w*) = 1. Thus, *rank*(*w*) = 1 (because $w \ne 0$). Hence, $dim w(V)$ must be one, fix any $v_0 \in V$ such that $w(V) = Fv_0$. Let $v \in V$ such that

$$
w(v) = v_0. \tag{3.20}
$$

 $V = Im(w) + Ker(w)$ $= Fv + Ker(w)$ Let $w' = ele'^* \in eBe'^*$ be a non-zero transformation. Then $0 = e^{'}(l(e^*Ke)k + k(e^*Ke)l)e^{'}$ $= e^{t}$ $l(e^{*}Ke)ke^{i*} + e^{t}k(e^{*}Ke)le^{i*}$

 $= (e'le^*)K(eke^{i*}) + (e'ke^*)K(ele^{i*})$ $= w^{'*}Kw + w^*Kw'$ If $u \in Ker(w)$, then $0 = \psi(0(v), u) = \psi((w^{'*}Kw + w^*Kw')(v), u)$
 $= \psi(w^{'*}Kw(v) - u) + \psi(w^*Kw'(v) - u)$ $= \psi(w^*Kw(v), u) + \psi(w^*Kw'(v), u)$
 $= \psi(Kw(v), w'(u)) + \psi(Kw'(v), w(u))$ $= \psi(Kw(v), w'(u)) + \psi(Kw'(v), w(u))$

(*u*) = *u* = *K er*(*w*), so $w(u) = 0$ Since $u \in Ker(w)$, so $w(u) = 0$. $= \psi(Kw(v), w'(u))$
v Lemma 3.5 (1) By Lemma 3.5 (1), $w'(u) \in Fv_0$. Now either $w'(u) = 0$ or $w'(u) \neq 0$ for all $u \in Ker(w)$ If $w'(u) = 0$ for all $u \in Ker(w)$, then $Ker(w) \subseteq Ker(w')$ But $dim(w(v)) = dim(w'(v)) = 1$, so $Ker(w) = Ker(w')$ Suppose now that $w'(u) \neq 0$ for some $u \in Ker(w)$, then $Im(w') = Fv_0 \subseteq Im(w)$.
Since both have dimension 1 so $Im(w') = Im(w) = Fv_0$. Since both have dimension 1, so $Im(w') = Im(w) = Fv_0$.
Then by Theorem 3.6, B' is a $I_{-}I$ ie Then by Theorem 3.6, B' is a *J*−Lie. Now, we need to show that $B = B'$, by Theorem 3.7,
 $e(Y) = eKe^*K(y^{\perp})$ $e(V) = eKe^*K(v_0^{\perp})$ and

$$
eBe^{'*}(V) = e(V) \tag{3.21}
$$

we claim that $eB'e'*(V) \subseteq eBe'$ ^{*} we have $B' = eKe^* + \tau(eKf)$
 $e^{R'e^*} = e(eKe^* + \tau(eKf))$ $e^{i\theta}e^{i\theta} = e(eKe^* + \tau(eKf))e^{i\theta}$
 $= e^{i\theta}e^{i\theta}e^{i\theta} + e^{i\theta}e^{i\theta}e^{i\theta} - (e^{i\theta}Kf)^*$ $= eKe^*e^{'*} + eKfe^{'*} - (eKf)^*e^{'*}$ $= eKfe^{k} - f^*Ke^*e^{k} = eKfe^{k}$ Since $e^*e^* = 0$. Recall that $fe^{*} = f$,
 $e^R e^* = e^R f$ $eB'e^* = eBf$ Let $el f \in eKf$ $el f(v) = elzw(v) = elz(v_0) \in eKK(v_0) = eK(v_0^{\perp}) = e(v_0) \in e(V)$ because $(w(v) = v_0)$. By equation (3.21), $e(V) = eBe^{i\theta}$ $e^{i\phi}$ $e^{i\phi}$ \in e Since $V = Fv_0 + Ker(w)$ and $Ker(f) = Ker(w) = Ker(w')$ fore equation (3.1), and $w' \in eBe'^*$, for any $elf \in eKf = eB'e'^*$, there exist $w' \in eBe'e'$ such that $elf = w' \in eBe'$ ^{*}
Then $eB'e'^* \subseteq eBe'^*$ and $B' \subseteq B$. Therefore $B' = B$ Then $eB'e^* \subseteq eBe'^*$ and $B' \subseteq B$. Therefore $B' = B$.
There exist idempotent $(e + f^*)$ such that $B = (e + f^*)$ There exist idempotent $(e + f^*)$ such that $B = (e + f^*)K(e + f^*)^*$. Now, when $bKb = Fb$, by Theorem 3.8, $B' = B$ is a type one point space. Suppose that $Im(w') = Im(w) = Fv_0$ for any $w' \in eBe^{-\frac{1}{2}}$, we need to show that *B* is a type one point space Recall that $wzw = wz = e^{4\pi}z'e$ Recall that $wzw = w, z = e^{i\phi}z^{i}e^{i\phi}$ Let $f = wz = eb'e' * z'e$ Then $fe' = eb'e' * z'e(1 - e) = 0$ and $e' f = (1 - e) e b' e' * z' e = 0$ $f^2 = (eb'e'^*z'e)(eb'e'^*z'e) = eb'e'^*z'e = f$ $ef = eeb'e' * z'e = eb'e' * z'e = f$ and $fe = eb'e' * z'e = f$ Since $rank(f) = 1$, so $rank(f^*) = 1$ Recall that $f^* K f = f K f^* = 0$, we have $Im(w) = Im(f)$
for any $w' \in e R e^{i*}$, we have $Im(w) - Im(f) - Im(w')$ for any $w' \in eBe'^*$, we have $Im(w) = Im(f) = Im(w')$
we have going to prove that there exist point space B we have going to prove that there exist point space $B' = eKe^* + \tau(fKe'^*)$ such that $B = B'$
First we claim that $f_{W} = w'$ for any $w' \in eBe'^*$ First, we claim that $fw' = w'$ for any $w' \in eBe^{\lambda}$ Let $u \in Ker(w')$, then $fw'(u) = 0$
so $Ker(w') \subset Ker(f(w'))$, therefore so $Ker(w') \subseteq Ker(f(w'))$, therefore $Ker(w') = Ker(f(w'))$ (co-dimension 1) Since $Im(w') = Im(fw')$, so $fw' = w'$ for any $w' \in eBe'^*$ Second, we claim that $B \subseteq B' = eKe^* + \tau(fKe^{i*})$

take $K \in B$, then $K = eKe^* + eKe'^* + e'Ke^* + e'Ke^*$ $K = eKe^* + \tau(eKe'^*)$
 $K = eKe^* + \tau(w')$ $K = eKe^* + \tau(w')$

<u>nce</u> $f(w') = w'$ so Since $f w' = w'$, so
 $K = eKe^* + \tau (f \cdot \theta)$ $K = eKe^* + \tau (feKe'^*)$
•cause $fe = f$ For all because $fe = f$. For all $K \in B$, we have $K = eKe^* + \tau(fKe^{i*})$
 $B \subset B' - eKe^* + \tau(f)$ $B \subseteq B' = eKe^* + \tau(fKe'^*)$

we claim that *R* is a no Now, we claim that *B* is a point space, that is $bKb \neq Fb$. Then $eKe^*K(v_0) \subseteq eKe'^*(v_0) \subseteq fKe'^*(v) = Fv_0$ but $eKe^{'*}K(v_0) = e(V) \neq Fv_0$ because $ranke(V) > 1$. Finally, we claim that $B' = eKe^* + \tau(fKe'^*)$ is point space
By using equation (3.4), and our assume that $bKh = Fb$, we By using equation (3.4), and our assume that $bKb = Fb$, we have $B' = eKe^* + \tau(fKe'^*)$
 $= h \cdot K \cdot h + \tau(fKe'^*)$ = $bxKxb + \tau(fKe^{i*})$
- $bKh + \tau(fKe^{i*})$ = $bKb + \tau(fKe^{i*}) = Fb + \tau(fKe^{i*})$
 s any $c' \in R'$ $\exists l \in K$ $\lambda \in F$ such that for any $c' \in B'$, $\exists l \in K, \lambda \in F$ such that $c' = \lambda b + \tau (f l e^{i\pi})$ $c' = \lambda b + \tau (f l e^{i*})$

* all $v \in K$ we be for all $y \in K$, we have *c* $y' = (\lambda b + \tau (f l e^{i*})) y(\lambda b + \tau (f l e^{i*}))$
 $- \lambda^2 b y h + \lambda b y \tau (f l e^{i*}) + \lambda \tau (f l e^{i*}) y h +$ = $\lambda^2 b y b + \lambda b y \tau (f l e^{i*}) + \lambda \tau (f l e^{i*}) y b + \tau (f l e^{i*}) y (f l e^{i*})$
- $\lambda^2 b y b + \lambda (b y) \tau (f l e^{i*}) + \lambda \tau (f l e^{i*}) (b y)^* + \tau (f l e^{i*}) y \tau (f l e^{i*})$ = $\lambda^2 b y b + \lambda (b y) \tau (f l e^{i*}) + \lambda \tau (f l e^{i*}) (b y)^* + \tau (f l e^{i*}) y \tau (f l e^{i*})$
v I emma 3 4 (3) By Lemma 3.4 (3), = $\lambda^2 b y b + \lambda \tau (b y f l e^{i*}) + \lambda \tau (f l e^{i*} (b y)^*) + \tau (f l e^{i*} y f l e^{i*})$
 $-f l e^{i* y} (f l e^{i*})^* - (f l e^{i*})^* y f l e^{i*}$ *−f le'** y(*f le'**)* − (*f le'**)* y *f le'** = $\lambda^2 b y b + \lambda \tau (b y f l e^{i*}) + \lambda \tau (f l e^{i*} y b) + \tau (f l e^{i*} y f l e^{i*})$
- $f l e^{i*} y a^{i} f^* f^* - e^{i} f^* f^* y f l e^{i*}$ *–fle^{'*}ye['] l^{*}f^{*} − e[']l^{*}f^{*}yfle^{'*}* Since $fKf^* = f^*Kf = 0$ ⊷∗
∗∗≀ ∘∗ ∕∝ ∍

$$
c'yc' = \lambda^2 byb + \lambda \tau(byfle^{*}) + \lambda \tau(fle^{*}yb) + \tau(fle^{*}yfle^{*})
$$
\n(3.22)

we need to calculate each term Since $bKb = Fb$, so

$$
byb = \alpha b \tag{3.23}
$$

$$
\tau(byfle^{'}*) = \tau(byefle^{'}*) = \tau(bybxfle^{'}*) = \tau(\alpha bxfle^{'}*)
$$

$$
= \tau(\alpha(efle^{'}*) = \alpha \tau(efle^{'}*)
$$
\n(3.24)

For the third one we have

 $f le^{'*} y b = e f le^{'*} y b = b x f le^{'*} y b \in bAb$ Since $\tau(a) \in L$ for any $a \in A$, so $\tau(xfle^{'}y) \in K$, then $b\tau(xfle^{'}y)b \in bKb \subseteq B$
By I emma 3.5 (3) By Lemma 3.5 (3),

$$
\tau(fle^{'}*yb) = \tau(bxfle^{'}*yb) = b\tau(xfle^{'}*yb) = \beta b \tag{3.25}
$$

Lastly, we have $f le^* y f le^* = f le^* y e f le^* = f le^* y b x f le^*$ $= (fle^{*})yb(xfle^{*})$ Since $f^*Lf = 0$, so *bye*['] $l f^* x f l e^i = 0$. Then
 $(f l e^{i*}) y (e f l e^{i*}) = f l e^{i*} y h x f l e^{i*} = h y e^i l f^*$ $(fle^{*})y(efle^{*}) = fle^{*}ybxfle^{*} - bye^{*}lf^{*}xfle^{*}$ $= (fle^{*}yb - (fle^{*}yb)^*)xfle^{*}$

= $\tau(fle' * yb)xfle' * = \beta b(xfle' *)$

$$
\implies \tau(fle^{'}\mathbf{y}fle^{'}\mathbf{y}) = \beta\tau(fle^{'}\mathbf{y})
$$

Substituting equation 3.23, 3.24, 3.25 and 3.26 in equation 3.22. We get that

 $c'yc' = (\lambda^2 \alpha)b + (\alpha \lambda)\tau(efle'^*) + (\lambda \beta)b + \beta \tau(fle'^*)$
- $(\lambda^2 \alpha + \lambda \beta)b + (\alpha \lambda + \beta) \tau(fle'^*)$ = $(\lambda^2 \alpha + \lambda \beta)b + (\alpha \lambda + \beta)\tau(fle^{i*})$
- $(\lambda \alpha + \beta)(\lambda b + \tau(fle^{i*}))$ = $(\lambda \alpha + \beta)(\lambda b + \tau (fle^{*}))$
c'yc' = $(\lambda \alpha + \beta)c^{'}$ $c'yc' = (\lambda \alpha + \beta)c'$

berefore $c'Kc'$ Therefore, $c' Kc' = Fc'$ *B*^{\prime} is point space and *B* \subseteq *B*^{\prime} but *B* is maximal. Therefore $B = B²$ *B* is a type one point space

4. CONCLUSION

Every Jordan-Lie inner ideals of the orthogonal Lie algebras is either $B = eKe^*$ or *B* is a type one point space, one can find an idempotent $e \in A$ such that this inner ideal can be written in the form eKe^* . We study the relationship between these algebras and their corresponding Lie ones. Also study Jordan-Lie inner ideals of these Lie algebras. proved that every Jordan-Lie inner ideal of the orthogonal Lie algebra of an associative algebra (finite dimensional) is generated by an idempotent $e \in A$ with the property $e^*e = 0$.

FUNDING

None

ACKNOWLEDGEMENT

None

CONFLICTS OF INTEREST

The author declares no conflict of interest.

REFERENCES

- [1] G. Benkart, "The Lie inner ideal structure of associative rings," *Journal of Algebra*, vol. 43, pp. 561–584, 1976.
- [2] G. Benkart, "On inner ideals and ad-nilpotent elements of Lie algebras," *Trans. Amer. Math. Society*, vol. 232, pp. 61–81, 1977.
- [3] A. Lopez, E. Garcea, and M. G. Lozano, "An Artinian theory for Lie algebras," *Journal of Algebra*, vol. 319, no. 3, pp. 938–951, 2008.
- [4] A. Lopez, E. Garcea, and M. G. Lozano, "The Jordan algebras of a Lie algebra," *Journal of Algebra*, vol. 308, no. 1, pp. 164–177, 2007.
- [5] G. Benkart and A. Lopez, "The Lie inner ideal structure of associative rings revisited," *Communications in Algebra*, vol. 37, no. 11, pp. 3833–3850, 2009.
- [6] A. A. Baranov and H. Shlaka, "Jordan-Lie inner ideals of Finite dimensional associative algebras," *Journal of Pure and Applied Algebra*, 2019.
- [7] M. Hasan, D. A. Shlaka, and Mousa, "Inner ideals of the Special Linear Lie algebras of Associative simple Finite Dimensional Algebras," *AIP Conference Proceedings*.
- [8] S. Falah, Kareem, M. Hasan, and Shlaka, "Inner Ideals of the symplectic simple Lie algebra," *Journal of Physics: Conference Series*.
- [9] M. Knus, *The book of involutions*. Providence, R.I: American Mathematical Society, 1998.
- [10] G. Benkart and A. F. Lopez, "The Lie inner ideal structure of associative rings revisited," *Communications in Algebra*, vol. 37, no. 11, pp. 3833– 3850, 2009.
- [11] M. Hasan, D. A. Shlaka, and Mousa, "Inner ideals of the Special Linear Lie algebras of Associative simple Finite Dimensional Algebras," *AIP Conference Proceedings*.
- [12] A. A. Baranov, "Classication of the direct limits of involution simple associative algebras and the corresponding dimension groups," *Journal of Algebra*, vol. 381, pp. 7395–7395, 2013.
- [13] W. Scharlau, "Quadratic and hermitian forms," vol. 270, Springer-Verlag, 1985.