Generalized mean function for n-variable

__

Hadeel Ali Hassan Shubber

Thi-Qar University/College of Education for Pure Sciences Department of Mathematics/Iraq www.hadeelali2007@yahoo.com

ABSTRACT:

In this work we present the theory of an integral mean for generalized GN' function .We will show under what conditions the mean function is a GN'-function and satisfies a Δ - condition. Moreover, we examine how the minimizing points in the definition of the mean function affect a basic property of the ordinary integral mean.

Keywords :Generalized GN'-function for n-variable,∆-condition, Generalized mean function.

الملخص:

في هذا العمل نقدم نظرية المتوسط للتكامل للدالة – 'GN لnمن المتغير ات. وسنبين الشروط التي تجعلها دالة – $\rm_{G N}$ والتي تحقق شرط $\rm \Delta - \Delta$ وكذلك نبين ان اصغر انقطة في تعريف الدالة القيمة المتوسطة وتأثير ها بالخو اص متوسط التكامل الاعتباد*ي.*

1.Introduction and Basic Concept:

In what follows T will denote a space of point with σ -finite measure and E^n a ndimensional Euclidean space.

Definition1.1 Orlicz(1932)

Orlicz space $\mathcal{L}_{\mathcal{M}} = \mathcal{L}_{\mathcal{M}}(\Omega, \mu)$ is a Banach space consisting of all

 $f \in S(\Omega, \mu)$ *where* $S(\Omega, \mu)$ is a ring of all measurable functions on the space with bounded measure space (Ω, μ) .

such that

$$
\int_{\Omega} M(|f|) d\mu < \infty,
$$

With the Luxemburg Nakano norm

$$
||f||_M = \inf \{ \lambda > 0 : \int_{\Omega} M(\frac{|f|}{\lambda}) d\mu \le 1 \}
$$

Orlicz spaces L_m are natural generalization of L_p space, where $L_p(I)$ consists of all the measurable functions f defined on the interval I for which

$$
\left(\int\limits_{I} |f|^{p}\right)^{\frac{1}{p}} < \infty \qquad \text{Corothers}(2000)
$$

They have very rich topological and geometrical structures; they may possess peculiar properties that do not occur in an ordinary L_p space.

Definition 1.2 Borwein (1997)

Let $M: I \to R$ be defined on some interval of the real line R. A function M is called convex if

$$
M\left(\frac{u_1 + u_2}{2}\right) \le \frac{1}{2}(M(u_1) + M(u_2))\tag{1}
$$

for all $u_1, u_2 \in I$

we can generalize the inequality (1) for any $u_1, u_2, ..., u_n$ by

$$
M\left(\frac{u_1 + u_2 + \dots + u_n}{n}\right) \le \frac{1}{n} (M(u_1) + \dots + M(u_n))
$$
\n(2)

Definition 1.3 Hassen(2007)

Let $M(t, x, y)$ be a real valued non-negative function defined on $T \times E^n \times E^n$ such that:

(i) $M(t, x, y) = 0$ if and only if *x*, *y* are the zero vectors $x, y \in E^n$, $\forall t \in T$

(ii) $M(t, x, y)$ is a continuous convex function of x, y for each t and a measurable function of *t* for each *x*, *y*

(iii) For each
$$
t \in T
$$
, $\lim_{\begin{subarray}{l} x \to \infty \\ y \to \infty \end{subarray}} \frac{M(t, x, y)}{\|x\| \|y\|} = \infty$, and

(iv) There are constants $d \ge 0$ and $d_1 \ge 0$ such that

$$
\inf_{t} \inf_{\substack{c \ge d \\ c' \ge d_1}} k(t, c, c') > 0 \tag{1}
$$

__

Where
$$
k(t, c, c') = \frac{M(t, c, c')}{\overline{M}(t, c, c')}
$$

 $\overline{M}(t, c, c') = \sup M(t, x, y), M(t, c, c') = \inf M(t, x, y)$ $y = c$ $|x|=c$ *y c x* $\begin{vmatrix} x \\ y \end{vmatrix} = c$ $\begin{vmatrix} x \\ y \end{vmatrix} = c$ $\begin{vmatrix} x \\ y \end{vmatrix} = c'$ $=c$
 $=c'$ a' = sup $M(t, x, y)$, $M(t, c, c')$ = inf $M(t, x, y)$ and if $d > 0$ and $d_1 > 0$

, then $\overline{M}(t, d, d_1)$ is an integrable function of *t*. We call the function satisfying the properties (i)-(iv) a generalized N*-function or a GN*-function.

Definition 1.4:

Let $M(t, x_1, x_2, \ldots, x_n)$ be a real valued non-negative function defined on $T \times E^n \times E^n \times \dots \times E^n$ such that: *n times* \overline{a} (i) $M(t, x_1, x_2, \dots, x_n) = 0$ if and only if x_1, x_2, \dots, x_n are the zero vectors *n* $x_1, x_2, ..., x_n \in E^n, \forall t \in T$ (ii) $M(t, x_1, x_2, \ldots, x_n)$ is a continuous convex function of x_1, x_2, \ldots, x_n for

each *t* and a measurable function of *t* for each $x_1, x_2, ..., x_n$,

(iii) For each
$$
t \in T
$$
,
$$
\lim_{\begin{subarray}{c} |x_1| = \infty \\ x_2 \\ \vdots \\ x_n \end{subarray}} \frac{M(t, x_1, x_2, ..., x_n)}{\|x_1\| \|x_2\| \cdot \|x_n\|} = \infty
$$
, and

(iv) There are constants $d_1 \geq 0, d_2 \geq 0, \ldots, d_n \geq 0$ such that

$$
\inf_{t} \inf_{\substack{c \ge d \\ c^1 \ge d \\ c^2 \ge d^2 \\ n-n}} k(t, c_1, c_2, \dots, c_n) > 0 \tag{1}
$$

Where

$$
k(t, c_1, c_2, \dots, c_n) = \frac{M(t, c_1, c_2, \dots, c_n)}{\overline{M}(t, c_1, c_2, \dots, c_n)},
$$

$$
\overline{M}(t, x_1, c_2, \dots, c_n) = \sup_{\substack{|x_1| = c_1 \\ x_2| = c_2 \\ x_n| = c_n}} M(t, x_1, x_2, \dots, x_n),
$$

$$
\underline{M}(t, c_1, c_2, \dots, c_n) = \inf_{\substack{|x_1| = c_1 \\ x_1| = c_1 \\ x_2| = c_2 \\ x_n| = c_n}} M(t, x_1, x_2, \dots, x_n)
$$

and if $d_1 > 0$, $d_2 > 0$,..., $d_n > 0$, then $\overline{M}(t, d_1, d_2, \ldots, d_n)$ is an integrable function of *t*. We call the function satisfying the properties (i)-(iv) a generalized N'-function or a GN'-function.

Definition 1.5 Hassen (2010)

We say that a GN^{*}-function $M(t,x,y)$ satisfies a Δ -condition if there exists a constant $K \ge 2$ and non-negative measurable functions $\delta_1(t)$ and $\delta_2(t)$ such that the function $M(t, 2\delta_1(t), 2\delta_2(t))$ is integrable over the domain *T* and such that for almost all *t* in *T* we have

$$
M(t, 2x, 2y) \le KM(t, x, y)
$$
 (1)

for all *x* and *y* satisfying $|x| \ge \delta_1(t)$ and $|y| \ge \delta_2(t)$.

We say that a GN*-function satisfies a Δ_0 -condition if it satisfies a Δ condition with $\delta_1(t) = 0$ and $\delta_2(t) = 0$ for almost all *t* in *T*.

In Definition 1.5 we could have used any constant $\tau > 1$ in place of the scalar 2 in (1).

Definition 1.6:

We say that a GN'-function $M(t, x_1, x_2,...,x_n)$ satisfies a Δ -condition if there exists a constant $K \ge 2$ and non-negative measurable functions $\delta_1(t), \delta_2(t), \ldots$

such that the function $M(t, 2\delta_1(t), 2\delta_2(t), \ldots, 2\delta_n(t))$ is integrable over the domain *T* and such that for almost all *t* in *T* we have

__

$$
M(t, 2x_1, 2x_2, \dots, 2x_n) \le KM(t, x_1, x_2, \dots, x_n)
$$
 (1)

for all
$$
x_1, x_2, ..., x_n
$$
 satisfying $|x_1| \ge \delta_1(t)$, $|x_2| \ge \delta_2(t), ..., |x_n| \ge \delta_n(t)$.

Thus, according to this definition, the statement above can be formulated as:

 $\delta_n(t)$ such that the function $M(t, 2\delta_1(t))$,

domain T and such that for almost all t in T $M(t, 2x_1, 2x_2, ..., 2x_n) \le KM$

for all $x_1, x_2, ..., x_n$ satisfying $\left| x_1 \right| \ge \delta_1(t)$, $\left| x_1 \right|$

Thus, according to this definitio We say that a GN'-function satisfies a Δ_0 -condition if it satisfies a Λ condition with $\delta_1(t) = 0$, $\delta_2(t) = 0$,..., $\delta_n(t) = 0$ for almost all *t* in *T*.

In Definition1.6we could have used any constant $\tau > 1$ in place of the scalar 2 in (1).

Definition 1.7 Hassen (2007)

For each *t* in *T* and *h>0* let

$$
M_h(t, x, y) = \int_{E^n} M(t, x + z, y + w) J_h(z) J_h(w) dz dw,
$$

where $J_h(z)$ and $J_h(w)$ are no negative, c^{∞} function with compact

support in a ball of a radius *h* such that $\iint_{E^n} L_n(z) J_h(w) dt dt =$ $J_h(z)J_h(w)dtdt = 1.$

Moreover, let x_0 and y_0 are any tow points (depending on *h, t*) which satisfy the inequality

$$
\boldsymbol{M}_h(t, x_0, y_0) \leq \boldsymbol{M}_h(t, x, y)
$$

for all *x* and *y* in E^n . Then the function $\hat{M}_h(t, x, y)$ defined for each *t* in *T* and $h > 0$ by

$$
\hat{M}_h(t, x, y) = M_h(t, x + x_0, y + y_0) - M_h(t, x_0, y_0)
$$

is called a **mean function** for $M(t, x, y)$ relative to the minimizing point x_0 and y_0 .

Definition 1.8:

For each *t* in *T* and *h>0* let

$$
M_{h}(t, x_1, x_2, \ldots, x_n) =
$$

$$
\int_{E^{n} E^{n}} \int_{E^{n}} M(t, x_{1} + y_{1}, x_{2} + y_{2}, ..., x_{n} + y_{n}) J_{h}(y_{1}) J_{h}(y_{2}) ... J_{h}(y_{n}) dy_{1} dy_{2} ... dy_{n}
$$

where $J_h(y_1)$, $J_h(y_2)$,..., $J_h(y_n)$ are no negative, c^{∞} function with compact support in a ball of a radius *h* such that

$$
\int_{E^n} \int_{E^n} \ldots \int_{E^n} J_h(y_1) J_h(y_2) \ldots J_h(y_n) dt dt \ldots dt = 1^{\circ}.
$$
 Moreover, let x_{01} ,

 $x_{02},..., x_{0n}$ are any points (depending on *h, t*) which satisfy the inequality

$$
M_h(t, x_{01}, x_{02},..., x_{0n}) \leq M_h(t, x_1, x_2,..., x_n)
$$

for all $x_1, x_2, ..., x_n$ in E^n . Then the function $\hat{M}_h(t, x_1, x_2, ..., x_n)$ $\hat{M}_h(t, x_{1}^-, x_{2}^-, \ldots, x_{n}^+)$ defined for each t in *T* and $h > 0$ by

$$
\hat{M}_h(t, x_1, x_2, \dots, x_n) = M_h(t, x_1 + x_{01}, x_2 + x_{02}, x_n + x_{0n}) - M_h(t, x_{01}, x_{02}, \dots, x_{0n})
$$

is called a **mean function** for $M(t, x_1, x_2, ..., x_n)$ relative to the minimizing points x_{01} , x_{02} , ..., x_{0n} .

Theorem 1.9 Hassen (2007)

If $M(t, x, y)$ is a GN*-function for which $\overline{M}(t, c, c')$ is integrable in *t* for each *c* and *c'*, then $\hat{M}_h(t, x, y)$ is a GN*-function.

Theorem 1.10 Hassen (2007)

 $(t, x_1, x_2, ..., x_n) =$
 \cdot , $x_n + y_n J_n(y_1)$

) are no negative,

hat
 $dt dt \cdot dt = \Gamma$.

ng on *h*, *t*) which s
 \cdot , x_{0n} $\leq M_h(t, x_2)$
 \cdot x_{01} , $x_2 + x_{02}$, x_n
 \cdot x_{01} , $x_2 + x_{02}$, x_n
 \cdot x_1 , x_2 , \cdot , If $M(t, x, y)$ is a GN*-function satisfying a Δ -condition and for which $\overline{M}(t, c, c')$ is integrable in *t* for each *c* and *c*['], then $\hat{M}_h(t, x, y)$

satisfies a Δ - condition.

Theorem 1.11 Hassen (2007)

For each $h > 0$ let x_0^h and y_0^h be the minimizing point of $M_h(t, x, y)$

defining $\hat{M}_h(t, x, y)$. Then for each *t* in *T* and each *x*, *y* in *E*^{*n*}, there exists $K(t, x, y)$ such that

__

$$
\lim_{h \to 0} \hat{M}_h(t, x, y) = M(t, x, y) + K(t, x, y) \lim_{h \to 0} |x_0^h| \lim_{h \to 0} |y_0^h|
$$

Corollary 1.12 Hassen (2007)

Suppose $M(t, x, y)$ is a GN^{*}-function such that $M(t, x, y) = M(t, -x, -y)$.

Then for each *t* in *T* and *x*, *y* in E^n , we have

$$
\lim_{h=0} M_h(t, x, y) = \hat{M}(t, x, y)
$$

Theorem 1.13 Hassen (2007)

The sets *B* and A_h are closed convex sets.

Theorem 1.14 Hassen (2007)

Let $B_e = \{(x, y): M(t, x, y) < e\}$ for each *t* in *T*. Then for given any $e > 0$,

there is a constant $h_0 > 0$, such that $A_h \subset B_e$ for each $h \le h_0$.

Theorem 1.15 Hassen (2007)

Suppose $M(t, x, y)$ is a GN^{*}-function which is strictly convex in *x* and *y*

for each *t*. Then $h, A_h = \{(0,0)\}$ for each *h*.

Theorem 1.16 Hassen (2013)

,

A necessary and sufficient condition that (1.5.1) holds is that if

 $x_{1} \leq |y_{1}|, |x_{2}| \leq |y_{2}|, \ldots, |x_{n}| \leq |y_{n}|$ then there exists constants $K \geq 1, d_{1} \geq 0, d_{2} \geq 0$

...,
$$
d_n \ge 0
$$
 such that $M(t, x_1, x_2,...,x_n) \le KM(t, y_1, y_2,...,y_n)$ for each *t* in *T*,
 $|x_1| \ge d_1, |x_1| \ge d_1, ..., |x_n| \ge d_n$

Theorem 1.17 Hassen (2010)

A GN'-function $M(t, x_1, x_2, ..., x_n)$ satisfies a Δ – condition if and only if

given any $\tau > 1$ there exists a constant $K_{\tau} \geq 2$ and a non-negative measurable functions $\delta_1(t)$, $\delta_2(t)$,..., $\delta_n(t)$ such that $\overline{M}(t, 2\delta_1(t), 2\delta_2(t), \ldots, 2\delta_n(t))$ is integrable over *T* and such that for almost all *t* in *T* we have

$$
M(t, \alpha_1, \alpha_2, ..., \alpha_n) \le K_{\tau} M(t, x_1, x_2, ..., x_n),
$$
 (1)

whenever $\left| x \right| \geq \delta_1(t)$, $\left| x \right| \geq \delta_2(t)$, $\left| x \right| \geq \delta_n(t)$.

2. Generalized mean function:

Theorem 2.1:

If $M(t, x_1, x_2, \ldots, x_n)$ is a GN'-function for which $\overline{M}(t, c_1, c_2, \ldots, c_n)$ is integrable in *t* for each $c_1, c_2, ..., c_n$, then $\hat{M}_h(t, x_1, x_2, ..., x_n)$ $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ is a GN'-function.

Proof:

We will show this result by justifying conditions (i)-(iv) of the definition 3.1.1. By hypothesis and the choice of $x_{01}, x_{02},..., x_{0n}$, we have for each *h*, $\hat{A}_{h}(t, x_1, x_2, ..., x_n) \geq 0$ $\hat{M}_h(t, x_1, x_2, ..., x_n) \ge 0$ and $\hat{M}_h(t, 0, 0, ... 0) = 0$. On the other hand, if $x_1 \neq 0, x_2 \neq 0, ..., x_n \neq 0$, then $M(t, x_1, x_2, ..., x_n) > 0$, and hence there are constants h_{01} , h_{02} ,..., h_{0n} such that

$$
a = \inf_{\begin{subarray}{l} |w| \le h_{0i} \\ \text{if } |w| \le h_{0i} \end{subarray}} M(t, x_1 + w_1, x_2 + w_2, ..., x_n + w_n) > 0
$$

However, since $M(t, x_1, x_2, ..., x_n) = 0$ if and only if $x_1 = 0, x_2 = 0, ..., x_n = 0$, the minimizing points x_{01} tends to zero, x_{02} tends to zero,..., x_{0n} tends to zero as *h* tends to zero. Therefore, we can choose $g_{01} \le h_{01}$, $g_{02} \le h_{02}$,..., $g_{0n} \le h_{0n}$ such that if $h \le g_{01}$, $h \le g_{02}$,..., $h \le g_{0n}$ then $M(t, x_{01} + y_{01}, x_{02} + y_{02},...,x_{0n} + y_{0n}) < a$ for all $y_{01}, y_{02},..., y_{0n}$ for which $|x_{01} + y_{01}| < h$, $|x_{02} + y_{02}| < h$, $|x_{0n} + y_{0n}| < h$ for this $g_{01}, g_{02},..., g_{0n}$ we obtain the inequality

__

$$
M(t, x_1 + x_{01} + y_{01}, x_2 + x_{02} + y_{02},...,x_n + x_{0n} + y_{0n}) \ge
$$

$$
\inf_{\substack{|w| \le g_{01} \ x_1 \le h}} M(t, x_1 + w_1, x_2 + w_2, ...,x_n + w_n) \ge a
$$

$$
> M(t, x_{01} + y_{01}, x_{02} + y_{02},..., x_{0n} + y_{0n})
$$

whenever $|x_{01} + y_{01}| \le g_{01}$, $|x_{02} + y_{02}| \le g_{02}$,..., $|x_{0n} + y_{0n}| \le g_{0n}$. This means for some $h \le g_{01}$, $h \le g_{02}$,..., $h \le g_{0n}$ we have

$$
M(t, x_1 + x_{01} + y_{01}, x_2 + x_{02} + y_{02},...,x_n + x_{0n} + y_{0n}) >
$$

$$
M(t, x_{01} + y_{01}, x_{02} + y_{02},...,x_{0n} + y_{0n})
$$

$$
M_h(t, x_1 + x_{01}, x_2 + x_{02},...,x_n + x_{0n}) > M_h(t, x_{01}, x_{02},...,x_{0n})
$$

or $\hat{M}_h(t, x_1, x_2, ..., x_n) > 0$ $\hat{M}_h(t, x_1, x_2, \dots, x_n) > 0$ if $x_1 \neq 0, x_2 \neq 0, \dots, x_n \neq 0$ which proves property (i).

Properties (ii) and (iii) for $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ $\hat{M}_h(t, x_1, x_2, \dots, x_n)$ follow easily from the same properties for $M(t, x_1, x_2, \ldots, x_n)$. Let us now show (iv). By assumption, there are constants $d_1 \geq 0$, $d_2 \geq 0$,..., $d_n \geq 0$ such that

$$
\tau(t)\overline{M}(t, c_1, c_2, \dots, c_n) \leq \underline{M}(t, c_1, c_2, \dots, c_n)
$$
 (1)

for all $c_1 \ge d_1, c_2 \ge d_2, ..., c_n \ge d_n$. Furthermore, it is not difficult to show that for all c and c' we have

$$
\overline{M}(t, c_1, c_2, \dots, c_n) \ge \sup_n M(t, x_1, x_2, \dots, x_n)
$$
\n
$$
|x_i| \le c_i
$$
\n(2)

 $1 \leq i \leq n$

and for some fixed $w_1, w_2,...,w_n$

$$
\inf_{\substack{|x| \ge c \\ |x| \le n \\ 1 \le i \le n}} M(t, x_1 + w_1, x_2 + w_2, ..., x_n + w_n) \le \inf_{\substack{|x| = c \\ |x| \le i \\ 1 \le i \le n}} M(t, x_1 + w_1, x_2 + w_2, ..., x_n + w_n)
$$
\n(3)

By using (2), we obtain (for each *t* in *T*)that

$$
\tau(t) \sup M(t, w_1, w_2, ..., w_n) \le \tau(t) \sup_{\substack{|r| < c + |x_1 + x_2| \\ \text{for } r \le t \le n}} M(t, r_1, r_2, ..., r_n) \tag{4}
$$
\n
$$
\le \tau(t) \sup_{\substack{|r| < c + |x_1 + x_2| \\ \text{for } r \le t \le n}} M(t, r_1, r_2, ..., r_n)
$$
\n
$$
\left| \int_{\substack{|r| < c + |x_1 + x_2| \\ \text{for } r \le t \le n}} M(t, r_1, r_2, ..., r_n) \right|
$$

where $w_i = x_i + x_{0i} + r_i$ for *i*=1 to *n*. On the other hand, by (1) and (3), we achieve

$$
\tau(t) \sup_{\substack{|w|=c+|x_{0i}+x_{i1}|\\1\leq i\leq n}} M(t,w,w_2,...,w_n) \leq \inf_{\substack{|w|=c+|x_{0i}+x_{i1}|\\1\leq i\leq n}} M(t,w_1,w_2,...,w_n) \quad (5)
$$
\n
$$
\leq \inf_{\substack{|x|=c+|x_{0i}+x_{i1}|\\1\leq i\leq n}} M(t,x_1+x_{01}+r_1,x_2+x_{02}+r_2,...,x_n+x_{0n}+r_n).
$$

$$
\begin{aligned}\n&\leq \inf_{\begin{subarray}{c} |x| = c_i \\ 1 \leq i \leq n \end{subarray}} M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \dots, x_n + x_{0n} + r_n).\n\end{aligned}
$$

If we combine (4) and (5), then for all $c_i \ge d_i$ for *i*=1 to *n* and we arrive at

__

$$
\tau(t) \sup_{\left|x\right|_{i}} M(t, x_{1} + x_{01} + r_{1}, x_{2} + x_{02} + r_{2},...,x_{n} + x_{0n} + r_{n}) \leq
$$
\n
$$
\left|\sum_{i=1}^{n} \left| e_{i} \right|
$$
\n
$$
\inf_{1 \leq i \leq n} M(t, x_{1} + x_{01} + r_{1}, x_{2} + x_{02} + r_{2},...,x_{n} + x_{0n} + r_{n})
$$
\n
$$
\left|\sum_{i=1}^{n} \left| e_{i} \right| \leq i \leq n} \right|
$$

From this inequality, we obtain

$$
\inf_{\begin{subarray}{l} |x| = c_i \\ 1 \le i \le n \end{subarray}} \hat{M}_h(t, x_1, x_2, \dots, x_n) \ge \iint_{E^n E^n} \dots \int_{E^n E^n} \inf_{E^n} \{M(t, x_1 + x_0 + r_1, x_2 + x_0 + r_2, \dots, x_n + x_0 + r_n) \}
$$
\n
$$
= c_i
$$
\n
$$
1 \le i \le n
$$
\n
$$
-M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \dots, x_n + x_{0n} + r_n) \} J_h(r_1) J_h(r_2) \dots J_h(r_n) dr_n dx_1 \dots dx_n
$$

$$
\geq \int_{E} \int_{E} \left\{ \tau(t) \sup_{x} M(t, x_{1} + x_{01} + r_{1}, x_{2} + x_{02} + r_{2}, ..., x_{n} + x_{0n} + r_{1}) \right\}
$$
\n
$$
= \sum_{i=1}^{n} \left. \frac{1 \leq i \leq n}{i} \right|_{E_{i} = c_{i}}
$$
\n
$$
-M(t, x_{01} + r_{1}, x_{02} + r_{2}, ..., x_{0n} + r_{n}) J_{h}(r_{1}) J_{h}(r_{2}) ... J_{h}(r_{n}) \right\} dr_{1} dr_{2} ... dr_{n},
$$
\n(6)

and

$$
\sup_{\substack{|x_n| = c_i \ 1 \le i \le n}} \hat{M}_h(t, x_1, x_2, \dots, x_n) \le \lim_{\substack{E^n \ E^n E^n |x_n| = c_i \ 1 \le i \le n}} \sup_{\substack{|x_n| = c_i \ 1 \le i \le n}} (t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \dots, x_n + x_{0n} + r_n) J_h(r_1) J_h(r_2) \dots J_h(r_n) dr_n dr_1 \dots dr_n.
$$
\n(7)

Moreover, since $\limsup M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, ..., x_n + x_{0n} + r_n) = \infty$ $1≤i≤n$ _{1≤i≤n} $c_i = \infty$ $|x_i| = c_i$

for fixed x_{0i} , r_i for $1 \le i \le n$ such that $|r_i| \le h_i$ for $1 \le i \le n$ given

$$
K_1(t) = 2 \sup_{\substack{|r_i| \le h_i \\ 1 \le i \le n}} M(t, x_{01} + r_1, x_{02} + r_2, \dots, x_{0n} + r_n) / \inf_{t} \tau(t)
$$

there are $d_i > 0, 1 \le i \le n$ such that if $c_i \ge d_i, 1 \le i \le n$ *i d i* $c_i \geq d'_i$, $1 \leq i \leq n$, then

$$
\sup_{\substack{|x_i|=c_i\\1\le i\le n}} M(t, x_1+x_{01}+r_1, x_2+x_{02}+r_2,...,x_n+x_{0n}+r_n) \ge K_1.
$$

Therefore, by using (3.3.8) and (3.3.9), we achieve the inequalities $\geq \tau(t)$ – $\leq i \leq$ $=$ $\leq i \leq$ $=$ (t) $\sup \hat{M}_{h}(t, x^+, x^-, ..., x^-)$ inf $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ 1 2 1 1 2 $\frac{1 \leq i \leq n}{2} \geq \tau(t)$ \hat{M} $_{h}$ $(t, x, x, ..., x)$ \hat{M} $_{h}$ $(t, x, x, ..., x)$ $h^{(l)}, h^{(l)}, h^{(l)}, \ldots, h^{(l)}$ $i \leq n$ $x_i \models c$ $h^{(l_1, \lambda_1)}, \lambda_2, \ldots, \lambda_n$ *i* ≤*n* $x_i \models c$ *i i i i* τ

$$
\sup_{\substack{r \leq h \\ \text{inf} \\ \left| \frac{c_1}{r} \right| \leq h \\ \text{inf} \\ \left| \frac{c_1}{r} \right| \leq i \leq n}} \frac{M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \dots, x_n + x_{0n} + r_n)}{\left| \prod_{\substack{r \leq h \\ \text{inf} \\ \frac{c_1}{r} \leq i \leq n}} M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \dots, x_n + x_{0n} + r_n)} \right|} \geq \tau(t) - \frac{1}{2} \inf_{t} \tau(t)
$$
\n(8)

for all $c_i \ge d_{0i} = \max(d_i, d_i', |x_{0i}|)$. Taking the infimum of both sides of (2.1.8) over *t*, shows the first part of the property (iv). To show the latter part, assume $d_{0i} > 0, 1 \le i \le n$ and . Then $\sup_{|x| \le 1} \hat{M}_h(t, x_1, x_2, ..., x_n)$ 1 0 $h^{(l_1,\lambda_1,\lambda_2,\ldots,\lambda_n)}$ *i n* $\left| \begin{matrix} x \\ i \end{matrix} \right| = d$ $M_{h}(t, x, x, x, \ldots, x)$ *i* $\leq i \leq$ $=$ is integrable over *t* in *T* since

it is bounded by the integrable function $\overline{M}(t, d_{21}, d_{22},..., d_{2n})$ where $d_{2i} = d_{0i} + |x_{0i}| + h$. This proves property (iv) and

the theorem.■

In the next theorem we show under what condition $\hat{M}_h(t, x_1, x_2, \dots, x_n)$ $\hat{M}_h(t, x_1, x_2, \dots, x_n)$ satisfies a Δ - condition.

Theorem 2.2:

If $M(t, x_1, x_2,...,x_n)$ is a GN'-function satisfying a Δ -condition and for which $\overline{M}(t, c_1, c_2, \ldots, c_n)$ is integrable in *t* for each c_1, c_2, \ldots, c_n then $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ satisfies a Δ - condition.

__

Proof:

It suffices to show that $M_h(t, x_1, x_2, \ldots, x_n)$ satisfies a Δ -condition.

For, $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ $\hat{M}_h(t, x_1, x_2, \dots, x_n)$ is the sum of a constant and a translation of $M_h(t, x_1, x_2, \ldots, x_n)$ and neither of these operations affects the growth condition. Let us observe first that if $|x_i| \ge 2$ for $1 \le i \le n, |z_i| \le h \le 1$ for $1 \le i \le n$ then $2x_i + z_i \leq 3|x_i + z_i|$ for $1 \leq i \leq n$. Hence, by Theorem (1.16), there are constants $K \geq 1$ and $d_1 \geq 0$ such that

 $K_3M_h(t, x_1, x_2,...,x_n)J_h(z_1)J_h(z_2)...J_h(z_n)dz_1dz_2...dz_n$ $\sum_{n=1}^{n}$ $\sum_{n=1}^{n}$ $\sum_{n=1}^{n}$ $\sum_{n=1}^{n}$ $\sum_{n=1}^{n}$ $\sum_{n=1}^{n}$ *E E* $M_h(t, 2x_1, 2x_2, \ldots, 2x_n) \le k \int \int \ldots \int M(t, 3(x_1 + z_1), 3(x_2 + z_2), \ldots, 3(x_n + z_n))$ for all x_i for $1 \le i \le n$ such that $|x_i| \ge d_2$ for $1 \le i \le n$ and $d_2 = \max(d_1, 2)$. On the other hand ,by theorem (1.17), c_i for $1 \le i \le n$ such that $|x_i| \ge d_2$ for $1 \le i \le n$ and $d_2 = \max(d_1, 2)$. On the

nd , by theorem (1.17),

... $\int M(t, 3(x_1 + z_1), 3(x_2 + z_2), \dots, 3(x_n + z_n)) J_{n-1}(z_1) J_{n-1}(z_2) \dots J_{n-1}(z_n) dz_1 dz_2 \dots$

 $K_3 M_h(t, x_1, x_2, \ldots, x_n)$ $\int_{-1}^{1} ... \int_{-1}^{1} M(t,3(x_1 + z_1),3(x_2 + z_2),...3(x_n + z_n)) J_{h}(z_1) J_{h}(z_2)...J_{h}(z_n) dz_1 dz_2...dz_n \leq$ $E^n E^n E^n$ there is a constant $K_3 \geq 2$, $\delta_i(t) \geq 0$ for $1 \leq i \leq n$ such that for almost all *t* in *T*for all x_i, z_i for $1 \le i \le n$ such that $|x_i + z_i| \ge \delta_i(t)$ for $1 \le i \le n$ where $|z_i| \le h_i$ for $1 \le i \le n$

.By combining the above two inequalities, we achieve

$$
M_h(t, 2x_1, 2x_2, \dots, 2x_n) \le KK_3 M_h(t, x_1, x_2, \dots, x_n)
$$

for all
$$
|x_i|
$$
 > max $(d_{2i}, \delta_i(t) + h) = \delta'_i(t)$ Since $\overline{M}(t, 2\delta_1(t), 2\delta_2(t), \ldots, 2\delta_n(t))$ is

integrable over *T*, this yields the integrability of $\overline{M}_h(t, 2\delta_1'(t), 2\delta_2'(t), \ldots, 2\delta_n'(t))$ which proves the theorem.■

For each *t* in *T* and $x_1, x_2, ..., x_n$ in E^n it is known that

$$
\lim_{h=0} M_h(t, x_1, x_2, \ldots, x_n) = M(t, x_1, x_2, \ldots, x_n).
$$

However, the same property does not hold in general for $\hat{M}_h(t, x_1, x_2, ..., x_n)$ $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$. This is the point of the next theorem.

Theorem 2.3:

For each $h > 0$ let x_{0i}^h for $1 \le i \le n$ be the minimizing point of $M_h(t, x_1, x_2,...,x_n)$ defining $\hat{M}_h(t, x_1, x_2,...,x_n)$ $\hat{M}_h(t, x_1, x_2, \dots, x_n)$. Then for each *t* in *T* and each x_i for $1 \le i \le n$ in E^n , there exists $K(t, x_1, x_2, ..., x_n)$ such that

$$
\lim_{h \to 0} \hat{M}_h(t, x_1, x_2, \dots, x_n) = M(t, x_1, x_2, \dots, x_n) + K(t, x_1, x_2, \dots, x_n) \prod_{i=1}^n \lim_{h \to 0} \left| x_{0i}^h \right|
$$

Proof:

By the definition of $\hat{M}_h(t, x_1, x_2, ..., x_n)$ we can write

$$
\left| \hat{M}_{h}(t, x_{1}, x_{2},...,x_{n}) - M(t, x_{1}, x_{2},...,x_{n}) \right| \leq
$$
\n
$$
\int_{E^{n} E^{n}} \int_{E^{n}} \cdots \int_{E^{n}} \left| M(t, x_{1} + x_{01}^{h} + z_{1}, x_{2} + x_{02}^{h} + z_{2},...,x_{n} + x_{0n}^{h} + z_{n}) - M(t, x_{01}^{h} + z_{1}, x_{02}^{h} + z_{2},...,x_{0n}^{h} + z_{n}) - M(t, x_{1}, x_{2},...,x_{n}) \right| J_{h}(z_{1}) J_{h}(z_{2}) \cdots J_{h}(z_{n}) dz_{1} dz_{2} \cdots dz_{n}
$$
\n(1)

However, we know that

$$
\begin{aligned}\n& \left| M(t, x_1 + x_{01}^h + z_1, x_2 + x_{02}^h + z_2, \dots, x_n + x_{0n}^h + z_n) - \right. \\
& \left| M(t, x_{01}^h + z_1, x_{02}^h + z_2, \dots, x_{0n}^h + z_n) - M(t, x_1, x_2, \dots, x_n) \right| \\
& \leq \left| M(t, x_1 + x_{01}^h + z_1, x_2 + x_{02}^h + z_2, \dots, x_n + x_{0n}^h + z_n) - M(t, x_1, x_2, \dots, x_n) \right| \\
& + \left| M(t, x_{01}^h + z_1, x_{02}^h + z_2, \dots, x_{0n}^h + z_n) - M(t, z_1, z_2, \dots, z_n) \right| + \left| M(t, z_1, z_2, \dots, z_n) \right|. \n\end{aligned}
$$

__

Moreover, since $M(t, x_1, x_2, \ldots, x_n)$ is a convex function, it satisfies a Lipshitz condition on compact subsets of E^n (see[Skaff (1968),Th.5.1]). Therefore , there exists $K_1(t, x_1, x_2, \dots, x_n)$ and $K_2(t, x_1, x_2, \dots, x_n)$ such that $\left[\left(x, x_1, x_2, \ldots, x_n\right) \middle| x_{01}^h + z_1 \middle\| x_{02}^h + z_2 \middle\| \ldots \middle| x_{0n}^h + z_n \right].$ $(t, x_1 + x_0^h + z_1, x_2 + x_0^h + z_2, ..., x_n + x_0^h + z_n) - M(t, x_1, x_2, ..., x_n)$ *h n* $h \left| \right|$ $\left| \right|$ $\left| \right|$ $K_1(t, x_1, x_2, \ldots, x_n) \Big| x_{01}^h + z_1 \Big| x_{02}^h + z_2 \Big| \cdots \Big| x_{0n}^h + z_n \Big|$ *h* $n \stackrel{1}{\sim} \infty$ _{0n} $M(t, x + x_{01}^h + z, x + x_{02}^h + z, \ldots, x + x_{0n}^h + z) - M(t, x, x, \ldots, x)$ (3)

and

$$
\left| M(t, x_{01}^h + z_1, x_{02}^h + z_2, ..., x_{0n}^h + z_n) - M(t, z_1, z_2, ..., z_n) \right| \le K_2(t, x_1, x_2, ..., x_n) \left| x_{01}^h \right| |x_{02}^h| \cdot \left| x_{0n}^h \right|
$$
\n(4)

(1), we achieve the inequality

If we combine (3) and (4) with (2) and if we substitute the resulting expression into
\n(1), we achieve the inequality\n
$$
\left| \hat{M}_h(t, x_1, x_2, \ldots, x_n) - M(t, x_1, x_2, \ldots, x_n) \right| \leq \prod_{i=1}^n \left| x_{0i}^h \right| (K_1(t, x_1, x_2, \ldots, x_n) + K_2(t, x_1, x_2, \ldots, x_n)) +
$$
\n
$$
\sum_{i=1}^n \int_{E^n} \int_{E^n} \ldots \int_{E^n} \left| x_{0i}^h \right| K_1(t, x_1, x_2, \ldots, x_n) \left| z_i \right| J_h(z_1) J_h(z_2) \ldots J_h(z_n) dz_1 dz_2 \ldots dz_n +
$$
\n
$$
\int_{E^n} \int_{E^n} \ldots \int_{E^n} K(t, x_1, x_2, \ldots, x_n) \prod_{i=1}^n \left| z_i \right| J_i(z_1) J_i(z_2) \ldots J_i(z_n) dz_1 dz_1 \ldots dz_n +
$$
\n
$$
\int_{E^n} \int_{E^n} \ldots \int_{E^n} K(t, z_1, z_2, \ldots, z_n) J_i(z_1) J_i(z_2) \ldots J_i(z_n) dz_1 dz_2 \ldots dz_n
$$

Since the last four integrals on the right side tend to zero as *h* tends to zero, we prove the theorem by setting

$$
K(t, x_1, x_2, \dots, x_n) = K_1(t, x_1, x_2, \dots, x_n) + K_2(t, x_1, x_2, \dots, x_n)
$$

Corollary 2.4:

Suppose $M(t, x_1, x_2, \ldots, x_n)$ is a GN'-function such that

$$
M(t, x_1, x_2, \ldots, x_n) = M(t, -x_1, -x_2, \ldots, -x_n).
$$

Then for each *t* in *T* and x_i in E^n for *i*=1to *n*, we have

$$
\lim_{h=0} M_h(t, x_1, x_2, \dots, x_n) = \hat{M}(t, x_1, x_2, \dots, x_n)
$$

Proof:

This result is clear since $\lim |x_{0i}^h|=0$ 0 $=$ $=$ *h i h* $|x_{0i}^h| = 0$ for *i*=1 to *n*

if $M((t, x_1, x_2, ..., x_n) = M(t, -x_1, -x_2, ..., -x_n)$. In fact, if $M(t, x_1, x_2, ..., x_n)$ is even in $(x_1, x_2, ..., x_n)$ then the $x_{0i}^h = 0$ $x_{0i}^h = 0$ for *i*=1 to *n* for all *h*.■

For each t in T let A_h denote the set of minimizing points of

 $M_h(t, x_1, x_2, \ldots, x_n)$ and let *B* represents the null space of $M(t, x_1, x_2, \ldots, x_n)$ relative to points in $E^n \times E^n \times ... \times E^n$, i.e.,

$$
B = \{ (x_1, x_2, ..., x_n) \text{ in } E^n \times E^n \times ... \times E^n : M(t, x_1, x_2, ..., x_n) = 0 \}.
$$

If $M(t, x_1, x_2,...,x_n)$ is a GN'-function, then $B = \{(0,0,...,0)\}$. For the sake of argument, let us suppose that $M(t, x_1, x_2, ..., x_n)$ has all the properties of a GN'function except that $M(t, x_1, x_2, ..., x_n) = 0$ need not imply $x_i = 0$ for $i = 1$ to *n*. We will show the relationships that exist between A_h and B . This is the content of the next few theorems.

__

Theorem 2.5:

The sets *B* and A_h are closed convex sets.

Proof:

This result follows from the convexity and continuity of $M(t, x_1, x_2, \ldots, x_n)$ in x_i for $i=1$ to *n* for each *t* in T .

Theorem 2.6:

Let $B_e = \{(x_1, x_2, \ldots, x_n) : M(t, x_1, x_2, \ldots, x_n) < e\}$ for each *t* in *T*. Then given any *e>0*,

there is a constant $h_0 > 0$, such that $A_h \subset B_e$ for each $h \leq h_0$.

Proof:

Since $B \subseteq B_e$, we can choose h_0 sufficiently small so that if $\left(x_1, x_2, ..., x_n\right)$ is in *B* then $(x_1 + z_1, x_2 + z_2, ..., x_n + z_n)$ is in B_e for all $(z_1, z_2, ..., z_n)$ such that $|z_i| \leq h_0$ *i* $z_i \leq h_0$ for *i*=1to *n*. Let (z_0, z_0, \ldots, z_n) be arbitrary but fixed points in A_h , $h \le h_0$. Then

 $M_h(t, z_0, z_0, \ldots, z_n) \le M_h(t, x_1, x_2, \ldots, x_n)$ for all x_i for $i = 1$ to n . Therefore, if $(x_1, x_2, ..., x_n)$ in *B*, we have $M_h(t, z_0, z_0, ..., z_n) < e$ by our choice of h_0 . Letting *h* tend to zero yields $M(t, z_0, z_0, \ldots, z_n) < e$, i.e., (z_0, z_0, \ldots, z_n) in B_e .

We have commented above that $A_h = \{(0,0,...,0)\}\$

$$
M(t, x_1, x_2, \dots, x_n) = M(t, -x_1, -x_2, \dots, -x_n).
$$

It is also true if $M(t, x_1, x_2, \dots, x_n)$ is strictly convex in *x* for each *t* in *T*.

Theorem 2.7:

Suppose $M(t, x_1, x_2, \ldots, x_n)$ is a GN*-function which is strictly convex in x_i for

 $i = 1$ to *n for each t. Then* $h, A_h = \{(0,0,...,0)\}$ for each *h*.

Proof:

Suppose that there exists $z_{0i} \neq x_{0i}$ for $1 \leq i \leq n$ such that z_{0i} , x_{0i} for $1 \leq i \leq n$ are in A_h . Let 2 $(x_{0i} + z_{0i})$ *i* $x_{0i} + z$ *z* $\ddot{}$ $f(x) = \frac{(x_0 - x_0)}{2}$ for $1 \le i \le n$. Then, since $M(t, x_1, x_2, ..., x_n)$ is strictly convex, $M_h(t, x_1, x_2, ..., x_n)$ is strictly convex in $\left(x_1, x_2, ..., x_n\right)$, therefore, we have

$$
M_h(t, z_1, z_2, \dots, z_n) < \frac{1}{2} M_h(t, x_0, x_0, \dots, x_n) + \frac{1}{2} M_h(t, z_0, z_0, \dots, z_n). \tag{1}
$$

However, $(x_1, x_2, ..., x_n)$, $(z_1, z_2, ..., z_n)$ $01 \t 02 \t 0n \t 01 \t 02 \t 0n$ $\left(\frac{x}{2}, \frac{x}{2}, \ldots, \frac{x}{2}, \ldots, \frac{y}{2} \right)$, $\left(z_{01}, \frac{z}{2}, \ldots, \frac{z}{2}, \ldots, \frac{z}{2} \right)$ are in A_h reduces (1) to the inequality $M_h(t, z_1, z_2, \dots, z_n) < M_h(t, x_1, z_2, \dots, x_n)$ for all x_i for $i = 1$ to n . This means z_1, z_2, \ldots and z_n are in A_h and are $(x_0, x_0, \ldots, x_n), (z_0, z_0, \ldots, z_n, \ldots, z_n)$ not in A_h which is a contradiction. Hence, $x_{0i} = z_{0i}$ for $i = 1$ to *n*. Since $M(t, x_1, x_2, ..., x_n)$ is a GN'-function, $B = \{(0, 0, ..., 0)\}\$. In this case $x_{0i} = z_{0i} = 0$ for $i = 1$ to n .

References

- 1. Hassen,H.,A.," Generalized GN'-Function for n-Variable'', Journal of Thi_qar science .3,4,11,2013
- 2. Hassen,H.,A.," Generalized growth Condition for n-variable''.Journal of College of Education.1,2,9,2010

3. Hassen,H.,A.,:"*Vector Valued Orlicz Space Generalize GN*-function*" Msc.thesis.Kufa University. Department of Mathematic.College of Education,48,2007

__

- 4. Borwein ,Jon and Vanderwerff,Jon , "Convex function on Banach space Not containing 1 l ["Canad. Math. Bull.](http://cms.math.ca/cmb/) **[40](http://cms.math.ca/cmb/v40/)**, 10-18,1997
- 5. Skaff ,M.,S., "vector valued Orlicz spaces".Thesis, University of California, Los Angeles, 16,1968
- 6. Corothers ,N. ,"A short course on Banach space theory ".Bowling Green state university,2000
- 7. Orlicz , W., "Vber eine gewisse klasic von Räumen vom Typus".BBull.Int.Acad Polon.Sci.207- 220,1932