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ABSTRACT:

In this work we present the theory of an integral mean for generalized GN'-
function .We will show under what conditions the mean function is a GN'-function
and satisfies a A—condition. Moreover, we examine how the minimizing points in the
definition of the mean function affect a basic property of the ordinary integral mean.
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1.Introduction and Basic Concept:

In what follows T will denote a space of point with o -finite measure and E" a n-
dimensional Euclidean space.

Definition1.1 Orlicz(1932)
Orlicz space £, = LM(Q, 4 ) is a Banach space consisting of all

f eS(Q, 1) where S(Q, 4) is aring of all measurable functions on the space

with bounded measure space (€, £2) .

such that
| |\/|(|f|)d,u<oo,
Q

With the Luxemburg Nakano norm

f]

kv =inf{/1>0:gj2M(7)d,u£1}
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Generalized mean function for n-variable

Orlicz spaces Lm are natural generalization of Lp space, whereLp(l)

consists of all the measurable functions f defined on the interval | for which

1
({‘ f ‘ p) P <oo Corothers(2000)
They have very rich topological and geometrical structures; they may possess
peculiar properties that do not occur in an ordinary Lp  space.
Definition 1.2 Borwein (1997)

Let M :l1 = R be defined on some interval of the real line R. A function M is

called convex if

M(%)gi(l\ﬂ(ulnwuz)) W

forall u;,u, €l

we can generalize the inequality (1) for any ul,uz,...,un by

u +u, +..+u 1
S (M) M)

()

Definition 1.3 Hassen(2007)

Let M (t, X, y)be a real valued non-negative function defined on T xE" xE"

such that:
(i) M(t, x,y)=0if and only if x,y are the zero vectors X,y € E N vteT

(i) M(t,x,y)is a continuous convex function of X,y for each t and a

measurable function of t for each X,y

M(t,x,y)

(iii) Foreach t T , lim =00, and

~ X[yl

=00

X

y
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(iv)There are constants d >0 and d, >0 such that

intf gn(}‘ k(t,c,c')>0 (1)
c'>d;
Where k(t,c,c’):M,
M (t,c,c)
M (t,c,c’) =supM (t, x, y),M(t,c,c’) = |nf M (t,x, y)andif d >0 and d, >0
X|=c
y|=c’ y‘ ¢

, then M (t,d,d,)is an integrable function of t. We call the function satisfying the

properties (i)-(iv) a generalized N*-function or a GN*-function.

Definition 1.4:
Let M(t,Xl,Xz,...,Xn)be a real valued non-negative function defined on

TxE"xE"x ... xE" such that:

n — times
(i) M(t,xl,xz,...,xn)inf and only if X,X ,...,X are the zero vectors

X, X ,..X eE" VteT
1 2 n

(i) M(t,Xl,Xz,...,Xn)is a continuous convex function of Xl,xz,...,xnfor

each t and a measurable function of t for each X1’ Xz,...,X ,
n

- M{t, XX, )
(iii) Foreach teT , II‘m =00, and
x|

X
2

X
n

8

=00

(iv)There are constants d, >0,d, >0,...,d, >0 such that

iqf Cilr;{1 k(t,cl,cz,...,cn)>0 (1)

2.2
cd
n n
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Where

M(t.c,c,...c)
k(t1C ,C,...,C ):_ 1 2 n ’
1 2 n M(t,cl,cz,...,Cn)

M(t,x ,C ,...C )=sup M(t,X ,X ,....x ),
1 2 n X |=¢; 1 2 n
X_|=¢,

Xn|=Cn
M(t,cl,cz,...,cn):X|1r‘1:fol M(t,xl,xz,...,xn)

X |=C
2 2

Xn|=Cn

andif d, >0,d,>0,..., d_ >0, then M(t,dl,dz,...,dn)is an integrable function

of t. We call the function satisfying the properties (i)-(iv) a generalized N'-function or
a GN'-function.

Definition 1.5 Hassen (2010)
We say that a GN*-function M(t,x,y)satisfies a A —condition if there exists a

constant K > 2 and non-negative measurable functions 51 (t)and &, (t) such that the

function M (t,26,(t),25,(t)) is integrable over the domain T and such that for

almost all t in T we have

M (t,2x,2y) < KM (t, X, y) (1)
for all x and y satisfying |X| > S, (tyand |y| >0, (t) .

We say that a GN*-function satisfies a A, —condition if it satisfies a =~ A—

condition with &, (t) =0and J,(t) =0 for almostall tin T.

In Definition 1.5 we could have used any constant 7 >1 in place of the scalar
2in (1).

Definition 1.6:

We say that a GN'-function M (t,Xl,Xz,...,Xn)satisfies a A —condition if there

exists a constant K >2and non-negative measurable functions 51(0’52 ®),...,

16
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o, (t) such that the function M (t,20,(t),20,(t),... 25, (t)) is integrable over the

domain T and such that for almost all t in T we have

M(t,2x1,2x2,...2xn)§KM (t,xl,xz,...,xn) (1)

forallx , XZ,...,anatisfying‘Xl‘ 251(t) , ‘XZ‘ 252 ®,...,

xn‘25n(t).

Thus, according to this definition, the statement above can be formulated as:

We say that a GN'-function satisfies a A, —condition if it satisfies a ~ A—
condition with &, (t) =0, 6, (t)=0,...,0,(t) =0 for almostall tin T.
In Definition1.6we could have used any constant 7 >1 in place of the scalar 2 in (1).
Definition 1.7 Hassen (2007)

Foreach tin T and h>0 let

M, (X y)=[ [M(t,x+2,y+wW)J,(2)J, (w)dzdw,

N EN
where J, (z) and J, (w) are no negative, ¢™ function with compact

support in a ball of a radius h such that | [J,(z)J, (w)dtdt =1.

ENEN

Moreover, let X,and Yy, are any tow points (depending on h, t) which satisfy the

inequality
M, (t, %o, Yo) <M, (L, X, Y)

forall x and y in E" . Then the function M, (t,X, y) defined for each t in T and
h>0 by

Mh(tixiy):Mh(th+XOly+yO)_Mh(t’XOlyO)

is called a mean function for M (t, X, y) relative to the minimizing point x,and y, .

Definition 1.8:

For each tin T and h>0 let
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Mh(t,xl,xz,...,xn):

[ I IMEX +y,x +y 0x +y ) (y)Jd (y)..d (y)dydy ..dy

E E E

where Jh(yl) : Jh(yz),...,Jh(yn) are no negative, ¢ function with compact

support in a ball of a radius h such that
[ ] Jh(yl)Jh(yz)..Jh(yn)dtdt...dt:1‘. Moreover, let X,,,

ENME" E"
Xoz---» X, @re any points (depending on h, t) which satisfy the inequality
M, (t, Xogs Xop - X0 ) <M (8, X xz,...,xn)
for all Xl,XZ,...,Xnin E" . Then the function I\7Ih(t,X1,X2,...,Xn) defined for each t

inTand h>0 by

My (6%, % 00X ) =My (6 X+ Xo, X+ Xop X+ Xgq) = My (t Xog, Xp--:Xgn)

is called a mean function for M (t, X1’ X2 ,...,Xn)relative to the minimizing points
Xog+ Xoz s+ -5 Xon -
Theorem 1.9 Hassen (2007)

If M (t, X, y)is a GN*-function for which M (t,c,c") is integrable in t for each ¢

and ¢', then M, (t, X, y) is a GN*-function.

Theorem 1.10 Hassen (2007)

If M(t,%x,y) is a GN*-function satisfying a A-condition and for which

M (t,c,c’) is integrable in t for each cand C' , then M L X Y)

satisfies a A —condition.

Theorem 1.11 Hassen (2007)

Foreach h>0Qlet X{ and Y; be the minimizing point of M, (t, X, y)

18
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defining I\7Ih(t,x, y).Then for each t in T and each X,yin E" there exists

K(t, X, y) such that

lim M, (t,x, y) =M (t, X, y) + K(t, X, y) lim |3 i 3|

h=0
Corollary 1.12 Hassen (2007)

Suppose M (t, X, y) is a GN*-function such that M (t, X, y) = M (t,—x,—Y).
Then foreach tin Tand X, yin E" ,we have
lim M, (t, %, y) = M (t, X, y)
Theorem 1.13 Hassen (2007)

The sets Band A, are closed convex sets.

Theorem 1.14 Hassen (2007)

Let B, ={(X,y):M(t, X, y) <e}for each tin T. Then for given any e>0,
there is a constant h, > 0. such that A, — B, foreach h < h.

Theorem 1.15 Hassen (2007)
Suppose M(t,x,y) is a GN*-function which is strictly convex in x and y

for each t. Then h, A, ={(0,0)}for each h.

Theorem 1.16 Hassen (2013)

A necessary and sufficient condition that (1.5.1) holds is that if

‘xl‘ S‘yl‘ ,‘XZ‘S‘yZ‘ ‘Xn‘ S‘yn‘ then there exists constants K Zl,d1 ZO,d2 >0
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...,dn >0 such that I\/I(t,Xl,XZ,...,Xn)S KM (t, Y, y2,...,yn) foreachtin T,

>d

n

X

n

‘x ‘zd ,‘x ‘zd
1 1 1 1
Theorem 1.17 Hassen (2010)

A GN'-function M (t, X X2,...,Xn)satisfies a A —condition if and only if

given any 7 >1there exists a constant K_ > 2 and a non-negative measurable

functions 5, (), 5, (t) ...., &, (t) such that M (t,26, (t),25, (t),... 25, (t)) is

integrable over T and such that for almost all t in T we have

M(t,le,zxz,...,zxn)sK,M(t,xl,xz,...,xn), (1)

Whenever‘xl‘ 251(t) , ‘XZ‘ 252 t)....,

xn‘zdn(t).

2. Generalized mean function:

Theorem 2.1:

If M(t,xl,xz,...,xn)is a GN'-function for which I\W(t,cl,cz,...,cn) is

integrable in t for each €.C,...iC . then M A (@, X X e X ) is a GN'-function.
n

Proof:

We will show this result by justifying conditions (i)-(iv) of the definition

3.1.1. By hypothesis and the choice of Xy, Xg,,..-»Xy,,» We have for each h,

I\7Ih(t,xl,X2,...,Xn)20 and I\7Ih(t,0,0,...,0):0. On the other hand, if

Xl;tO,XZ;tO,...,Xn;tO, then M(t,xl,xz,...,xn)>0, and hence there are

constants hy;, hy, ,..., hy, such that

a=inf M(t,x +w,X +w ,...Xx +w )>0
1 1 2 2 n n
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However, since M (t,Xl,XZ,...,Xn)zo if and only ile =0, X, =0,...,Xn =0, the
minimizing points X,, tends to zero, X, tends to zero,..., X,,tends to zero as h tends

to zero. Therefore, we can choose o, <hy,, g, Shoz,...,gOn Sh()n such that if

h<g, . h<gg,--N<ggthen  M(t, Xy, + Y1 X2 Y0 Xon + yOn)<afor

all 'y .Yy, for which ‘x01+y01‘<h, ‘x02+y02‘<h,...,

Xon + yOH‘ <h
forthis go;,9¢p,---»0o, We obtain the inequality
>
M (t,xl X FY X FXp Y X+ Xgy + yOn)_

inf M(t,x +w,Xx +w,...x +wW)>a
1 1 2 2 n n

w

<Op

1
I<i<n

>M (t, XOl + yOl, on + y02 ------ XOn + yOn)

whenever | Xy, + Y, I< Qo1 | X0 + Yo, 1< ool Xon + Y, I< gy, .This means for

some h<g,.h<g,,....h<g,, we have
M(t,xl X HY X Xp Y X+ Xy F yOn)>
M(t,x01+y01,x02 + Y, Xon +y0n)
Mh(t,,xl+x01,x2+x02,...,xn + Xon) > M (t, X1, X0z 1+ -:X0n)
or Mh(t,xl,xz,...,xn) >0 if X #0, X, ;tO,...,Xn # Owhich proves property (i).

Properties (i) and (iii) for Mh(t,xl,xz,...,xn)follow easily from the same
properties for M (t,Xl, XZ,...,Xn). Let us now show (iv). By assumption, there are

constants d, >0, d, >0,...,d, >0such that

r(t)l\W(t,cl,cz,...,cn)SM(t,cl,cz,...,cn) (1)

21
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for all C, > dl,C2 >d, e C 2>d, . Furthermore, it is not difficult to show that for all
cand C" we have

M (t,c,c ,...,c)=sup M(t,x,X ,....x ) @
1 2 n ‘xi‘sci 1 2 n

1<i<n

and for some fixed wW,,Ww,,... W,

inf M(t,x +w,x +w ,...x +w )< inf M(t,x +W,X +W ,... X +W )
1 1 2 2 n n 1 1 2 2 n n

X |>C
il il i
1<i<n 1<i<n
3

By using (2), we obtain (for each t in T)that

r(t)supM(t,wl,wz,...,w)Sr(t) sup M(t,rl,rz,...,r) (4)

n

X |=C

il i i
1<i<n 1<i<n

where W, = X; + X,; +I; for i=1 to n. On the other hand, by (1) and (3), we achieve

(t)  sup M(t,wl,wz,...,w)g inf M(t,wl,wz,...,w) (5)

wi=e + XOi+Xi1‘ Wi :Ci i +X'1‘
]siign I<i<n
< inf M(t,X +Xp +7, X +Xpp +7 0 X +Xp, +1 ).
1 1 2 2 n n
X' >C
1£|i£nI

< inf Mt X + Xog + I, Xy + Xgy + Ty ey Xo + Xgy + 1)

= C.
i

1<i<n

22
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If we combine (4) and (5), then for all Ci > di fori=1tonand we arrive at

T(t) sup M(t, X, + Xo; + 1, Xy + Xgp + Fpyens X, + X, +1,) <

=C.
i

l1<i<n

inf M (t, X, + Xo; + 11, X, + Xgp + 1 yee X, + Xon +1,,)

X|=¢C

1<i

IN

n

From this inequality, we obtain

- ~ > -
inf Mh(t,xl,xz,...,xn)_j [...] inf {M(t,x1+x01+r1,x2+x02+r2,...,xn+x0n+rn)

= C: n _n n =
CI E E E Xi Ci

1<i<n 1<i<n

—M(t, X, + Xgy + 1, Xy +Xgp +Fpyeeen X, + X, T )}Jh(rl)Jh(rz)...Jh(r )drldrz...dr

>
2 [ [ [{r(®) sup M(LX +X +T,X +X 4T ..X +X +T)

n
EE E x |=c
| |

. (6)
1<i<n

—M(t, Xy, + 1, Xy +Foyeees Xy + T )Jh(rl)Jh(rz)...Jh(r )}drldrz...dr ,

and

sup M, (t, x Xy X )< [ [SUpM (t, X, + Xo; + 1, X, + Xgp + 16,y
n

Ix,|=c, 1 E" E"E'x|=c
I<i<n I<i<n
X, + X, + 1 )Jh(rl)Jh(rz)...Jh(r )drldrz...dr : (7

Moreover, since lim sup M (t, X, + Xo; + 1, X, + Xgp + yee X, + Xp, +1,) =0
5= | |=c

1<i<nqci<n

for fixed Xy;, I for 1<i <n such that M <h for 1<i<n given

23



Generalized mean function for n-variable

K, (t) =2SupM (t, Xo; + 1, Xgo + oy Xon + T )/iqf 7(t)
[ri[<hy n
1<i<n

there are di >0,1<i<n such that if Ci Zdi 1<i<n then

SUp M (L, X, + Xgp + 1, X, + Xgo + ey X, + Xg, + 1) 2 K.
Xi :Ci
‘Jsi‘gn

Therefore, by wusing (3.3.8) and (3.3.9), we achieve the inequalities

~

‘ir‘[f Mh(t,xl,xz,...,x )
1<i<n _ Zf(t)—
Suth(t,xl,xz,...,x )

‘Xi‘:Ci n

1<i<n

SUP M (t, X, + Xy + 1, X, + Xgp + Fypees X, + X, + 1)

r|<h

1li<ni 1.

— >7(t) —=inf z(t)
INf sup M (t, X, + Xo; + 1, Xy + Xgp + Fpyee s X, + Xo, + 1) 2 t

< IX=c

i 1<i<n

r

|
I<i<

(8)

]

for all cj>d, :max(di,di',‘xm‘) . Taking the infimum of both sides of (2.1.8)

over t, shows the first part of the property (iv). To show the latter part, assume
dy, >01<i<nand.Then Sup I\7Ih(t,Xl,X2,...,Xn) is integrable over t in T since

X |=dg;
‘i‘ o]

I<i<n

it is bounded by the integrable function M(t,d,,d,,,...,d, ) where

d, =d, + ‘Xm ‘ + h .This proves property (iv) and
the theorem.m

In the next theorem we show under what condition I\7Ih(t,Xl,XZ,...,Xn)satisfies a

A — condition.
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Theorem 2.2:
If M(t, X X2,...,Xn) is a GN'-function satisfying a A —condition and for which

M (t,c ,C ,...,c ) isintegrable int for each C,C ,...,C then I\7Ih(t,x X X))
1 2 n 1 2 n 1 2 n

satisfiesa A — condition.

Proof:

It suffices to show that M, (t, X X2,...,Xn) satisfiesa A —condition.

For, I\7Ih(t,xl,X2,...,Xn) is the sum of a constant and a translation of

Mh(t,Xl,XZ,...,Xn)and neither of these operations affects the growth condition. Let

us observe first that if ‘X‘ZZ for 1£i£n,‘zi‘£hsl for 1<i<n then

i
‘ZXi +Zi‘s3{xi +Zi‘ for 1<i<n. Hence, by Theorem (1.16), there are constants

K>1 and d, >0 such that

Mh(t,2x1,2x2,...2x Y<K [ M(t,3(x1+zl),3(x2+22),...3(x +2))
e"  E"

K3Mh(t,xl,x2,...,xn)Jh(zl)Jh(22)...Jh(zn)dzldzz...dzn

forall X for 1<i<n such that ‘Xi‘Zdz for 1<i<n and d, =max(d,,2).0n the

other hand ,by theorem (1.17),

<
[ ..M (t,3(x1 + zl),S(x2 + 22),...3(xn - zn))\]h(zl)\]h(zz)...Jh(zn)dzldzz...dzn <
E"E" E"
Kth(t,xl,xz,...,x )
there is a constant K, >2, ¢,(t) >0 for 1<i<n such that for almost all t in Tfor all
X;,Z; for 1<i<nsuch that ‘Xi +Zi‘25i(t)for 1<i<n where ‘Zi‘éhi for 1<i<n

.By combining the above two inequalities, we achieve

Mh(t,2x1,2x2,...,2xn)s KKsMh(t,xl,xz,...,xn)

25
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for all ‘xi‘ > max(d,,, 8, (t) + h) = 8/(t) Since M (t,25,(t).25, (t).... 25, (1)) is

integrable over T this yields the integrability of M, (t,26(t),25,(t),... 25, (t))

which proves the theorem.m

Foreachtin T and Xl,Xz,...,X in E" it is known that
n

:'TOMh(t’Xl’Xz"“’Xn): M(t,xl,xz,...,xn).

However, the same property does not hold in general for I\7Ih(t, X x2,...,xn)
. This is the point of the next theorem.

Theorem 2.3:

For each h>O0let X} for 1<i<n be the minimizing point of
Mh(t’xl’xz"”’xn) defining I\7Ih(t,xl,x2,...,xn).Then for each t in T and each X;
for 1<i<n in E" there exists K(t,Xl,XZ,...,Xn) such that

~ n -
Ihlmth(t,xl,xz,...,xn): M(t,xl,xz,...,xn)+ K(t,xl,xz,...,xn)]‘[rm0
_ =

Xh
0i

Proof:

By the definition of I\7Ih(t, X XZ,...,Xn) we can write

‘I\?Ih(t,xl,xz,...,xn)—l\/l(t,xl,xz,...,xn)‘g

[ [ JIMEX +X+2Z,X +X5+2Z X +X0+2)—
gn 1 1 2 2 n n

g g
h h h
M(t,x01+zl,x02 +Z 50 Xon +zn)—M(t,x1,x2 ..... xn)

1)

J, (zl)Jh (zz)...\]h (zn)dzldzz. : .dzn

26
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However, we know that
h h h
M(t,x1+x01+zl,x2 +Xop FZ_se X+ Koy + 2 )—
n n

)
M(t,xgl+zl,xg2 +22,...,xgn +2 )=M(tX X ... )

<SIM(t,X + X5 +Z,X + X5, +2Z X +X0+2 ) =M, X, X ,....X )‘
1 1 2 2 n n 1 2 n

+ M(t,xgl+zl,xg2 +zz,...,xgn +z )—M(t,zl,zz,...,z )‘+‘M(t,zl,zz,...,z )‘.

Moreover , since M (t, X1’ X2,...,Xn) is a convex function, it satisfies a Lipshitz

condition on compact subsets of E" (see[Skaff (1968),Th.5.1]).Therefore ,there exists
Kl(t’xl’xz"”’xn) and KZ(t’Xl’Xz"“’Xn) such that

M(t,X + X0, +2Z,X +Xp+2Z ,..0X +%X +2)=M(t,X,X ,...x )<
1 1 2 2 n n 1 2 n

Kl(t,xl,xz,...x)

’
n

X0 + 2
1

X0, + 2 ‘
2

X +Z
n

(3)

and

Mt Xy, + 2, X +Z X +2 ) =M (t,2,2 ..., )‘us(t,x X oo X )‘xgluxgz‘..lxgn
1 2 n 1 2 n 1 2 n
(4)

If we combine (3) and (4) with (2) and if we substitute the resulting expression into

(1), we achieve the inequality

h
in (Kl(t, xl, xz,...,xn)+ Kz(t,xl,xz,...,xn))+

A _ < n
Mh(t,xl,xz,...,xn) M(t,xl,xz,...,xn)‘_ilj1

>0 ‘xgi‘Kl(t,xl,xz,...,x )‘Zi
En n

i=LgN gN

Jh(zl)Jh(22)...Jh(zn)dzld22...dzn +

[ ] K(t,xl,xz,...,x ) 11

ENgN gN n

1
[ ]..] M(t,zl,zz,...,z ¥ (z) (z).J (zn)dzldzz...dzn

gNegh gn n h 1 h 2 h

: Jh(zl)Jh(22)...Jh(zn)dzldzz...dzn +
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Since the last four integrals on the right side tend to zero as h tends to zero, we

prove the theorem by setting

K(t,xl,xz,...,xn)z Kl(t,xl,xz,...,xn)+ Kz(t,xl,xz,...,xn)
Corollary 2.4:
Suppose M (t, X X2,...,Xn) is a GN'-function such that
M (t,xl,xz,...,xn) =M (t,—xl,—xz,...,—xn).
Then for each tin T and X;in E" for i=1to n ,we have
I,'EJ Mh(t,xl,xz,...,xn): M (t,xl,xz,...,xn)
Proof:

This result is clear since lim ‘xgi‘ =0 fori=1ton
h=0

it M ((t,xl,xz,...,xn) =M (t,—xl,—xz,...,—xn).ln fact, if M (t, X, xz,...,xn) is even
in (Xl,XZ,...,Xn)then the Xgi =0 fori=ltonforall h.m
For each tin T let A, denote the set of minimizing points of
Mh(t’xl’xz""'xn) and let B represents the null space of M(t,Xl,Xz,...,Xn)
relative to points in E" xE" x...x E" | i.e.,

B={(x1,x2,...,x ) in E"xE"x..xE": M(t,xl,xz,,,_,x ) =0}.

If M(t,Xl,XZ,...,Xn)is a GN'-function, then B={(0,0,...,0)}. For the sake of
argument, let us suppose that M (t,Xl,XZ,...,Xn) has all the properties of a GN'-

function except that M (t,Xl,Xz,...,X ) =0 need not imply X =0 for i=1ton.
n ]
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We will show the relationships that exist between A, and B. This is the content of the

next few theorems.

Theorem 2.5:

The sets Band A, are closed convex sets.
Proof:

This result follows from the convexity and continuity of M (t,Xl,XZ,...,Xn)in Xi
fori=1ton foreachtin T.m
Theorem 2.6:

Let B, ={(X1,X2,...,Xn):I\/I(t,Xl,XZ,...,Xn)<e}for each t in T. Then given

any e>0,
there is a constant h, > 0. such that A, — B, foreach h < h.

Proof:

Since B < B,, we can choose h, sufficiently small so that if (X1 ) X2 peeyX )
n
isinBthen (X +2,X +Z,..X +Z ) isin Bgforall (z,Z,...,Z )such that
1 1 2 2 n n 1 2 n
|zi I<h, for i=lto n . Let (201’202""’20) be arbitrary but fixed points in
n

A,,h<h, .Then

M Z ,Z ,....2 )M X, X ,...X X i =
L (E ol ,On) L (L X ,n)for all X for i=1ton

Therefore, if (X ,X_,...,X ) in B, we have M, (t,z ,z ,...,z ) <eby our choice
1 2 n 01 02 On
. Letti ieldsM (t,z ,z ,....z )<e,ie,(z ,Z ,....Z
of h,. Letting h tend to zero yields M ( 2o On) ie.,( o 2o On)
in B

e

We have commented above that A, ={(0,0,...0)}
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M (t,xl,xz,...,xn): M (t,—xl,—xz,...,—xn).
It is also true if M (t, Xl, X2,...,Xn) is strictly convex in x foreach tin T.

Theorem 2.7:

Suppose M (t, X1’ X2,...,Xn) is a GN*-function which is strictly convex in X for
|

i =1tonfor each t. Then h, A, ={(0,0,...0)}for each h.

Proof:

Suppose that there exists z,; # X,; for 1<i<n such thatz,, X, for 1<i<n

(XOi + ZOi )

are inA . Let Z :T forl<i<n. Then, since M(t,Xl,Xz,...,Xn) is

strictly convex, Mh(t’xl’xz""’x ) is strictly convex in Xl,Xz,...,X , therefore, we
n n

have

02 On

1 1
Mh(t,zl,zz,...,zn)<5Mh(t,x01,x02,...,x0n)+§Mh(t,zm,z e ) (D)

X , X ,...,X KhZ , 4 i
However, ( o1’ o2 On) ( o1 On) arein A, reduces (1)

Z
02

to the inequality Mh(t,zl,zz,...,z )< Mh(t,xl,xz,...,x )forall X fori=1ton.
n n 1

ThismeansZ ,Z ,...and Z_are in andare(X ,X ,....x )(z ,z2 ,...,.Z
1 2 n Ay (01 02 On)(Ol 02 On)

not in A, which is a contradiction. Hence, X,; = Z,; for i =1 to n.Since
M(t,X X ,...X )isa GN'-function, B ={(0,0,...0);} . In this case X,; = Z,; =Ofor

i=1ton.
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