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ABSTRACT: 

      In this work we present the theory of an integral mean for generalized GN'-

function .We will show under what conditions the mean function is a GN'-function 

and satisfies a  condition. Moreover, we examine how the minimizing points in the 

definition of the mean function affect a basic property of the ordinary integral mean.  

Keywords :Generalized GN'-function for n-variable,∆-condition, Generalized 

mean function.  

:الملخص  

–وسىبيه انشروط انتي تجعهها دانة . مه انمتغيراتn ل'GN–في هذا انعمم وقذو وظرية انمتىسط  نهتكامم نهذانة 

GN' وانتي تحقق شرط . وكذنك وبيه ان اصغر وقطة في تعريف انذانة انقيمة انمتىسطة وتأثيرها بانخىاص

 .متىسط انتكامم الاعتيادي

1.Introduction and Basic Concept: 

    In what follows T will denote a space of point with -finite measure and nE  a n-

dimensional Euclidean space. 

Definition1.1 Orlicz(1932) 

    Orlicz space ) , (ΩMLML    is a Banach space consisting of all 

),(),(   SwhereSf  is a ring of all measurable functions on the space 

with bounded measure space ),(  . 

 such that  

,)(


dfM  

With the Luxemburg Nakano norm  

}1)(:0inf{ 


 


 d
f

MMf  
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Orlicz spaces mL  are natural generalization of pL  space, where )(ILp

consists of all the measurable functions f defined on the interval I for which 

                       
I

f pp
1

)(         Corothers(2000)                                      

They have very rich topological and geometrical structures; they may possess 

peculiar properties that do not occur in an ordinary pL     space. 

Definition 1.2 Borwein (1997) 

    Let RIM :  be defined on some interval of the real line R. A function M is 

called convex if  

                         ))M(u)(M(u
2

1
)

2

uu
M(

21

21 


                           (1) 

for all  Iuu 21,    

we can generalize the inequality (1) for any 
n

uuu ,...,,
21

 by              

    
))(....)((

1
)

....
( 1

21
n

n uMuM
nn

uuu
M 


                               (2) 

Definition 1.3 Hassen(2007)  

     Let ),,( yxtM be a real valued non-negative function defined on nn EET   

such that: 

(i) 0),,( yxtM if and only if x,y are the zero vectors nEyx , , Tt   

(ii) ),,( yxtM is a continuous convex function of yx, for each t and a 

measurable function of t for each yx,    

(iii) For each Tt  , 



 yx

yxtM

y

x

),,(
lim , and  
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         (iv)There are constants 0d  and 01 d  such that  

                             0),,(infinf

1





cctk
dc
dct

                                       (1)  

Where          ,
),,(

),,(
),,(

cctM

cctM
cctk






),,(inf),,(),,,(sup),,( yxtMcctMyxtMcctM
cy
cx

cy
cx







 and if 0d  and 01 d

, then ),,( 1ddtM is an integrable function of t.  We call the function satisfying the 

properties (i)-(iv) a generalized N*-function or a GN*-function. 

Definition 1.4: 

     Let ),...,,,(
21 n

xxxtM be a real valued non-negative function defined on 

n

timesn

nn EEET 


...  such that: 

(i) 0),...,,,(
21


n

xxxtM if and only if 
n

xxx ,...,,
21

 are the zero vectors 

n

n
Exxx ,...,,

21
, Tt   

(ii) ),...,,,(
21 n

xxxtM is a continuous convex function of 
n

xxx ,...,,
21

for 

each t and a measurable function of t for each 
n

xxx ,...,,
21

,   

(iii) For each Tt  , 







n

n

n
x

x

x xxx

xxxtM

...

),...,,,(
lim

21

21

2

1

, and  

         (iv)There are constants 01 d , 0,...,02  ndd  such that  

                             0),...,,,(infinf
21

22

11







 n

dc

dc

dct
ccctk

nn

                                 (1)  
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Where                                                                                                     

,
),...,,,(

),...,,,(
),...,,,(

2

2

2

1

1

1

n

n

n ccctM

ccctM
ccctk 

),,...,,,(sup),...,,,(
211

2
2

11
2 n

cx

cx

cxn
xxxtMccxtM

nn 





  

),...,,,(inf),...,,,(
211

2
2

112 n

cx

cx

cxn
xxxtMccctM

nn 




  

and if 01 d , 02 d ,…, 0nd , then ),...,,,(
21 n

dddtM is an integrable function 

of t.  We call the function satisfying the properties (i)-(iv) a generalized N'-function or 

a GN'-function. 

Definition 1.5 Hassen (2010) 

    We say that a GN*-function M(t,x,y)satisfies a  condition if there exists a 

constant 2K and non-negative measurable functions )(
1

t and )(2 t such that the 

function ))(2),(2,( 21 tttM   is integrable over the domain T and such that for 

almost all t in T we have   

                              ),,()2,2,( yxtKMyxtM                                          (1) 

for all x and y satisfying )(
1

tx  and )(2 ty   . 

    We say that a GN*-function satisfies a 0 condition if it satisfies a    

condition with 0)(1 t and 0)(2 t  for almost all t in T. 

 In Definition 1.5 we could have used any constant 1  in place of the scalar 

2 in (1). 

Definition 1.6: 

     We say that a GN'-function ),...,,,(
21 n

xxxtM satisfies a  condition if there 

exists a constant 2K and non-negative measurable functions )(
1

t , )(2 t ,…,
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)(tn such that the function ))(2),...,(2),(2,( 21 ttttM n  is integrable over the 

domain T and such that for almost all t in T we have   

                    ),...,,,()2,...,2,2,(
2121 nn

xxxtKMxxxtM                       (1)  

for all
n

xxx ,...,,
21

satisfying )(
11

tx   , )(
22

tx  ,…, )(tx
nn

 . 

Thus, according to this definition, the statement above can be formulated as:  

    We say that a GN'-function satisfies a 0 condition if it satisfies a    

condition with 0)(1 t , 0)(2 t ,…, 0)( tn  for almost all t in T. 

In Definition1.6we could have used any constant 1  in place of the scalar 2 in (1).  

Definition 1.7 Hassen (2007) 

     For each t in T and h>0 let  

  
nE nE

hhh dzdwwJzJwyzxtMyxtM )()(),,(),,( , 

 where )(zJ h  and )(wJ h  are no negative, c function with compact 

 support in a ball of a radius h such that   
nE nE

hh dtdtwJzJ 1)()( .                        

    Moreover, let 0x and 0y  are any tow points (depending on h, t) which satisfy the 

inequality       

),,(),,( 00 yxtMyxtM hh   

for all x  and  y  in nE  . Then the function ),,(ˆ yxtM h  defined for each t in T and 

0h   by  

                       )0000 ,,(),,(),,(ˆ yxtMyyxxtMyxtM hhh    

is called a mean function for ),,( yxtM relative to the minimizing point 0x and 0y . 

Definition 1.8: 

     For each t in T and h>0 let   
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),...,,,(
21 nh xxxtM  

n

E E E

nhhhnn
dydydyyJyJyJyxyxyxtM

n n n

    ...)()...()(),...,,,(...
21212211

 

 where )(
1

yJ h  , )(
2

yJ h ,..., )(
nh yJ  are no negative, c function with compact 

support in a ball of a radius h such that 

1̀...)()...()(...
21

   
n n nE E E

nhhh dtdtdtyJyJyJ .                             Moreover, let 01x ,

02x ,…, nx0  are any points (depending on h, t) which satisfy the inequality       

),...,,,(),,(
21

0,...,0201
nhnh xxxtMxxxtM   

for all 
n

xxx ,...,,
21

in nE  . Then the function ),...,,,(ˆ
21 nh xxxtM  defined for each t 

in T and 0h   by  

)002010,02
2

01
121

,...,,,(),,(),...,,,(ˆ
nhn

nhnh xxxtMxxxxxxtMxxxtM 

  

is called a mean function for ),...,,,(
21 n

xxxtM relative to the minimizing points 

01x , 02x ,…, nx0 . 

Theorem 1.9 Hassen (2007) 

  If ),,( yxtM is a GN*-function for which ),,( cctM   is integrable in t for each c 

and c', then  ),,(ˆ yxtM h  is a GN*-function. 

Theorem 1.10 Hassen (2007) 

    If ),,( yxtM  is a GN*-function satisfying a  condition and for which  

),,( cctM   is integrable in t for each c and c  , then  ),,(ˆ yxtM h  

satisfies a   condition.  

 Theorem 1.11 Hassen (2007) 

     For each 0h let 
hx0  and 

hy0  be the minimizing point of ),,( yxtM h  
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defining ),,(ˆ yxtM h .Then for each t  in T and each yx, in  nE ,there exists 

),,( yxtK  such that 

h

h

h

h
h

h

yxyxtKyxtMyxtM 0
0

0
0

0

limlim),,(),,(),,(ˆlim




  

Corollary 1.12 Hassen (2007) 

    Suppose ),,( yxtM is a GN*-function such that ),,(),,( yxtMyxtM  . 

Then for each t in T and yx, in nE ,we have 

),,(ˆ),,(lim
0

yxtMyxtM h
h




 

Theorem 1.13  Hassen (2007) 

   The sets B and 
hA  are closed convex sets. 

Theorem 1.14 Hassen (2007) 

      Let }),,(:),{( eyxtMyxBe  for each t in T. Then for given any e>0, 

 there is a constant .00 h  such that eh BA   for each 0hh  .      

Theorem 1.15 Hassen (2007) 

 Suppose M(t,x,y) is a GN*-function which is strictly convex in x and y  

for each t. Then )}0,0{(, hAh for each h.  

 Theorem 1.16 Hassen (2013) 

A necessary and sufficient condition that (1.5.1) holds is that if 

 
11

yx  ,
22

yx  ,…,
nn

yx   then there exists constants 1K , 0
1
d , 0

2
d

, 



Generalized mean function for n-variable 

_______________________________________________________  

20 

…, 0
n

d  such that ),...,,,(),...,,,(
2121 nn

yyytKMxxxtM   for each t in T, 

11
dx  ,

11
dx  ,…,

nn
dx   

Theorem 1.17 Hassen (2010) 

A GN'-function ),...,,,(
21 n

xxxtM satisfies a  condition if and only if  

given any 1 there exists a constant 2K  and a non-negative measurable 

functions )(1 t , )(2 t ,…, )(tn such that ))(2),...,(2),(2,( 21 ttttM n  is 

integrable over T and such that for almost all t in T we have 

                    ),...,,,(),...,,,(
2121 nn

xxxtMKxxxtM   ,                (1)   

 whenever )(
11

tx   , )(
22

tx  ,…, )(tx
nn

 .      

2. Generalized mean function: 

Theorem 2.1: 

     If ),...,,,(
21

 
n

xxxtM is a GN'-function for which ),...,,,(
21 n

ccctM  is 

integrable in t for each
n

ccc ,...,,
21

, then  ),...,,,(ˆ
21

 
nh xxxtM  is a GN'-function. 

Proof: 

We will show this result by justifying conditions (i)-(iv) of the definition 

3.1.1. By hypothesis and the choice of 01x , 02x ,…, nx0 , we have for each h, 

0),...,,,(ˆ
21

 
nh xxxtM  and 0)0,...,0,0,(ˆ tM h . On the other hand, if

0,...,0,0
21


n

xxx , then 0),...,,,(
21


n

xxxtM , and hence there are 

constants 01h , 02h ,…, nh0 such that  

0),...,,,(inf
2211

1

0






nn

ni

h

i

w

wxwxwxtMa

i
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However, since 0),...,,,(
21


n

xxxtM  if and only if 0,...,0,0
21


n

xxx , the 

minimizing points 01x  tends to zero , 02x tends to zero,…, nx0 tends to zero as h tends 

to zero. Therefore, we can choose 0101 hg  ,
02

02 hg  ,…,
n

n hg
0

0  such that if 

01gh , 02gh ,…, ngh 0 then ayxyxyxtM
n

n  ),...,,,(
0

0
02

02
01

01 for 

all 
n

yyy
00201

,...,, for which hyx 
01

01 , hyx 
02

02 ,…, hyx
n

n 
0

0  

for this 01g , 02g ,…, ng0     we obtain the inequality 

                 ),...,,,(
0

0
02

02
201

01
1 n

n
n

yxxyxxyxxtM                         

                  
awxwxwxtM

nn

ni

gw







),...,,,(inf
2211

1

01
1

 

  ),,(
0

0,....,
02

02
01

01
n

n yxyxyxtM   

whenever 01
01

01 || gyx  , 02
02

02 || gyx  ,…, n
n

n gyx 0
0

0 ||  .This means for 

some 01gh , 02gh ,…, ngh 0  we have  

                        ),...,,,(
0

0
02

02
201

01
1 n

n
n

yxxyxxyxxtM  

                                  ),...,,,(
0

0
02

02
01

01
n

n yxyxyxtM   

)00201002
2

01
1

,...,,,(),...,,,,( nhn
nh xxxtMxxxxxxtM   

or 0),...,,,(ˆ
21


nh xxxtM  if 0,...,0,0

21


n
xxx which proves property (i). 

 Properties (ii) and (iii) for ),...,,,(ˆ
21 nh xxxtM follow easily from the same 

properties for ),...,,,(
21 n

xxxtM . Let us now show (iv). By assumption, there are 

constants 01 d , 02 d ,…, 0nd such that  

                                ),...,,,(),...,,,()(
22 11 nn

ccctMccctMt                         (1)         
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for all 1
1

dc  , 2
2

dc  ,…, nd
n

c  . Furthermore, it is not difficult to show that for all 

c and c  we have 

                
),...,,,(sup),...,,,(

21

1

21 n

ni

icix
n

xxxtMccctM






                             (2)                   

 and for some fixed nwww ,...,, 21  

           

),...,,,(inf),...,,,(inf
2211

1

2211

1
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ni

c

i

x
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i
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









(3)          

By using (2), we obtain (for each t in T)that  

   ),...,,,(sup)(),...,,,(sup)(
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1
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1

n
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i

x

i
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i
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n

ni
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i

x
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1
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i
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



     

where iiii rxxw  0  for i=1 to n. On the other hand, by (1) and (3), we achieve  

  ),...,,,(inf),...,,,(sup)(
21

1

10

21

1

10

n

ni

i
x

i
x

i

cw
n
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i
x
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i
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wwwtMwwwtMt
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







      (5)                                                      

).,...,,,(inf 0
2

02
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01
1

1
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n
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rxxrxxrxxtM

i
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).,...,,,(inf 020221011

1

nnn

c
i

x

rxxrxxrxxtM

ni

i





                   



Journal of College of Education for Pure Sciences                            Vol. 4 No.2014 
________________________________________________________________________ 

23 

If we combine (4) and (5), then for all 
ii

dc   for i=1 to n and  we arrive at 


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
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 From this inequality, we obtain 
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Moreover, since  
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i
c
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for fixed 
i

i rx ,0 for ni 1  such that 
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hr   for ni 1  given 
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)(inf/),(sup2)( 02021011 ,...,,
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Therefore, by using (3.3.8) and (3.3.9), we achieve the inequalities  









)(
),...,,,(ˆsup

),...,,,(ˆinf

21

1

21
1

t
xxxtM

xxxtM

n
h

ni
cx

n
h

ni
cx

ii

ii



)(
2

1
)(

),...,,,(supinf

),...,,,(sup

020221011

1

1

020221011

1
tnfit

rxxrxxrxxtM

rxxrxxrxxtM

tnnn

ni
cx

ni
i

h

i

r

nnn

ni
i

h

i

r

ii

 














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for all ),,max(
0

0
i

ii xddidci
  . Taking the infimum of both sides of (2.1.8) 

over t, shows the first part of the property (iv). To show the latter part, assume 

nid i  1,00  and . Then ),...,,,(ˆsup
21

1

0

nh

ni

d
i

x

xxxtM

i





 is integrable over t in T since 

it is bounded by the integrable function ),...,,,( 22221 ndddtM where 

hxdd iii  002  .This proves property (iv) and  

the theorem.■    

 In the next theorem we show under what condition ),...,,,(ˆ
21 nh xxxtM satisfies a 

  condition.   
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Theorem 2.2: 

    If ),...,,,(
21 n

xxxtM  is a GN'-function satisfying a  condition and for which  

),...,,,(
21 n

ccctM  is integrable in t for each 
n

ccc ,...,,
21

 then  ),...,,,(ˆ
21 nh xxxtM  

satisfies a   condition.  

 Proof: 

     It suffices to show that ),...,,,(
21 nh xxxtM  satisfies a   condition. 

For, ),...,,,(ˆ
21 nh xxxtM  is the sum of a constant and a translation of 

),...,,,(
21 nh xxxtM and neither of these operations affects the growth condition. Let 

us observe first that if 2
i

x  for  ni 1 , 1 hz
i

 for ni 1  then 

iiii
zxzx  32  for ni 1 . Hence, by Theorem (1.16), there are constants 

1K  and  01 d  such that  

n
nhhhn

h

n
E

n
nnn

h

dzdzdzzJzJzJxxxtMK

E

zxzxzxtMkxxxtM

...)()...()(),...,,,(

))(3),...,(3),(3,(...)2,...,2,2,(

212121
3

221121
   

                                           

for all 
i

x  for ni 1  such that 2d
i

x   for ni 1  and )2,max( 12 dd  .On the 

other hand ,by theorem (1.17), 

),...,,,(

...)()...()())(3),...,(3),(3,(...

21
3

21212211

n
h

n
nhhh

n n n
nn

xxxtMK

dzdzdzzJzJzJ

E E E

zxzxzxtM    

 there is a constant 23 K , 0)( ti  for ni 1  such that for almost all t in Tfor all 

i
z

i
x ,  for ni 1 such that )(t

i
z

i
x i for ni 1  where 

i
h

i
z   for ni 1

.By combining the above two inequalities, we achieve 

),...,,,()2,...,2,2,(
21

3
21 nhnh xxxtMKKxxxtM   
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for all )())(,max( 2 thtd
i

x iii   Since ))(2),...,(2),(2,( 21 ttttM n  is  

integrable over T ,this yields the integrability of  ))(2),...,(2),(2,( 21 ttttM nh    

which proves the theorem.■ 

For each t in T and
n

xxx ,...,,
21

 in 
nE  it is known that 

                               ).,...,,,(),...,,,(lim
2121

0
nn

h

h

xxxtMxxxtM 


 

 However, the same property does not hold in general for ),...,,,(ˆ
21 nh xxxtM  

. This is the point of the next theorem. 

Theorem 2.3: 

        For each 0h let h
ix0  for ni 1  be the minimizing point of 

),...,,,(
21 nh xxxtM  defining ),...,,,(ˆ

21 nh xxxtM .Then for each t  in T and each  
i

x  

for ni 1  in nE ,there exists ),...,,,(
21 n

xxxtK  such that 



 

n

i

h

i
h

nnnh

h

xxxxtKxxxtMxxxtM

1

0
0

212121
0

lim),...,,,(),...,,,(),...,,,(ˆlim  

Proof: 

By the definition of  ),(ˆ ,...,,
21 nh xxxtM  we can write  

    ),...,,,(),...,,,(ˆ
2121 nnh xxxtMxxxtM                                                               

nn
hhh

n

h

n

hh

nE nE nE
n

h

n
n

hh

dzdzdzzJzJzJ
n

xxxtMzxzxzxtM

zxxzxxzxxtM

...)()...()(),...,
2

,
1

,(),...,,,(

),...,,,(...

2121
0

2
02

1
01

0
2

02
21

01
1



   

(1)         
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  However, we know that                                                                                    

),...,,,(),...,,,(

),...,,,(

21
0

2
02

1
01

0
2

02
21

01
1

nn

h

n

hh

n

h

n
n

hh

xxxtMzxzxzxtM

zxxzxxzxxtM




             (2) 

),...,,,(),...,,,(
21

0
2

02
21

01
1 nn

h

n
n

hh xxxtMzxxzxxzxxtM    

.),...,,,(),...,,,(),...,,,(
2121

0
2

02
1

01
nnn

h

n

hh zzztMzzztMzxzxzxtM 

  

Moreover , since ),...,,,(
21 n

xxxtM  is a convex function, it satisfies a Lipshitz 

condition on compact subsets of nE (see[Skaff (1968),Th.5.1]).Therefore ,there exists

),...,,,(
21

1
n

xxxtK  and ),...,,,(
21

2
n

xxxtK  such that 

....),...,,,(

),...,,,(),...,,,(

0
2

02
1

01
21

1

21
0

2
02

21
01

1

n

h

n

hh

n

nn

h

n
n

hh

zxzxzxxxxtK

xxxtMzxxzxxzxxtM




    

(3)      

and        

h

n

hh

nnn

h

n

hh xxxxxxtKzzztMzxzxzxtM 00201
21

2
21

0
2

02
1

01 ...),...,,,(),...,,,(),...,,,( 

.                                                     (4) 

If we combine (3) and (4) with (2) and if we substitute the resulting expression into 

(1), we achieve the inequality 

    









n

i nE nE nE nn
hhh

n

h

i

n

i
nn

h

inn
h

dzdzdzzJzJzJ
i

zxxxtKx

xxxtKxxxtKxxxxtMxxxtM

1 212121
10

1
21221102121

...)()....()(),...,,,(...

)),...,,,(),...,,,((),...,,,(),...,,,(ˆ

 

nnhhhnE nE nE n

nnhhhnE nE nE

n

i
n

dzdzdzzJzJzJzzztM

dzdzdzzJzJzJ
i

zxxxtK

...)()...()(),...,,,(...

...)()...()(),...,,,(...

212121

2121
1

21

  

   


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Since the last four integrals on the right side tend to zero as h tends to zero, we 

prove the theorem by setting  

),...,,,(),...,,,(),...,,,(
21

2
21

1
21 nnn

xxxtKxxxtKxxxtK   

Corollary 2.4:  

    Suppose ),...,,,(
21 n

xxxtM is a GN'-function such that          

                                           ),...,,,(),...,,,(
2121 nn

xxxtMxxxtM  . 

Then for each t in T and ix in nE for i=1to n ,we have 

),...,,,(ˆ),...,,,(lim
21210 nn

h
h

xxxtMxxxtM 


 

Proof: 

This result is clear since 0lim 0

0




h

i

h

x  for i=1 to n 

if ),...,,,(),...,,,((
2121 nn

xxxtMxxxtM  .In fact, if ),...,,,(
21 n

xxxtM is even 

in ),...,,(
21 n

xxx then the 00 h

ix  for i=1 to n for all h.■ 

 For each t in T let hA denote the set of minimizing points of 

 ),...,,,(
21 nh xxxtM  and let B represents the null space of ),...,,,(

21 n
xxxtM

relative to points in 
nnn EEE  ...  , i.e., 

}0),...,,,(:...),...,,({
2121


n

nnn

n
xxxtMEEEinxxxB . 

If ),...,,,(
21 n

xxxtM is a GN'-function, then B={(0,0,…,0)}. For the sake of 

argument, let us suppose that ),...,,,(
21 n

xxxtM   has all the properties of a GN'-

function except that 0),...,,,(
21


n

xxxtM  need not imply 0
i

x  for 1i to n . 
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We will show the relationships that exist between Ah and B. This is the content of the 

next few theorems.  

 

Theorem 2.5:  

   The sets B and 
hA  are closed convex sets. 

Proof:  

   This result follows from the convexity and continuity of ),...,,,(
21 n

xxxtM in 
i

x  

for i=1to n for each t in T.■ 

Theorem 2.6: 

      Let }),...,,,(:),...,,{(
2121

exxxtMxxxB
nn

e  for each t in T. Then given 

any e>0, 

 there is a constant .00 h  such that eh BA   for each 0hh  .      

Proof: 

Since
eBB  , we can choose 

0h  sufficiently small so that if ),...,,(
21 n

xxx

is in B then ),...,,(
2211 nn

zxzxzx   is in eB for all ),...,,(
21 n

zzz such that 

0|| h
i

z   for i=1to n . Let ),...,,(
00201 n

zzz  be arbitrary but fixed points in 

0, hhAh   . Then  

),...,,,(),...,,,(
2100201 n

h
n

h xxxtMzzztM  for all 
i

x  for 1i to n  . 

Therefore, if ),...,,(
21 n

xxx  in B, we have ezzztM
n

h ),...,,,(
00201

by our choice 

of 0h . Letting h tend to zero yields ezzztM
n
),...,,,(

00201
, i.e., ),...,,(

00201 n
zzz  

in eB .      

We have commented above that )}0,...,0,0{(hA                             
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                               .),...,,,(),...,,,(
2121 nn

xxxtMxxxtM   

   It is also true if ),...,,,(
21 n

xxxtM  is strictly convex in x for each t in T. 

Theorem 2.7: 

 Suppose ),...,,,(
21 n

xxxtM is a GN*-function which is strictly convex in 
i

x  for  

1i to n for each t. Then )}0,...,0,0{(, hAh for each h.  

 Proof: 

     Suppose that there exists ii xz 00   for ni 1   such that ii xz 00 ,  for ni 1  

are in
hA . Let 

2

)( 00 ii

i

zx
z


  for ni 1 . Then, since ),...,,,(

21 n
xxxtM  is 

strictly convex, ),...,,,(
21 n

h xxxtM  is strictly convex in 
n

xxx ,...,,
21

, therefore, we 

have 

).,...,,,(
2

1
),...,,,(

2

1
),...,,,(

002010020121 n
h

n
h

n
h zzztMxxxtMzzztM          (1)       

However, ),...,,(),,...,,(
0020100201 nn

zzzxxx  are in 
hA  reduces (1) 

to the inequality ),...,,,(),...,,,(
2121 n

h
n

h xxxtMzzztM  for all 
i

x  for 1i  to n . 

This means ,...,
21

zz  and nz are  in hA  and are ),...,,(),,...,,(
0020100201 nn

zzzxxx

not in hA  which is a contradiction. Hence, ii zx 00   for 1i  to n .Since 

),...,,,(
21 n

xxxtM is a GN'-function,  )0,...,0,0(B  . In this case 000  ii zx for 

1i  to n . 
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